

FELDVERSUCHSFÜHRER 2022

Feldtag Pflanzenschutz und Düngung Versuchsstation Friemar

Impressum

Herausgeber: Thüringer Landesamt für Landwirtschaft und Ländlichen Raum

Naumburger Str. 98, 07743 Jena

Tel.: +49 361 574041-000 · Fax: +49 361 574041-390

 $\hbox{E-Mail:}\ \underline{pressestelle@tlllr.thueringen.de}$

Bearbeiter: Referat Futtermittel- und Marktüberwachung, Düngung und Bodenschutz

Referat Pflanzenschutz und Saatgut

Bildnachweise: Referat Pflanzenschutz und Saatgut

Stand: Mai 2022

Copyright: Diese Veröffentlichung ist urheberrechtlich geschützt.

Alle Rechte, auch die des Nachdrucks von Auszügen und

der fotomechanischen Wiedergabe, sind dem Herausgeber vorbehalten.

INHALT

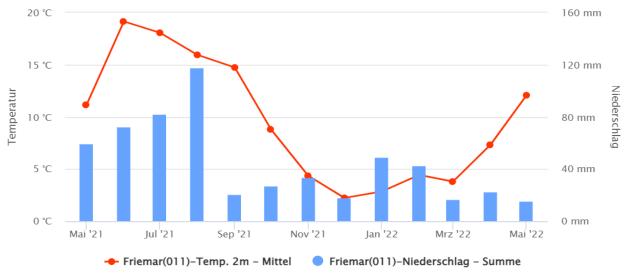
Allgemeine Standortcharakteristik	4
Witterungsdaten der Versuchsstation Friemar	4
Der Standort Friemar (Bodenprofil "Garten")	5
Lage der Versuche	6
Düngungsversuche	7
Stickstoff-Sorten Qualitätsweizen	7
Jährlicher Stickstoffdüngungsversuch Wintergerste	8
Jährlicher Stickstoffdüngungsversuch Winterdurum (Winterhartweizen)	9
Statischer N-Dauerdüngungsversuch Wintertriticale	10
Statischer P-Dauerdüngungsversuch Wintertriticale	11
Statischer K-Dauerdüngungsversuch Wintertriticale	12
Pflanzenschutzversuche	13
Reduktion PSM und Düngung in Winterweizen	13
Fungizide in Wintergerste	14
Chemische Unkrautbekämpfung in Winterraps	15
Kombinierte Unkrautbekämpfung in Winterraps	16
Unkrautbekämpfung in Zuckerrüben	17
Wachstumsregler in Wintergerste	18

Allgemeine Standortcharakteristik

Friemar liegt im westlichen Randgebiet des Thüringer Beckens, 10 km nordöstlich von Gotha.

Höhenlage:287 m über NNGeländegestaltung:eben-flachwellig

Jahresniederschlag:541 mmJahresmitteltemperatur:8,0 °CRelative Luftfeuchte:79 %Geologische Herkunft:Löss


Bodenform: Löss-Braunschwarzerde

Bodenzahl: 86
Bodenart: Lehm

Witterungsdaten der Versuchsstation Friemar

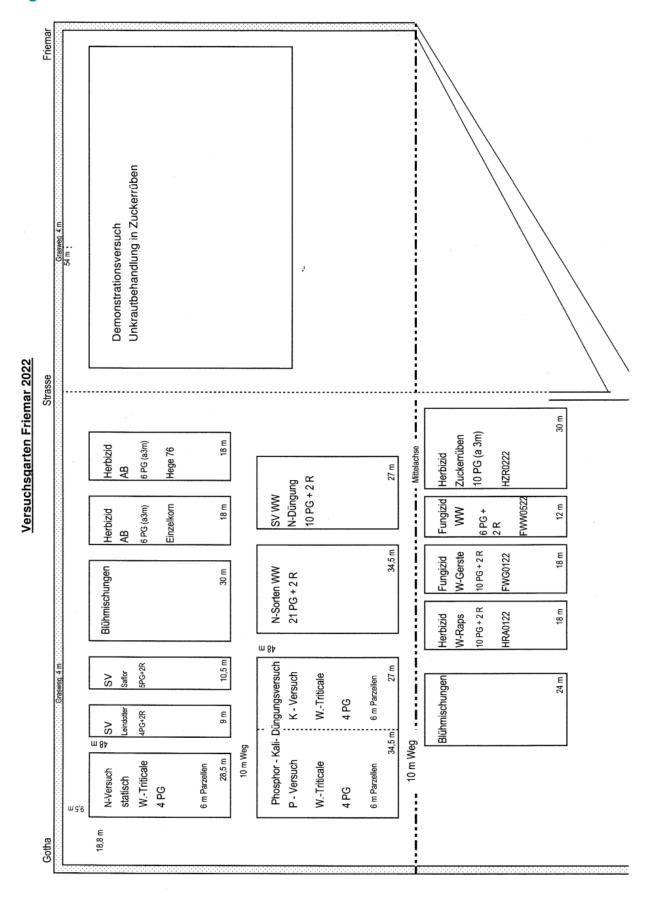
Monat	Niede	erschlag (mm)	Relativ zum Mittel	Ten	nperatur (°C)	Abweichung zum Mittel
	Ist	langjähr. Mittel	(%)	Ist	langjähr. Mittel	K
			2021			
August	117	54	217	15,9	16,7	-0,8
September	20	39	51	14,7	13,5	1,2
Oktober	27	38	71	8,8	9,0	-0,2
November	33	40	83	4,3	3,6	0,7
Dezember	18	39	46	2,2	0,3	1,9
			2022			
Januar	49	34	144	2,8	-1,1	3,9
Februar	42	29	145	4,4	-0,4	4,8
März	16	38	42	3,8	3,1	0,7
April	22	53	42	7,3	7,2	0,1
Mai *	15	59	25	12,1	12,0	0,1

