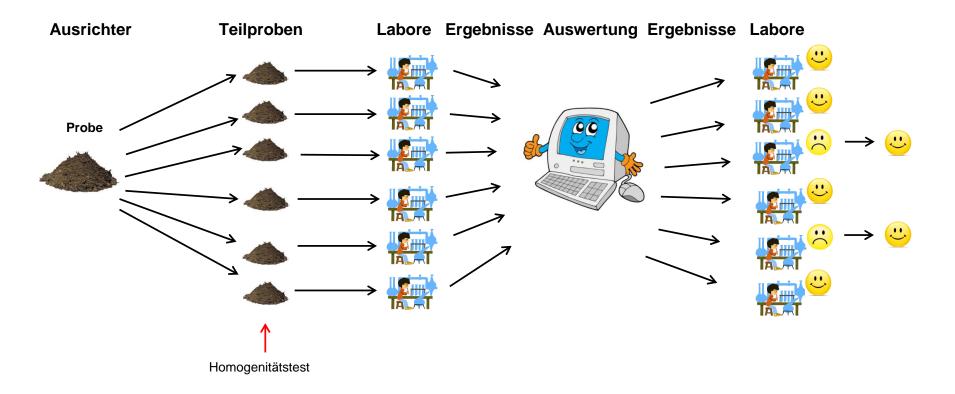
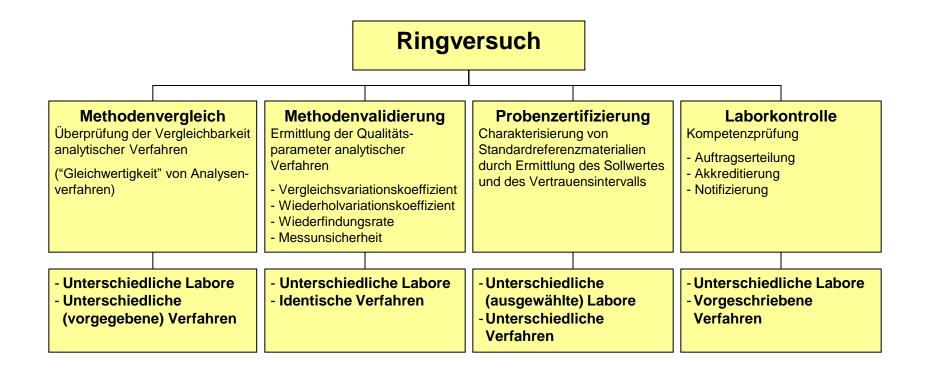


FNR-Projekt Biomasse-Asche-Monitoring (BAM)

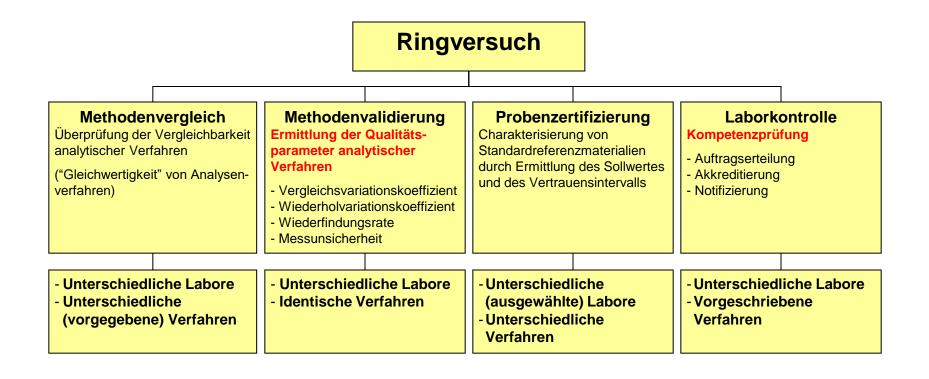
Auswertung des Ringversuchs zur Analyse der königswasserextrahierbaren Elementgehalte sowie Chrom-VI


Dr. Matthias Leiterer, Günter Kießling, Daniel Kohlbach, Roland Bischof, Jan Schlegel und Thomas Hering Thüringer Landesamt für Landwirtschaft und Ländlichen Raum Naumburger Str. 98 07743 Jena

- 1. Allgemeines
 - Was ist ein Ringversuch?
 - Zielstellung
 - Charakterisierung des Ringversuchs
- 2. Ergebnisse und Diskussion
 - Übersicht über statistische Daten
 - Qualität der Ringversuchsergebnisse (Horrat)
 - Vergleich Feststoffproben Extrakte
 - Chrom-VI
 - Ableitung der Messunsicherheit für gesetzlich geregelte Analyten
- 3. Zusammenfassung


Was ist ein Ringversuch?

Ringversuch, Ringanalyse, Ringvergleich, Laborleistungstest, Enquete, inter-laboratory test, round robin test, laboratory proficiency test


Zielstellung von Ringversuchen

Die Planung, Durchführung, statistische Auswertung und Bewertung eines Ringversuches ist von der Zielstellung des Ringversuches unmittelbar abhängig.

Zielstellung von Ringversuchen

Die Planung, Durchführung, statistische Auswertung und Bewertung eines Ringversuches ist von der Zielstellung des Ringversuches unmittelbar abhängig.

Zielstellung des Ringversuchs im Projekt

- Externen Qualitätssicherung der im Rahmen des Abfall- und Düngerechts für das Projekt Biomasse-Asche-Monitoring (BAM) ermittelten quantitativen Analysenergebnisse
- Prüfung der Eignung der bisher überwiegend für die Analyse von Boden-, Düngemittel und Pflanzenproben eingesetzten Analysenmethoden für die noch wenig untersuchte Matrix Biomasseasche
- Ableitung allgemeingültiger Validierungsdaten für die Analyse von Biomasseaschen unter Vergleichsbedingungen → Aussagen zur Präzision und Richtigkeit sowie zur Messunsicherheit bei der Analyse in <u>unterschiedlichen</u> Laboratorien.