^{*)} Werte bis 09.05.2022 (langjähriges Mittel 1961 bis 1990)

Monatswerte 05/2021 bis 05/2022 (Quelle: Agrarmeteorologie Thüringen)

Der Standort Friemar (Bodenprofil "Garten")

Boden-Leitprofil: Braunerde-Tschernosem aus Löss
Geologische Zuordnung: Lösslehm über unterem Keuper


Standorttyp:Lö 1aAckerzahl:98Einheit der Bodengeologischen Karte TH:Lö 1Standort-Regionaltyp der MMK:Lö 1a3

Leistungsmerkmale:

- sorptionsstark
- mittel bis hohe Druckbelastbarkeit
- hohe Wasserspeicherfähigkeit, mittel pflanzenverfügbares Bodenwasser im Wurzelraum

Lage der Versuche

Düngungsversuche

Stickstoff-Sorten Qualitätsweizen

Versuchsfrage: Auswirkungen von reduzierter N-Düngung im Vergleich zur berechneten Dün-

gungsempfehlung der TLLLR (DüV/BESYD) bei verschiedenen A- und E-Weizensorten auf den Ertrag und die Qualität (Versuchsjahre 2021 bis 2024)

Versuch 2022: Aussaat 26.10.2021

Vorfrucht: Brache

Frühjahr: N_{min}: 106 kg/ha (Anrechnung: 77 kg/ha); S_{min}: 44 kg/ha (0 bis 90 cm)

Ertragsniveau: 100 dt/ha

Faktor Sorten (Sortentypen):

A-Weizen ertragsstark - RGT Reform
 A-Weizen Rohprotein stärker - KWS Universum
 E-Weizen ertragsstark - KWS Emerick

Faktor Stickstoffdüngung (Ertragszuschlag 20 kg N/ha für Ertragsniveau 100 dt/ha)

	Versuch	Friemar 20	022			Versuchsergebnisse Friemar Jahr 2021 N _{min} (0 bis 90 cm): 69 kg/ha			
Pi	üfglied	N-Niveau	1. Gabe ES 22 11.03. (kg N/ha)	2. Gabe ES 31 29.04. (kg N/ha)	3. Gabe ES (kg N/ha)	IV _{min}	Dün- Korn- gung ertrag		kg/na Roh- protein (% i. d. TM)
1	N-Düngeverordnung (DüV) Gabenteilung nach BESYD	A-Weizen	75	65	55	Reform Universum Emerick	195	93 90 84	13,3 13,3 14,6
2	N-DüV -20 % Gesamt-N reduziert - gleich verteilt alle 3 Gaben	A-Weizen	60	52	44	Reform Universum Emerick	156	91 87 85	12,8 12,8 14,3
3	N-DüV -10 % Gesamt-N reduziert - gleich verteilt alle 3 Gaben	A-Weizen	68	59	50	Reform Universum Emerick	177	93 90 82	13,2 12,9 14,4
4	N-DüV -20 % Gesamt-N reduziert - nur 1. und 2. Gabe	A-Weizen	55	47	55	Reform Universum Emerick	157	90 90 85	13,0 12,8 14,1
5	N-DüV -10 % Gesamt-N reduziert - nur 1. und 2. Gabe	A-Weizen	65	56	55	Reform Universum Emerick	176	92 89 82	13,2 13,0 14,5
6	N-Düngeverordnung (DüV) Gabenteilung nach BESYD	E-Weizen	80	80	65	Reform Universum Emerick	225	95 87 85	13,5 13,8 14,9
5	N-DüV Verteilung: 30-30-40 %	A-Weizen	59	59	78	Reform Universum Emerick	195	94 87 84	13,6 13,4 14,9