Teilnehmer

- AGES, Linz
- ATB Potsdam
- BfUL Sachsen, Nossen
- BLKA München
- Eurofins Freiberg, Bobritzsch-Hilbersdorf
- HZDR Rossendorf, Dresden
- ICA Leipzig
- IHI Zittau
- infraleuna, Leuna
- JenaBios
- K+S, Unterbreizbach
- Labor Staber, Klipphausen
- LfL Freising

- LHL Kassel
- LLG Sachsen-Anhalt, Halle
- LMS, Rostock
- LUA Sachsen, Dresden
- LUFA Nord-West, Hameln
- LUFA Speyer
- · Mibrag, Zeitz
- Perkin Elmer, Rodgau-Jügesheim
- Synlab Spremberg
- TLLLR Jena
- TU Freiberg
- TU Hamburg
- UFZ Leipzig

26 Teilnehmer

Probe 1:

- Strohasche
- Heizwerk mit einer thermischen Nennwärmeleistung von 850 kW
- Regelbrennstoff: Stroh (Ballen, Häcksel)
- Feuerungssystem: wassergekühlter Vorschubtreppenrost
- Art der Entaschung: trocken
- ohne auffällige Schadstoffgehalte

Probe 2:

- Holzasche
- Kraftwerk mit 5,4 MW elektrischer Leistung und 19,5 MW thermischer Leistung
- Regelbrennstoff: Holz (Hackschnitzel)
- Feuerungssystem: Vorschubtreppenrost
- Art der Entaschung: nass
- mit erhöhten Chrom-VI Gehalt

Von beiden Proben wurden ca. 5 kg Material entnommen und mit einer Schwingscheibenmühle vermahlen. Das Material wurde anschließend intensiv von Hand homogenisiert und mittels eines Rotationsprobeteilers in 32 Portionen geteilt.

Parameter, Extraktion und Messung statistische Auswertung

Parameter:

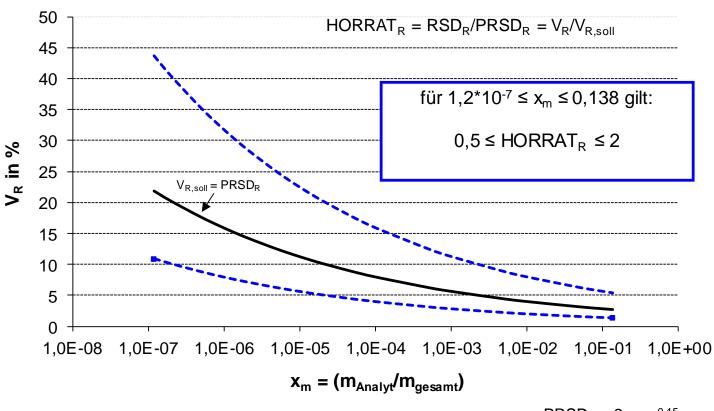
Aluminium, Antimon, Arsen, Barium, Blei, Bor, Cadmium, Calcium, Chrom, Eisen, Kalium, Kobalt, Kupfer, Magnesium, Mangan, Molybdän, Natrium, Nickel, Phosphor, Quecksilber, Rubidium, Schwefel, Selen, Strontium, Thallium, Titan, Vanadium, Yttrium, Zink, Zirkonium, Chrom-VI

Extraktion und Messung:

- Königswasserextraktion nach DIN EN 13657:2003-01
- ICP-OES-Messung nach DIN EN 11885:2009-09
- ICP-MS-Messung nach VDLUFA-MB VII, 2.2.3.3:2019-03
- Cr-VI-Bestimmung nach VDLUFA-MB II.1, 9.4.2

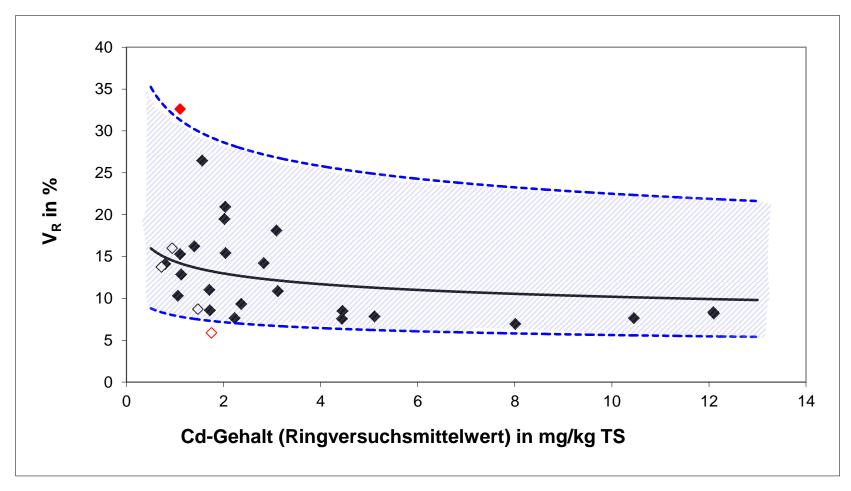
Statistische Auswertung:

mit Programm PROLab 2019.1.23 (quodata) nach DIN 38402-A45:2014-06 (Q-Methode/Hampel-Schätzer).



Zusammenfassung der Labormittelwerte (1 von 12) Probe 1 – Holzasche (Feststoff)