Versuche Lössstandorte: Dornburg, Friemar und Kirchengel

Versuche Verwitterungsstandorte: Burkersdorf und Heßberg

Jährlicher Stickstoffdüngungsversuch Wintergerste

Versuchsfrage: Auswirkungen von höherer bzw. niedrigerer N-Düngung im Vergleich zur be-

rechneten Düngungsempfehlung des TLLLR und nach Nitratschnelltest (NST) sowie von Urease-stabilisierten Harnstoffdüngern auf den Ertrag und

die Qualität von Wintergerste (Basis Düngeverordnung DüV 2020)

Versuch 2022: Aussaat 24.09.2021

Sorte: KWS Orbit Vorfrucht: Grünbrache

Frühjahr: N_{min}: 31 kg/ha (Anrechnung: 28 kg/ha); S_{min}: 52 kg/ha (0 bis 90 cm)

Ertragsniveau: 95 dt/ha

	Versuch Friemar	2022		Versuchsergebnisse Friemar Jahr 2021 N _{min} (0 bis 90 cm): 43 kg/ha				
Pr	üfglied	1. Gabe 2. G ES 25 ES 11.03. 20.		· ·	Kornertrag	Rohprotein		
		(kg N/ha)	(kg N/ha)	(kg N/ha)	(dt/ha)	(% i. d. TM)		
1	ohne N	0	0	0	56	11,2		
2	DüV -25 %	60	49	101	92	11,8		
3	DüV	80	65	135	97	12,6		
4	DüV +25 %	100	81	169	102	13,4		
5	DüV +50 %	120	98	203	108	14,1		
6	1. Gabe DüV / 2. Gabe NST	80	85 ¹⁾	115	100	11,9		
7	wie Prüfglied 3 mit Piagran pro	80	65	135	100	13,7		
8	wie Prüfglied 3 mit Alzon neo-N als eine Gabe	145		135	101	13,7		
9	wie Prüfglied 2 mit Alzon neo-N als eine Gabe	109		101	95	14,1		
1	wie Prüfglied 2 mit Piagran pro	60	49	101	97	12,8		

¹⁾ NST-Wert = 65 kg N/ha = Prüfglied 3; daher Versuchsanpassung Prüfglied 6 + 20 kg N/ha = 85 kg N/ha

Jährlicher Stickstoffdüngungsversuch Winterdurum (Winterhartweizen)

Versuchsfrage: Auswirkungen von höherer bzw. niedrigerer N-Düngung im Vergleich zur be-

rechneten Düngungsempfehlung des TLLLR und nach Nitratschnelltest (NST) auf den Ertrag und die Qualität von Winterdurum (Basis Düngeverord-

nung 2020 / Vorgabe TLLLR)

Versuch 2022: Aussaat 18.10.2021

Sorte: Wintergold

Vorfrucht: Brache

Frühjahr: N_{min}: 92 kg/ha (Anrechnung: 70 kg/ha); S_{min}: 44 kg/ha (0 bis 90 cm)

Ertragsniveau: 70 dt/ha

	Versuch Friema		Versuchsergebnisse Friemar Jahre 2019 bis 2021 N _{min} (0 bis 90 cm): 65 kg/ha				
Pri	Prüfglied		2. Gabe ES 31 29.04. (kg N/ha)	3. Gabe ES (kg N/ha)	Düngung (kg N/ha)	Kornertrag (dt/ha)	Rohprotein (% i. d. TM)
1	ohne N	0	0	0	0	42	10,9
2	DüV -25 %	53	38	41	139	65	15,3
3	DüV	70	50	55	185	68	16,1
4	DüV +25 %	88	63	69	232	69	17,0
5	DüV +25 % und 3. N-Gabe um 50 kg N/ha erhöht	88	63	119	282	69	17,4
6	1. Gabe DüV/2. und 3. Gabe NST¹)	70	50	_	175	66	16,4

¹⁾ NST: Nitratschnelltest

Statischer N-Dauerdüngungsversuch Wintertriticale

Versuchsfrage: Wirkung höherer bzw. niedriger N-Düngung im Vergleich zur Düngungsemp-

fehlung nach Stickstoffbedarfsanalyse (SBA1) bzw. entsprechend Düngever-

ordnung (DüV)

Prüfglieder bis 2014 1. ohne N-Düngung

ab 2015 1. ohne N-Düngung

2. N-Düngung nach SBA

2. N-Düngung nach DüV

3. N-Düngung nach SBA +30 %

3. N-Düngung nach DüV +25 %

4. N-Düngung nach SBA -30 %

4. N-Düngung nach DüV -25 %

Versuch 2020: Aussaat 13.10.2021

Sorte: Temuco
Ertragsniveau: 100 dt/ha

Frühjahr: S_{min}: 25 bis 38 kg/ha (0 bis 90 cm)

Ergebnisse

			Korn-, Fris	chmasse- ba	zw. Knollener	trag (dt/ha)
Jahr	Fruchtart	Sorte	ohne N	SBA	SBA +30 %	SBA -30 %
1997	Silomais	Magister	329	575	587	562
1998	Kartoffeln	Rikea	320	521	536	492
1999	Winterweizen	Aron E	48	93	100	84
2000	Sommergerste	Barke	38	51	57	47
2001	Silomais	Rivaldo	621	681	613	656
2002	Sommerweizen	Thasos		73	74	70
2003	Winterroggen	Picasso	47	88	94	80
2004	Senf	Zlata		nicht au	ıswertbar	
2005	Winterweizen	Hermann C	43	82	84	79
2006	Sommergerste	Pasadena	54	68	73	63
2007	Winterraps	Trabant	26	42	44	40
2008	Winterweizen	Akteur E	42	100	104	84
2009	Wintertriticale	SW Talentro	29	85	87	74
2010	Sommergerste	Marthe	53	61	66	58
2011	Winterraps	Elektra	11	39	42	37
2012	Winterweizen	Akteur E	60	94	97	86
2013	Wintertriticale	SW Talentro	50	102	108	101
2014	Winterraps	Visby	29	61	63	58
geän	derte Prüfglieder:		ohne N	DüV	DüV +25 %	DüV -25 %
2015	Winterweizen	Toras E	43	78	88	69
2016	Triticale	Agostino	40	111	120	102
2017	Winterraps	Avatar	12	34	36	33
2018	Winterweizen	RGT Reform A	41	101	103	97
2019	Wintergerste	Meridian	24	98	103	88
2020	Winterraps	Hattrick	11	26	27	24
2021	Winterweizen	RGT Reform A	56	109	108	107

¹⁾ Stickstoffbedarfsanalyse (SBA): Stickstoffdüngungsempfehlung in Thüringen bis 2014

Daten Versuch 2022

Jahr			ohne N	DüV	DüV +25 %	DüV -25 %
	N _{min} (0 bis 90 cm)	kg/ha	38	48	70	50
2022	1. N-Gabe 11.03. ES 21	kg/ha	0	85	106	64
	2. N-Gabe 29.04. ES 31	kg/ha	0	70	75	53