Labor		Aluminium	Antimon	Arsen	Barium	Blei	Bor	Cadmium	Calcium	Chrom	Eisen	Kalium	Kobalt
Einheit		mg/kg											
01		nicht getestet											
02		1685,0	0,2127	0,666	697,5	1,347	21,65	0,52	40100	8,393	1915	194500	2,190
03		nicht getestet	0,1708	0,818	666,5	1,041	41,13	0,49	43077	7,372	1927	183624	2,292
04		1263,8	nicht getestet	< 0,050 E	740,5	< 0,010 E	107,50 E	0,46	47569	11,697	1152 E	188922	1,946
05		1496,5	nicht getestet	nicht getestet	573,5	nicht getestet	23,98	nicht getestet	41497	nicht getestet	1780	182730	2,080
06		nicht getestet	nicht getestet	0,497	nicht getestet	nicht getestet	nicht getestet	0,40	nicht getestet	5,100	1554	nicht getestet	nicht getestet
07		1679,3	0,1615	0,614	621,8	0,788	31,45	0,42	46092	8,560	2053	191017	2,183
08		1595,0	0,1810	0,691	656,5	0,973	nicht getestet	0,50	nicht getestet	7,040	1923	nicht getestet	2,205
09		nicht getestet											
10		1813,3	0,1687	< 0,810	643,3	0,900	36,00	0,44	45000	18,700 E	2127	223333 E	2,260
10b		1903,3	0,1767	0,523	696,7	1,067	37,33	0,51	42433	19,667	2100	187460	2,333
12		nicht getestet											
13													2,290
14		31 Un	tersuchu	unaspar	ameter								nicht getestet
17	_												nicht getestet
19	2	.062 Lai	borerger	onisse u	nterscr	niedliche	r Anaiys	enpara	meter/Pi	'obe-Kol	mbinatio	nen	1,843 E
19MS	22 0	700 Eir	nzelwerte	•			_	_					2,255
20	.a. 3	.700 EII	izeiwei te	5									2,623
23		3295,0 E	0,6745 E	0,950	827,0	2,020 E	33,88	0,54	46300	24,150 E	2958 E	69050 E	2,697 E
24		1593,0	nicht getestet	0,818	nicht getestet	1,100	nicht getestet	0,54	42660	8,822	1790	180550	2,498
25		1617,5	0,2013	0,517	672,8	1,180	44,48	0,50	nicht getestet	7,277	1890	nicht getestet	2,232
26		1644,0	0,1470	0,563	703,8	0,827	35,99	0,49	46985	5,923	1858	200902	2,065
27		nicht getestet											
28		1624,0	0,1773	0,548	nicht getestet	1,765	26,72	0,43	41108	7,255	1878	173833	2,261
29		1608,0	< 0,1000	0,707	635,5	1,055	25,50	0,45	41130	6,570	1840	179300	2,295
30		1250,5	0,1797	0,216 E	984,5 E	1,225	nicht getestet	0,52	nicht getestet	8,357	nicht getestet	nicht getestet	2,455
-													
Methode		DIN38402 A45											
Bewertung		Zu <=2,000											
Anzahl der Labore, die Ergebnis vorgelegt haben	isse	17	15	18	16	19	15	19	16	20	19	16	19
Mittelwert		1545,5	0,1790	0,613	662,2	1,057	31,47	0,48	43189	7,308	1795	186986	2,254
Vergleich-Stdabw.		190,5	0,0296	0,164	92,4	0,301	9,52	0,06	3212	2,137	235	14208	0,195
Rel.Vergleich-Stdabw.		12,33 %	16,56 %	26,78 %	13,95 %	28,47 %	30,26 %	11,69 %	7,44 %	29,24 %	13,11 %	7,60 %	8,65 %
Wiederhol-Stdabw.		28,0	0,0062	0,028	10,3	0,046	1,21	0,01	700	0,336	28	2237	0,045
Rel.Wiederhol-Stdabw.		1,81 %	3,46 %	4,50 %	1,56 %	4,40 %	3,86 %	1,96 %	1,62 %	4,59 %	1,59 %	1,20 %	1,99 %
HORRAT		2,327	0,799	1,555	2,318	1,794	3,179	0,653	2,317	2,465	2,531	2,952	0,611
unt. Toleranzgr.		1185,1	0,1239	0,318	488,6	0,519	14,56	0,37	36987	3,500	1352	159571	1,880
ob. Toleranzgr.		1953,1	0,2441	0,998	861,8	1,772	54,39	0,59	49870	12,413	2301	216565	2,663



HORRAT_R - Horwitz ratio oder Horwitz-Koeffizient

 $PRSD_R = 2 \cdot x_m^{-0.15}$

Beispiel: Ringversuche Sachsen/Thüringen zur Kompetenzprüfung/Notifizierung der Laboratorien nach AbfKlärV (1994 – 2008)

Horrat-Werte für die Analyse der Mengenelemente

Floment	Prol	be 1	Prol	be 2
Element	Feststoff	Extrakt	Feststoff	Extrakt
Aluminium	2,3	1,9	3,3	3,2
Calcium	2,3	3,1	3,2	3,5
Natrium	3,3	2,8	1,8	2,7
Kalium	3,0	5,1	3,4	3,1
Phosphor	2,2	3,0	3,3	3,5
Schwefel	1,3	2,1	2,4	3,1
Eisen	2,5	1,9	3,5	2,9
Barium	2,3	1,5	3,2	2,1
Strontium	2,4	1,4	2,1	1,7
Mangan			2,6	2,9

Modellhafte Berechnung des Horrats für die Mengenelemente mit einer 1 : 1000 - Verdünnung

Flamont	Stroh	asche	Holza	ische
Element	Feststoff	Extrakt	Feststoff	Extrakt
Aluminium	0,9	0,7	1,2	1,1
Calcium	0,8	1,0	1,2	1,3
Natrium	1,1	1,0	0,7	0,9
Kalium	1,0	1,8	1,2	1,1
Phosphor	0,7	1,0	1,1	1,2
Schwefel	0,5	0,7	0,9	1,1
Eisen	0,9	0,7	1,2	1,0
Barium	0,8	0,5	1,0	0,7
Strontium	0,8	0,5	0,7	0,5
Mangan			0,9	1,0

Horrat-Werte für die Spurenelemente (keine zusätzliche Verdünnung notwendig)

Analyt	Strohasche		Holzasche		Analyt	Stroh	asche	Holzasche	
	Feststoff	Extrakt	Feststoff	Extrakt		Feststoff	Extrakt	Feststoff	Extrakt
Antimon	0,8	0,7	1,1	0,8	Nickel	2,0	0,8	1,1	1,0
Arsen	1,6	1,6	1,1	1,6	Quecksilber	4,0	9,4	3,6	4,4
Blei	1,8	1,1	1,6	1,3	Rubidium	2,0	0,7	0,7	0,8
Bor	3,2	2,4	1,5	2,7	Selen	2,0	12,2	8,1	9,9
Cadmium	0,7	0,8	0,7	0,8	Thallium	3,6	3,8	3,4	3,3
Chrom	2,5	1,1	2,0	1,4	Titan	3,3	1,4	7,0	1,8
Kobalt	0,6	0,4	0,8	0,8	Vanadium	1,8	1,0	1,4	1,0
Kupfer	1,2	1,0	1,9	1,3	Yttrium	0,9	0,5	0,4	0,6
Mangan	1,8	1,5			Zink	1,5	1,6	1,2	2,6
Molybdän	0,9	0,7	1,2	0,8	Zirkonium	3,4	1,6	13,9	1,7

Horrat-Werte für die Spurenelemente (keine zusätzliche Verdünnung notwendig)

Analyt	Stroh	asche	Holza	sche	Analyt	Stroh	asche	Holza	ische
	Feststoff	Extrakt	Feststoff	Extrakt		Feststoff	Extrakt	Feststoff	Extrakt
Antimon	0,8	0,7	1,1	0,8	Nickel	2,0	0,8	1,1	1,0
Arsen	1,6	1,6	1,1	1,6	Quecksilber	4,0	9,4	3,6	4,4
Blei	1,8	1,1	1,6	1,3	Rubidium	2,0	0,7	0,7	0,8
Bor	3,2	2,4	1,5	2,7	Selen	2,0	12,2	8,1	9,9
Cadmium	0,7	0,8	0,7	0,8	Thallium	3,6	3,8	3,4	3,3
Chrom	2,5	1,1	2,0	1,4	Titan	3,3	1,4	7,0	1,8
Kobalt	0,6	0,4	0,8	0,8	Vanadium	1,8	1,0	1,4	1,0
Kupfer	1,2	1,0	1,9	1,3	Yttrium	0,9	0,5	0,4	0,6
Mangan	1,8	1,5			Zink	1,5	1,6	1,2	2,6
Molybdän	0,9	0,7	1,2	0,8	Zirkonium	3,4	1,6	13,9	1,7