Statischer P-Dauerdüngungsversuch Wintertriticale

Versuchsfrage: Wirkung einer höheren bzw. niedrigeren P-Düngung auf den Ertrag

Prüfglieder: 1 ohne P-Düngung

2 nach P-Entzug 3 P-Entzug +30 % 4 P-Entzug -30 %

P-Gehalt vor Anlage: 6,1 mg P/100 g Boden (CAL-Methode), Gehaltsklasse C

Versuch 2022: Aussaat 13.10.2021

Sorte: Temuco **Ertragsniveau:** 90 dt/ha

Ergebnisse

		P-Gehalt in	m Boden	Korn	-, Frischm	asse- bzw. I	Knollenertra	g (dt/ha)
Jahr	Fruchtart	PG oh		ohne P	P-Entzug		P-Entzug	Mittel ¹⁾
		(mg/10				+30 %	-30 %	%
1993	Winterweizen	6,1	С	94,1	97,6	97,4	98,0	104
1994	Sommergerste	5,5	С	48,1	49,2	49,2	48,8	102
1995	Futterrübe	6,4	С	1282	1309	1370	1286	103
1996	Winterweizen	4,8	В	86,3	86,6	84,9	87,1	100
1997	Silomais	4,6	В	520	562	548	555	107
1998	Kartoffeln	4,2	В	444	446	442	442	100
1999	Winterweizen	4,3	В	86,5	87,2	85,6	87,1	100
2000	Sommergerste	4,3	В	38,6	43,6	42,9	41,3	110
2001	Silomais	4,3	В	588	614	665	634	109
2002	Sommerweizen	4,6	В	71,5	78,3	74,0	78,1	107
2003	Winterroggen	4,5	В	78,1	84,3	84,2	82,4	107
2004	Senf	4,7	В	59,1	60,3	60,4	59,5	102
2005	Winterweizen	4,5	В	78,6	79,9	81,5	80,6	103
2006	Sommergerste	4,6	В	64,4	65,2	64,8	66,9	102
2007	Winterraps	3,7	В	37,4	39,3	40,0	38,5	105
2008	Winterweizen	3,8	В	94,8	97,7	97,6	95,7	102
2009	Wintertriticale	4,2	В	79,7	80,0	80,5	80,8	101
2010	Sommergerste	4,6	В	53,4	55,4	54,8	52,7	102
2011	Winterraps	4,3	В	33,0	36,2	36,8	35,0	109
2012	Winterweizen	4,1	В	93,3	96,8	97,5	95,8	103
2013	Wintertriticale	3,7	В	107	109	110	109	102
2014	Winterraps	4,1	В	71,9	73,8	75,9	74,6	104
2015	Winterweizen	4,0	В	83,1	87,8	89,0	88,0	106
2016	Wintertriticale	3,7	В	107	107	106	107	100
2017	Winterraps	3,9	В	34	37	39	38	111
2018	Winterweizen	3,8	В	96	101	103	102	106
2019	Wintergerste	3,2	В	97	96	98	97	100
2020	Winterraps	4,0	В	28	29	28	28	100
2021	Winterweizen	4,4	В	89	90	90	90	101

¹⁾ Relativer mittlerer Ertrag der drei Prüfglieder mit P-Düngung gegenüber "ohne P" (= 100 %)

Statischer K-Dauerdüngungsversuch Wintertriticale

Versuchsfrage: Wirkung einer höheren bzw. niedrigeren K-Düngung auf den Ertrag

Prüfglieder: 1 ohne K-Düngung

2 nach K-Entzug 3 K-Entzug +30 % 4 K-Entzug -30 %

K-Gehalt vor Anlage: 15 mg K/100 g Boden (CAL-Methode), Gehaltsklasse C

Versuch 2022: Aussaat 13.10.2021

Sorte: Temuco Ertragsniveau: 90 dt/ha

Ergebnisse

	K-Gehalt im Boden		Korn-, Frischmasse- bzw. Knollenertrag (dt/ha)						
Jahr	Fruchtart	PG of		ohne K	K-Entzug	K-Entzug	K-Entzug	Mittel ¹⁾	
		(mg/1				+30 %	-30 %	(%)	
1993	Winterweizen	15	С	95,8	99,4	97,0	97,3	102	
1994	Sommergerste	18	С	50,5	54,0	53,5	53,6	106	
1995	Futterrübe	11	С	1259	1335	1333	1286	105	
1996	Winterweizen	14	С	88,6	88,1	86,5	85,8	98	
1997	Silomais	10	В	579	579	574	586	100	
1998	Kartoffeln	8	В	483	492	506	496	103	
1999	Winterweizen	11	С	92,1	90,9	89,8	94,4	100	
2000	Sommergerste	12	С	48,4	46,5	47,8	48,8	99	
2001	Silomais	13	С	619	627	625	623	101	
2002	Sommerweizen	14	С	75,7	72,9	75,2	76,4	99	
2003	Winterroggen	12	С	90,9	89,5	90,0	91,2	99	
2004	Senf	14	С	60,7	62,9	61,5	63,1	103	
2005	Winterweizen	11	С	78,7	80,5	79,5	78,5	101	
2006	Sommergerste	12	С	61,3	63,6	64,4	61,4	102	
2007	Winterraps	12	С	40,3	39,5	39,2	39,7	98	
2008	Winterweizen	13	С	92,7	92,3	92,9	92,3	100	
2009	Wintertriticale	14	С	81,6	81,5	81,0	81,5	100	
2010	Sommergerste	15	С	50,9	51,3	52,7	50,9	101	
2011	Winterraps	13	С	32,0	33,5	33,0	32,5	103	
2012	Winterweizen	14	С	94,3	93,3	93,8	93,6	99	
2013	Wintertriticale	14	С	112	112	111	111	99	
2014	Winterraps	16	С	75,5	77,0	77,9	78,1	103	
2015	Winterweizen	13	С	85,2	88,0	87,8	87,0	103	
2016	Wintertriticale	12	С	116	116	118	116	101	
2017	Winterraps	14	С	40	42	40	40	101	
2018	Winterweizen	12	С	101	101	101	101	100	
2019	Wintergerste	12	С	93	96	99	93	103	
2020	Winterraps	12	С	32	32	31	32	101	
2021	Winterweizen	11	С	92	89	90	91	98	