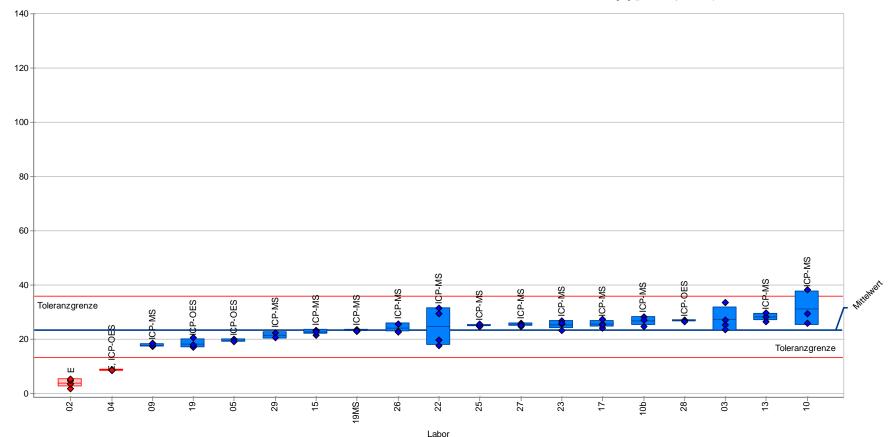
Statistische Auswertung Einzeldarstellung für Bor

Probe: Eluat 1 Merkmal: Bor

Merkmal: Bor Methode: DIN 38402 A45 Anzahl Labore: 18

 Mittelw ert:
 23,27 mg/kg

 Vergleich-Stdabw . (SR):
 5,54 mg/kg

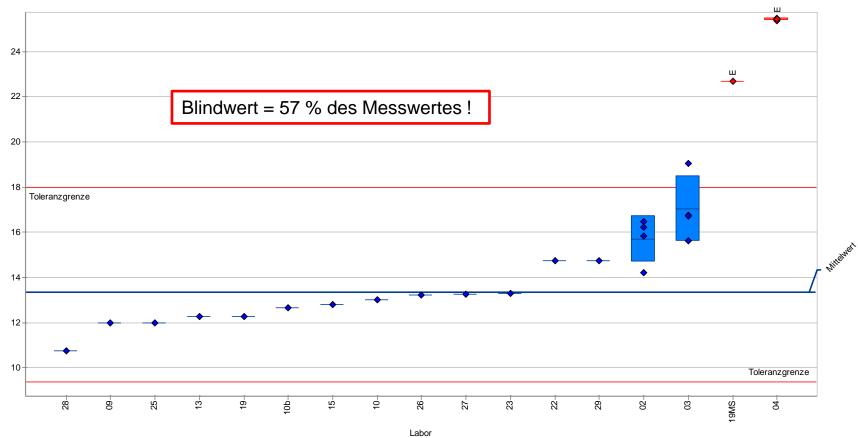

 Rel. Vergleich-Stdabw . (VR):
 23,80%

 Wiederhol-Stdabw . (Sr):
 1,43 mg/kg

 Rel. Wiederhol-Stdabw . (Vr):
 6,15%

 HORRAT:
 2,389

Toleranzbereich: 13,22 - 36,02 mg/kg (|Zu-Score| <= 2,000)

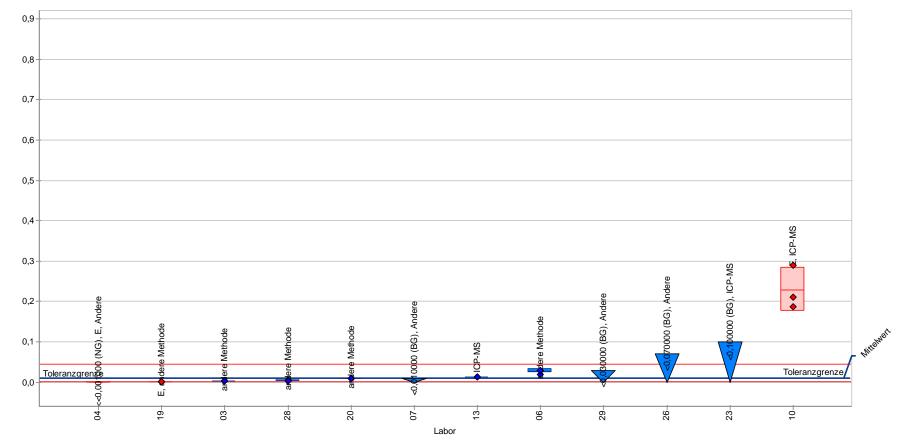

PROLab Plus

Probe: Eluat BW
Merkmal: Bor
Methode: DIN 38402 A45
Anzahl Labore: 16

Mittelw ert: 13,34 mg/kg Vergleich-Stdabw. (SR): 2,13 mg/kg Rel. Vergleich-Stdabw. (VR): 15,93% Wiederhol-Stdabw. (Sr): 0,54 mg/kg Rel. Wiederhol-Stdabw. (Vr): 4,06% HORRAT: 1,471

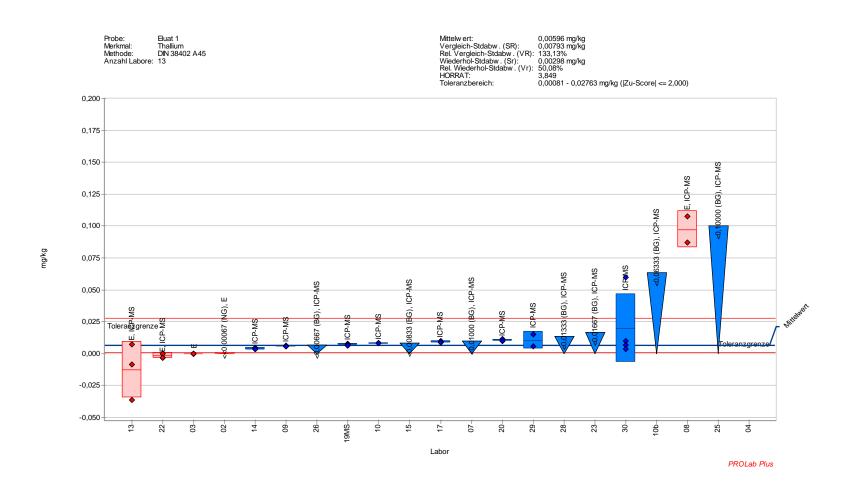
Toleranzbereich: 9,38 - 17,99 mg/kg (|Zu-Score| <= 2,000)