¹⁾ Relativer mittlerer Ertrag der drei Prüfglieder mit K-Düngung gegenüber "ohne K" (= 100 %)

Pflanzenschutzversuche

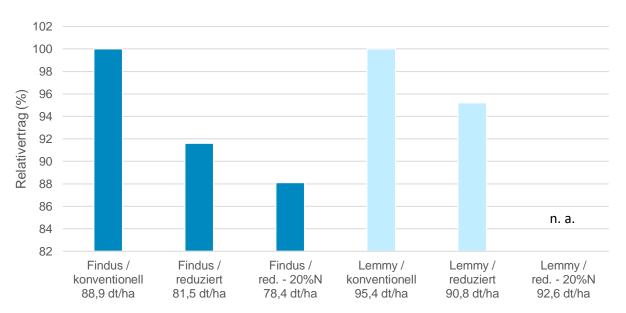
Reduktion PSM und Düngung in Winterweizen

Versuch: Möglichkeiten der Reduktion des Pflanzenschutz- und Düngemittel-Einsatzes

Betreuer: TLLLR, Heidrich

Hintergrund: Politische Forderungen zur Reduktion des Pflanzenschutzes um 50 % und

der Düngung um 20 % bis zum Jahr 2030


Versuchsanlage: 2-faktoriell (F1: Sorte, F2: Intensität)

Vorfrucht: Brache **Versuchsnummer:** FWW0522_Frie

Aussaat: 26.10.2021 **Bodenart/-zahl:** Lehm / 98

Aufgang: 18.11.2021 Bodenbearbeitung: Pflug

	Foldon 4 Foldon 2			-	No.	-t	
PG	Faktor 1	Faktor 2	N-Düngung		_	ıtzmaßnahmen	
. •	Sorte	Intensität	it Dungung	Herbizid	WRegler	Fungizid	Insektizid
1.1	Findus	konventionell	optimal (DüV)	Biathlon 4D	Moddus 0,4 l/ha	Ascra Xpro (BBCH 39) Prosaro (BBCH 65)	Fury 10EW
1.2	Findus	reduziert	optimal (DüV)	2x Striegeln	Moddus 0,2 l/ha	Ascra Xpro (BBCH 39)	keine
1.3	Findus	doppelt reduziert	reduziert (DüV-20 % N)	2x Striegeln	Moddus 0,2 l/ha	Ascra Xpro (BBCH 39)	keine
2.1	Lemmy	konventionell	optimal (DüV)	Biathlon 4D	Moddus 0,4 l/ha	Ascra Xpro (BBCH 39) Prosaro (BBCH 65)	Fury 10EW
2.2	Lemmy	reduziert	optimal (DüV)	2x Striegeln	Moddus 0,2 l/ha	Ascra Xpro (BBCH 39)	keine
2.3	Lemmy	doppelt reduziert	reduziert (DüV-20 % N)	2x Striegeln	Moddus 0,2 l/ha	Ascra Xpro (BBCH 39)	keine

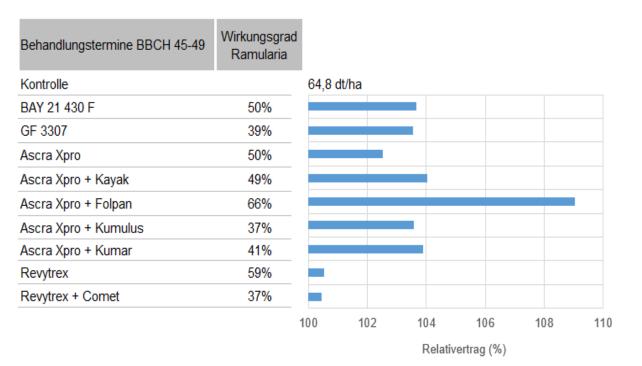
Vorjahresergebnis 2021 am Standort Friemar