Horrat-Werte für die Spurenelemente (keine zusätzliche Verdünnung notwendig)



Analyt	Stroh	asche	Holza	asche	Analyt	Stroh	asche	Holza	asche
	Feststoff	Extrakt	Feststoff	Extrakt		Feststoff	Extrakt	Feststoff	Extrakt
Antimon	0,8	0,7	1,1	0,8	Nickel	2,0	0,8	1,1	1,0
Arsen	1,6	1,6	1,1	1,6	Quecksilber	4,0	9,4	3,6	4,4
Blei	1,8	1,1	1,6	1,3	Rubidium	2,0	0,7	0,7	0,8
Bor	3,2	2,4	1,5	2,7	Selen	2,0	12,2	8,1	9,9
Cadmium	0,7	0,8	0,7	0,8	Thallium	3,6	3,8	3,4	3,3
Chrom	2,5	1,1	2,0	1,4	Titan	3,3	1,4	7,0	1,8
Kobalt	0,6	0,4	0,8	0,8	Vanadium	1,8	1,0	1,4	1,0
Kupfer	1,2	1,0	1,9	1,3	Yttrium	0,9	0,5	0,4	0,6
Mangan	1,8	1,5			Zink	1,5	1,6	1,2	2,6
Molybdän	0,9	0,7	1,2	0,8	Zirkonium	3,4	1,6	13,9	1,7

Statistische Auswertung Einzeldarstellung für Quecksilber


Probe: Asche 1
Merkmal: Quecksilber
Methode: DIN 38402 A45
Anzahl Labore: 7

Mittelw ert: 0,009819 mg/kg Vergleich-Stdabw. (SR): 0,012706 mg/kg Rel. Vergleich-Stdabw. (VR): 129,41% Wiederhol-Stdabw. (Sr): 0,000492 mg/kg Rel. Wiederhol-Stdabw. (Vr): 5,01% HORRAT: 4,034

PROLab Plus

Horrat-Werte für die Spurenelemente (keine zusätzliche Verdünnung notwendig)

Analyt	Stroh	Strohasche Holza		zasche Analyt		Strohasche		Holza	asche
	Feststoff	Extrakt	Feststoff	Extrakt		Feststoff	Extrakt	Feststoff	Extrakt
Antimon	0,8	0,7	1,1	0,8	Nickel	2,0	0,8	1,1	1,0
Arsen	1,6	1,6	1,1	1,6	Quecksilber	4,0	9,4	3,6	4,4
Blei	1,8	1,1	1,6	1,3	Rubidium	2,0	0,7	0,7	0,8
Bor	3,2	2,4	1,5	2,7	Selen	2,0	12,2	8,1	9,9
Cadmium	0,7	0,8	0,7	0,8	Thallium	3,6	3,8	3,4	3,3
Chrom	2,5	1,1	2,0	1,4	Titan	3,3	1,4	7,0	1,8
Kobalt	0,6	0,4	0,8	0,8	Vanadium	1,8	1,0	1,4	1,0
Kupfer	1,2	1,0	1,9	1,3	Yttrium	0,9	0,5	0,4	0,6
Mangan	1,8	1,5			Zink	1,5	1,6	1,2	2,6
Molybdän	0,9	0,7	1,2	0,8	Zirkonium	3,4	1,6	13,9	1,7


Statistische Auswertung Einzeldarstellung für Selen

Probe: Eluat 2 Merkmal: Selen Methode: DIN 38402 A45 Anzahl Labore: 13

mg/kg

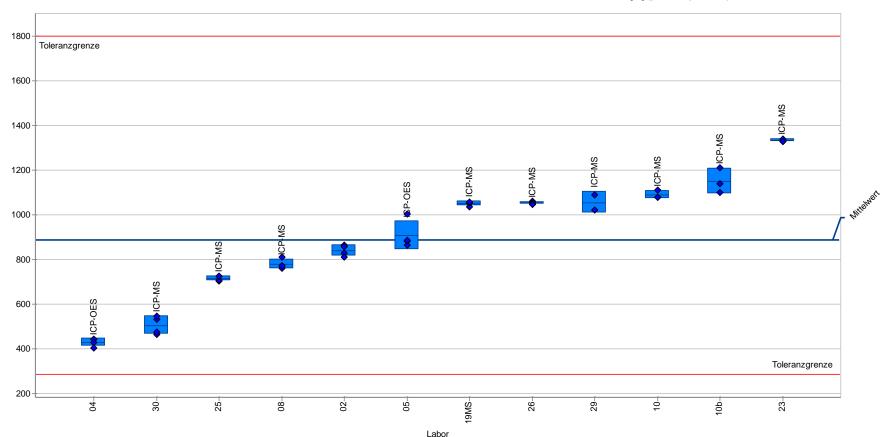
Mittelw ert: 0,4420 mg/kg Vergleich-Stdabw . (SR): 0,7952 mg/kg Rel. Vergleich-Stdabw . (VR): 179,91% Wiederhol-Stdabw . (Sr): 0,0344 mg/kg Rel. Wiederhol-Stdabw . (Vr): 7,79% HORRAT: 9,946

Toleranzbereich: 0,0668 - 2,6295 mg/kg (|Zu-Score| <= 2,000)

PROLab Plus

Horrat-Werte für die Spurenelemente (keine zusätzliche Verdünnung notwendig)

Analyt	Stroh	asche	Holza	asche	Analyt	Stroh	asche	Holza	asche
	Feststoff	Extrakt	Feststoff	Extrakt		Feststoff	Extrakt	Feststoff	Extrakt
Antimon	0,8	0,7	1,1	0,8	Nickel	2,0	0,8	1,1	1,0
Arsen	1,6	1,6	1,1	1,6	Quecksilber	4,0	9,4	3,6	4,4
Blei	1,8	1,1	1,6	1,3	Rubidium	2,0	0,7	0,7	0,8
Bor	3,2	2,4	1,5	2,7	Selen	2,0	12,2	8,1	9,9
Cadmium	0,7	0,8	0,7	0,8	Thallium	3,6	3,8	3,4	3,3
Chrom	2,5	1,1	2,0	1,4	Titan	3,3	1,4	7,0	1,8
Kobalt	0,6	0,4	0,8	0,8	Vanadium	1,8	1,0	1,4	1,0
Kupfer	1,2	1,0	1,9	1,3	Yttrium	0,9	0,5	0,4	0,6
Mangan	1,8	1,5			Zink	1,5	1,6	1,2	2,6
Molybdän	0,9	0,7	1,2	0,8	Zirkonium	3,4	1,6	13,9	1,7