Fungizide in Wintergerste

Versuch: Bekämpfung von Netzflecken und Ramularia

Betreuer: TLLLR, Horn

Sorten: Lomerit Versuchsnummer: FWG0122_Frie


 Vorfrucht:
 Brache
 Bodenart/-zahl:
 Lehm / 98

 Aussaat:
 24.09.2021
 Aufgang:
 01.10.2021

	Variante	AWM (I/ha) Spritzen BBCH 39-49	Wirkstoffe	Frage- stellung	Bemerkung
1	Kontrolle	-	-	-	
2	BAY 21 430 F*)	1,0	Prothioconazol, Isoflucypram	nous Mittal	
3	Univoq**)	1,75	Prothioconazol, Fenpicoxamid	neue Mittel	
4	Ascra Xpro	1,2	Prothioconazol, Bixafen, Fluopyram	Zugotz	
5	Ascra Xpro + Kayak	1,2 + 1,5	+ Cyprodinil	Zusatz- wirkung	
6	Ascra Xpro + Folpan	1,2 + 1,5	+ Folpet	Ramularia/	
7	Ascra Xpro + Kumulus	1,2 + 6,0	+ Schwefel	Netzflecken	
8	Ascra Xpro + Kumar	1,2 + 3,0	+ Kaliumhydrogencarb.		
9	Revytrex	1,5	Mefentrifluconazol, Fluxapyroxad	F129L Mutation	
10	Revytrex + Comet	1,5 + 0,5	+ Pyraclostrobin	Netzflecken	

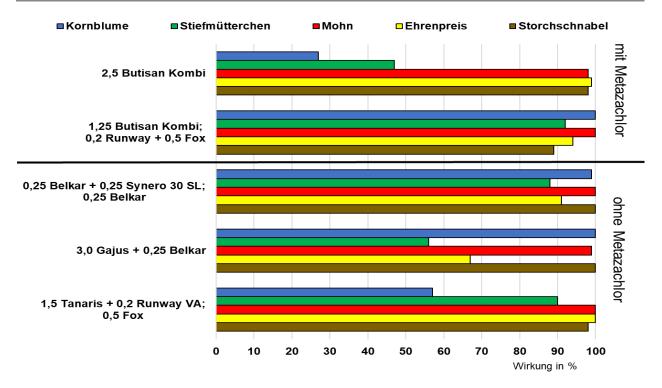
^{*)} nicht zugelassenes Prüfmittel

^{**)} keine Zulassung in dieser Kultur

Vorjahresergebnisse 2020 bis 2021 an den Standorten Dornburg und Kirchengel (n = 3)

Chemische Unkrautbekämpfung in Winterraps

Versuch: Wirkungsvergleich


Betreuer: TLLLR, Ewert

Sorte: Daktari

Vorfrucht: Brache N-min/N-Düngung: 19 / 150 kg/ha

Aussaat: 15.09.2021 **Bodenart/-zahl:** Lehm / 96

			AWM (I/	Wirkung (%) 12.04.2022 (UK = DG %)					
	Variante	T1 ES 0 17.09.21	T2 ES 14 27.10.21	T3 ES 15 18.11.21	T4 ES 30 14.03.22	Storch- schnab.	Ehren- preis	Korn- blume	Taub- nessel
1	Kontrolle					3,3	8,0	3,3	4,8
2	Butisan Kombi	2,5				100	97	0	66
3	Fuego Top; Belkar	1,33	0,25			98	95	100	100
4	Tribeca Sync Tec; Runway	3,33	0,2			53	96	100	100
5	Tanaris + Runway VA; Fox	1,5 + 0,2		0,5		100	100	13	99
6	Brando + Colzor Uno flex	2,0 + 1,0				80	51	24	50
7	Belkar + Synero 30 SL; Belkar		0,25 + 0,25	0,25		100	74	100	100
8	Gajus + Runway VA		3,0 + 0,25			75	36	100	98
9	Belkar + Gajus		0,25 + 3,0			100	61	100	100
10	Gamit 36 AMT; Korvetto	0,3			1,0	50	79	76	88

Möglichkeiten der Unkrautbekämpfung in Winterraps mit und ohne Metazachlor (Angaben: I/kg/ha, Auswahl von Ergebnissen des Ringversuches zur Unkrautbekämpfung in Winterraps der Länder BB, SN, ST, TH, 2020 bis 2022 (n = 3 bis 11)

Kombinierte Unkrautbekämpfung in Winterraps

Versuch: Wirkungsvergleich

Betreuer: TLLLR, Ewert

Sorte: Daktari

Vorfrucht: Brache N-min/N-Düngung: 49 / 120 kg/ha

Aussaat: 15.09.2021 **Bodenart/-zahl:** Lehm / 94

		AWM (l/kg/ha)				Wirkung (%) 12.04.2022 (UK = DG %)							
Variante		Spritzen ES 0	Hacken ES 14	Spritzen ES 15	Spritzen ES 30	Korn- blume		Storch- schnabel		Mohn		Kletten- labkraut	
		17.09.21	27.10.21	18.11.21	14.03.22	i.d.R.	z.d.R.	i.d.R.	z.d.R.	i.d.R.	z.d.R.	i.d.R.	z.d.R
1	Kontrolle					4,5	5,0	1,8	1,8	1,5	1,5	2,3	2,3
2	Butisan Kombi	2,5				0	0	84	84	100	100	91	91
3	Hacken		Χ			68	60	63	80	63	63	78	76
4	Hacken; Belkar		Χ	0,25		100	100	95	96	100	100	96	93
5	Hacken; Korvetto		X		1,0	91	95	86	86	100	100	93	96