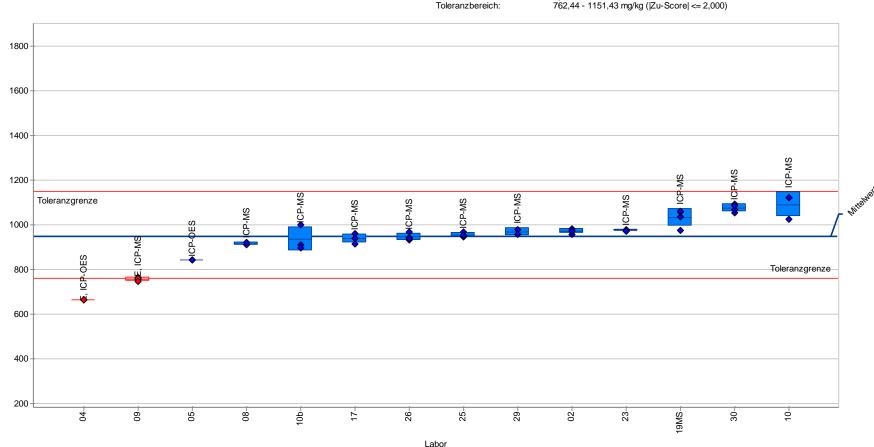

Statistische Auswertung Einzeldarstellung für Titan

Probe: Asche 2 Merkmal: Titan DIN 38402 A45 Methode:

Anzahl Labore: 11

Mittelw ert: 886,89 mg/kg 357,87 mg/kg Vergleich-Stdabw . (SR): 357,87 r Rel. Vergleich-Stdabw . (VR): 40,35% Wiederhol-Stdabw . (Sr): 20,23 mg/kg Rel. Wiederhol-Stdabw . (Vr): 2,28% HORRAT: 7,006

285,48 - 1799,74 mg/kg (|Zu-Score| <= 2,000) Toleranzbereich:


PROLab Plus

Probe: Eluat 2 Merkmal: Titan

DIN 38402 A45 Methode: Anzahl Labore: 13

Mittelw ert: 947,02 mg/kg 96,74 mg/kg Vergleich-Stdabw . (SR): 96,74 mg Rel. Vergleich-Stdabw . (VR): 10,22% Wiederhol-Stdabw . (Sr): 13,21 mg/kg Rel. Wiederhol-Stdabw . (Vr): 1,40% HORRA T HORRAT: 1,791

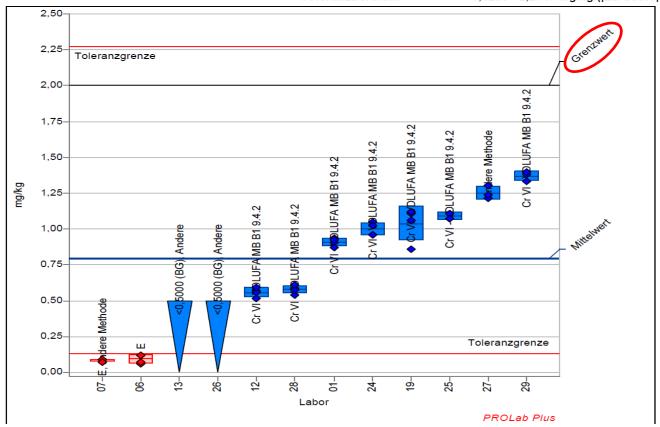
762,44 - 1151,43 mg/kg (|Zu-Score| <= 2,000) Toleranzbereich:

PROLab Plus

		Probe 1		Probe 2			
Analyt	Feststoff	Extrakt	Wiederfindung	Feststoff	Extrakt	Wiederfindung	
	m	g/kg	%	mg/kg		%	
Aluminium	1545	1542	100	12703	13283	96	
Antimon	0,18	0,14	128	0,601	0,732	82	
Arsen	0,61	0,54	113	2,73	2,58	106	
Barium	662	665	100	975,3	1063,1	92	
Blei	1,06	0,88	121	12,9	16,5	78	
Bor	31,5	23,3	135	154	138	111	
Cadmium	0,48	0,44	109	0,79	0,79	100	
Calcium	43189	43679	99	175941	186440	94	
Chrom	7,31	6,48	113	107	110	97	
Eisen	1795	1837	98	9084	9517	95	
Kalium	186986	185345	101	64668	67114	96	
Kobalt	2,25	2,26	100	10,7	11,1	96	
Kupfer	40,7	41,2	99	126	130	97	
Magnesium	12503	12602	99	18236	18705	97	
Mangan	440	439	100	11320	11933	95	

		Probe 1		Probe 2			
Analyt	Feststoff	Extrakt	Wiederfindung	Feststoff	Extrakt	Wiederfindung	
	mg	/kg	%	mg	ı/kg	%	
Molybdän	7,46	7,60	98	2,64	2,81	94	
Natrium	909	832	109	2795	2820	99	
Nickel	7,30	7,02	104	29,4	28,9	102	
Phosphor	19770	20044	99	9516	9863	96	
Quecksilber	0,0098	0,0091	108	0,0048	0,0317	15	
Rubidium	22,4	21,8	103	90,7	91,9	99	
Schwefel	6849	6597	104	755	719	105	
Selen	0,128	0,095	134	0,544	0,442	123	
Strontium	507	507	100	798	843	95	
Thallium	0,0090	0,0060	152	0,0122	0,0060	203	
Titan	104,0	94,4	110	887	947	94	
Vanadium	4,23	4,02	105	24,5	25,3	97	
Yttrium	0,906	0,805	112	7,89	7,70	102	
Zink	66,0	61,5	107	134	126	107	
Zirkonium	1,169	0,874	134	2,13	0,50	423	

 Probe:
 Asche 1
 Mittelwert:
 0,7964 mg/kg

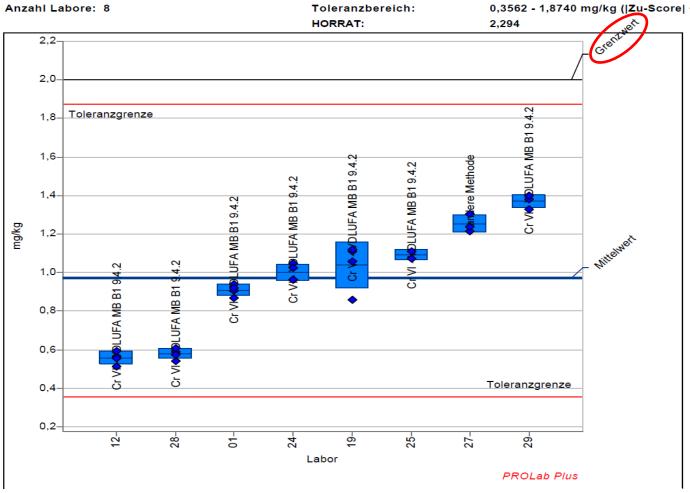

 Merkmal:
 Chrom VI
 Vergleich-Stdabw. (SR):
 0,5502 mg/kg

Methode: DIN 38402 A45 Rel. Vergleich-Stdabw. (VR): 69,09%

Anzahl Labore: 10 Wiederhol-Stdabw. (Sr): 0,0427 mg/kg

Rel. Wiederhol-Stdabw. (Vr): 5,36% HORRAT: 4,1732

Toleranzbereich: 0,1286 - 2,2747 mg/kg (|Zu-Score| <= 2,0000)



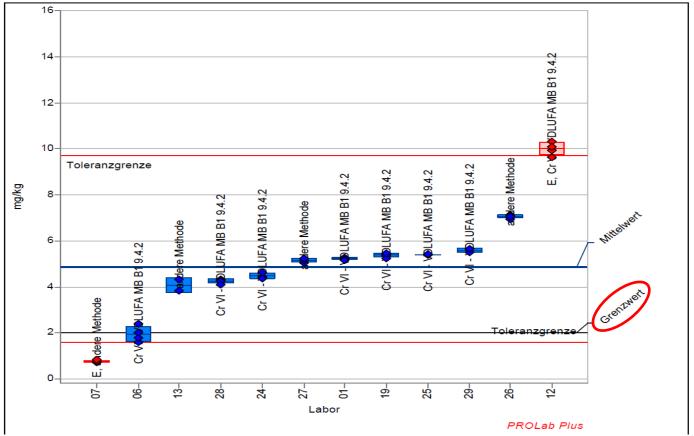
Statistische Auswertung Einzeldarstellung für Chrom-VI (Entfernung Ausreißerwerte)

Probe: Asche 1 Mittelwert: 0,9742 mg/kg Merkmal: Chrom VI Vergleich-Stdabw. (SR): 0,3590 mg/kg

Methode: **DIN 38402 A45** Rel. Vergleich-Stdabw. (VR): 36,85%

0,3562 - 1,8740 mg/kg (|Zu-Score| <= 2,000)

Anzahl Labore: 12


Probe:Asche 2Mittelwert:4,8501 mg/kgMerkmal:Chrom VIVergleich-Stdabw. (SR):1,9151 mg/kg

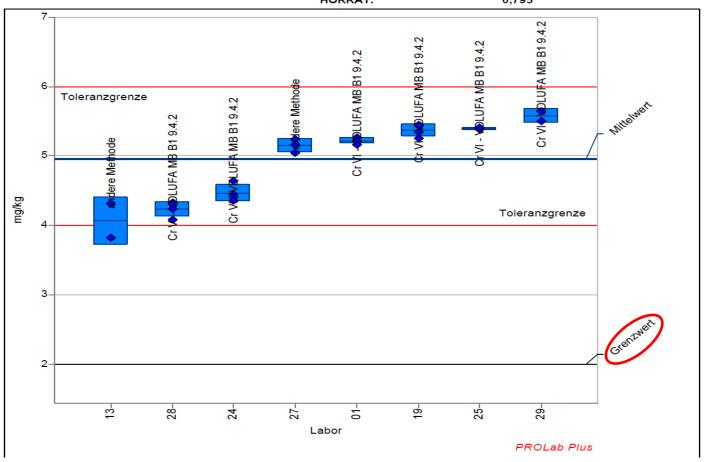
Methode: DIN 38402 A45 Rel. Vergleich-Stdabw. (VR): 39,49%

Wiederhol-Stdabw. (Sr): 0,1341 mg/kg

Rel. Wiederhol-Stdabw. (Vr): 2,77% HORRAT: 3,1305

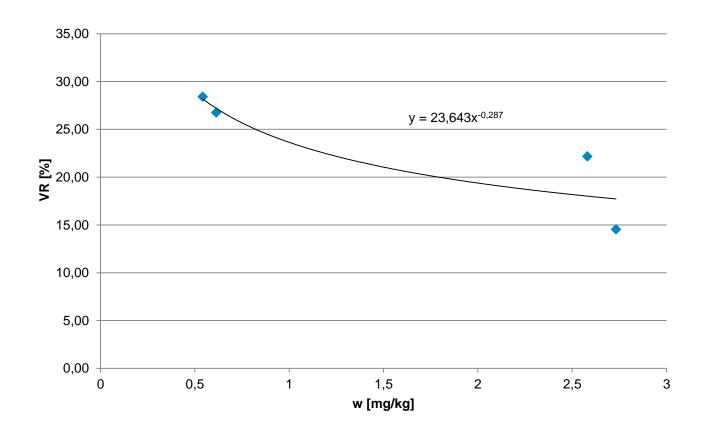
Toleranzbereich: 1,6107 - 9,7159 mg/kg (|Zu-Score| <= 2,0000)

Statistische Auswertung

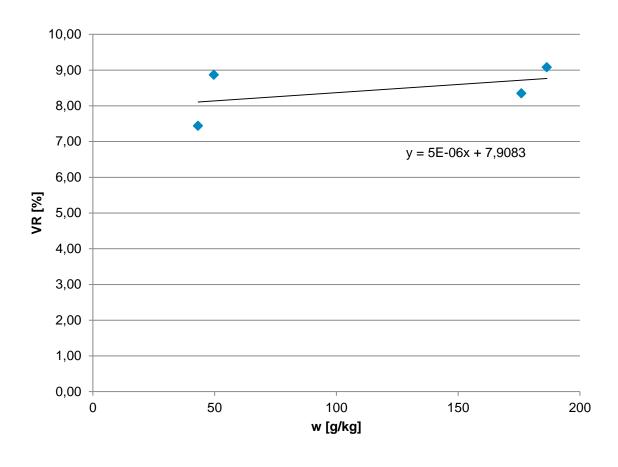

Einzeldarstellung für Chrom-VI (Entfernung Ausreißerwerte)