PGL 1 - unbehandelte Kontrolle

PGL 3 - Hacken

PGL 2 - 2,5 I/ha Butisan Kombi

PGL 4 - Hacken; 0,25 l/ha Belkar

PGL 5 - Hacken; 1,0 l/ha Korvetto

Unkrautbekämpfung in Zuckerrüben

Versuch: Wirkungsvergleich

Betreuer: TLLLR, Ewert

Sorte: Smart Mirea KWS

Vorfrucht: BracheN-min / N-Düngung:49 / - kg/haAussaat:11.04.2022Bodenart/-zahl:Lehm / 96

2 1011					Boachard			LCIIIII /	
					AWM	(l/kg/ha)			
Variante		1. NAK Spritzen (Fläche) Spritzen (Band)	Conviso 1 Spritzen (Band) + Hacke	2. NAK Spritzen (Fläche) Spritzen (Band)	Conviso 2 Spritzen (Band) + Hacke	Hacken (Fläche)	3. NAK Spritzen (Fläche) Spritzen (Band)	Hacken (Fläche)	Bemerkungen
1	Kontrolle	+ Hacke		+ Hacke			+ Hacke		
1		2.0		2.0			2.0		
2	Goltix Titan Belvedere Duo Hasten	2,0 1,25 0,5		2,0 1,25 0,5			2,0 1,25 0,5		rein chemisch
3	Goltix Titan Belvedere Duo Debut Trend	2,0 1,0 0,02 0,25		2,0 1,0 0,03 0,25			2,0 1,0 0,03 0,25		rein chemisch
4	Goltix Titan Belvedere Duo Debut Trend Hacken	2,0 1,0 0,02 0,25				x	2,0 1,0 0,03 0,25		Kombi chemisch + mechanisch
5	Goltix Titan Belvedere Duo Debut Trend Hacken	2,0 1,0 0,02 0,25				x		x	Kombi chemisch + mechanisch
6	Goltix Titan Belvedere Duo Debut Trend Hacken	2,0 1,0 0,02 0,25 x		2,0 1,0 0,03 0,25			2,0 1,0 0,03 0,25		Kombi chemisch + mechanisch Bandspritzung
7	Conviso Mero Hacken		0,5 0,5 x		0,5 0,5 x				Kombi chemisch + mechanisch Bandspritzung
8	Goltix Titan Tramat 500 Hasten Lontrel 600	2,0 0,66 0,5		2,0 0,66 0,5 0,1			2,0 0,66 0,5 0,1		rein chemisch
9	Goltix Gold Tanaris Debut Duo Active Trend	1,5 0,3 0,16 0,25		1,5 0,6 0,21 0,25			1,5 0,6 0,21 0,25		rein chemisch
10	Goltix Gold Belvedere Duo Centium 36CS*)	1,0 1,0		1,0 1,0 0,05			1,0 1,0 0,1		rein chemisch *) bisher nicht in ZR zugelassen

Wachstumsregler in Wintergerste

Versuch: Reduzierung des Einsatzes von Wachstumsreglern durch Einbeziehung von

Biostimulanzien

Betreuer: TLLLR, Horn

Sorte: KWS Meridian **Versuchsnummer:** WWG0122_Frie

Vorfrucht:BracheBodenart/-zahl:Lehm / 94Aussaat:24.09.2021Aufgang:01.10.2021

			AWM (
Variante		W1 BBCH 21-25	W2 BBCH 31-32	W3 BBCH 37-39	W4 BBCH 45-47	Kosten (€/ha)	Einkürzung
1	Kontrolle						
2	Moddus Cerone 660		0,5		0,4	44	
3	Hardrock Hardrock + Moddus Cerone 660	1,0	1,0 + 0,5		0,4		
4	Hardrock Hardrock + Moddus Cerone 660	1,0	1,0 + 0,25		0,4		
5	Prodax Prodax + Cerone 660		0,4	0,3 + 0,4	- ,	46	
6	Prodax + Hardrock Prodax + Cerone + Hardrock		0,2 + 1,0	0,15 + 0,2 +1,0			
7	Hardrock Hardrock Hardrock	1,0	1,0	1,0			
8	Fabulis OD + Cerone 660			1,0 + 0,4		33	
9	Fabulis OD + Manipulator Cerone 660		0,5 + 0,5		0,4	28	