Probe: Asche 2 Mittelwert: 4,9516 mg/kg Merkmal: Chrom VI Vergleich-Stdabw. (SR): 0,4952 mg/kg

Methode: DIN 38402 A45 Rel. Vergleich-Stdabw. (VR): 10,00%


Anzahl Labore: 8 Toleranzbereich: 4,0060 - 5,9966 mg/kg (|Zu-Score| <= 2,000)

HORRAT: 0,795



Abschätzung der erweiterten Messunsicherheit U_{rel} aus den statistischen Vergleichsdaten SR und VR

Parameter	U _{rel} [%]	U _{rel} [%], gerundet	Gültigkeitsbereich			
Calcium	16,9	20	41,7 – 193 g/kg			
Kalium	20,1	20	61,7 – 193 g/kg			
Magnesium	20,3	20	12,1 – 19,5 g/kg			
Phosphor	23,1	25	8,94 – 20,5 g/kg			
Schwefel	23,6	25	0,64 – 7,07 g/kg			
Arsen	47,3·w[mg/kg] ^{-0,29}	35 - 60	0,48 – 2,90 mg/kg			
Blei	44,2·w[mg/kg] ^{-0,13}	30 - 45	0,82 – 17,3 mg/kg			
Cadmium	25,1	25	0,42 – 0,83 mg/kg			
Chrom	27,3	25	6,17 – 114 mg/kg			
Chrom-VI	72,2·w[mg/kg] ^{-0,8}	20 – 90	0,73 – 5,28 mg/kg			
Kupfer	22,0	25	39,0 – 134 mg/kg			
Nickel	19,5	20	6,80 – 134 mg/kg			
Thallium	nicht auswertbar, da w ≤ BG					
Quecksilber	nicht auswertbar, da w ≤ BG					

w (Gültigkeitsbereich) = $MW_{max/min} \pm t_{einseitig, P = 0,95} \cdot SR/\sqrt{n}$.

Zusammenfassung

- 1x Strohasche, 1x Holzasche, 2x zugehörige KW-Extrakte + Extraktionsblindwertlösung mit je 31 Parametern
- 11,8 % der Labormittelwerte außerhalb Toleranzbereiches (z₁₁ = 2)
- Spurenelemente: Horrat überwiegend 0,5 2; Mengenelemente (w > 1g/kg): Horrat = 0,5 2 (verd. Messlösg.)
 - → Qualität der Ringversuchsergebnisse 🖒
- geringen Unterschiede zwischen Feststoff- und Extraktproben (Mittelwerte u. Horrat)
 - → Analysenverfahren für die Analyse der Matrix Biomasseasche geeignet
 - → Fehler des Gesamtverfahrens überwiegend durch die Messung bestimmt
 - → für Analyse der Mengenelemente ICP-OES besser anwendbar als ICP-MS
- <u>Laborübergreifende</u>, erweiterte Messunsicherheiten konnten abgeleitet werden:
 - Pflanzenmakronährstoffelemente → 20 25 % (für Deklaration/Einordnung in Düngemitteltypen ausreichend)
 - Schwermetalle → 20 35 %
 - Elemente im Ultraspurenbereich → bis zu 60 % (z.B. Arsen)

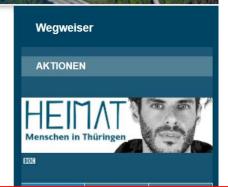
Bei der Bewertung von Grenzwertüberschreitungen nach Düngemittelverordnung (DüMV) wird die Messunsicherheit nicht berücksichtigt, da der mögliche Analysenfehler bei der Ableitung der Grenzwerte schon einberechnet wurde.

- Die Analyse des Chrom-VI-Gehaltes in den wässrigen Ascheextrakten nach VDLUFA-MB II.1, 9.4.2 wurde nicht von allen Laboratorien ausreichend gut beherrscht.
- Die ICP-MS-ergebnisse des TLLLR-Labors waren sehr gut.
 - → Qualität der im Projekt ermittelten Analysenergebnisse

FNR-Projekt Biomasse-Asche-Monitoring (BAM)

Auswertung des Ringversuchs zur Analyse der königswasserextrahierbaren Elementgehalte sowie Chrom-VI

Thüringer Landesamt für Landwirtschaft und Ländlichen Raum


Kontakt | Drucken

Untersuchungswesen und Fachrechtskontrollen

Die Abteilung Untersuchungswesen und Fachrechtskontrollen ist die zentrale, staatliche Untersuchungsstelle für die Land- und Forstwirtschaft sowie den Gartenbau in Thüringen.

Sie ist mit der Durchführung der landwirtschaftlichen Fachrechtskontrollen gem. VO (EU) 2017/625 sowie der Marktüberwachung für pflanzliche und tierische Erzeugnisse einschließlich Geoschutz im Freistaat Thüringen

Vielen Dank für die Aufmerksamkeit!

Fachliche Stellungnahmen und Empfehlungen für das Thüringer Ministerium für Infrastruktur und Landwirtschaft, nachgeordnete Behörden und die landwirtschaftliche Praxis basieren auf wissenschaftlichen Untersuchungs- und Versuchsergebnissen. Die Prüfung, Weiterentwicklung und Validierung analytischer Methoden sowie die Einführung neuer Analysenverfahren sichert ein modernes, bedarfsgerechtes Untersuchungsangebot.

Das Untersuchungswesen ist ein:

- o akkreditiertes Labor nach DIN EN ISO/IEC 17025 (seit 1997)
- o akkreditiertes Labor der International Seed Testing Association ISTA (seit 1997)
- o zertifiziertes Labor für "Gute Laborpraxis" gem. §19b Abs. 1 Chemikaliengesetz (seit 1999)
- Nationales Referenzlabor für Futtermittelzusatzstoffe gem. VO (EG) 378/2005 (seit 2005)
 Stellungnahmen 2018
- o Mitglied im European Network of GMO Laboratories (seit 2009)
- o zugelassenes Labor der Sicherheitsstufe S2 gemäß Infektionsschutzgesetz
- o zugelassenes Labor der Sicherheitsstufe S1 gemäß Gentechnikgesetz
- Urkunde Akkreditierung nach DIN EN ISO/IEC 17025 (08.02.2019 bis 02.07.2022)
- PDF Anlage zu Akkreditierungsurkunde (www.dakks.de) (08.02.2019 bis 02.07.2022)
- FOT GLP Bescheinigung 2020 gem. §19b Abs. 1 Chemikaliengesetz

