

Mechanische Unkrautbekämpfung auf der Stoppel als Alternative zum Glyphosateinatz – Einführung zu den Felddemonstrationen

Sebastian Höde & Dr. Jörg Perner

Thüringer Ackerbauforum Creuzburg, 19.09. 2019

U.A.S. Umwelt- und Agrarstudien GmbH Ilmstraße 6, D – 07749 Jena www.uas-jena.de

Inhalt

- (1) Vorstellung der U.A.S. GmbH
- (2) Einleitung zum Thema angepasste Bodenbearbeitung
- (3) Versuchsanlage und Versuchsablauf
- (4) Vorstellung der Maschinen
- (5) Methodik
- (6) Ergebnisse
- (7) Vergleich Buttelstedt 2018
- (8) Fazit

(1) Vorstellung der U.A.S.

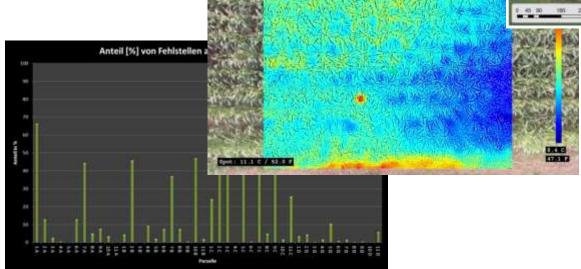
U.A.S. Umwelt- und Agrarstudien GmbH

Forschungsdienstleistungen im Agrar- und Umweltbere

Schwerpunkte unserer Arbeit sind:

- Landwirtschaftliches Versuchswesen
 - Kleinparzellenversuche
 - Demonstrationsversuche
 - On Farm Experimente/Research (OFE/ OFR)

Versuchsfragen:


- Untersuchung der Wirkung von Pflanzenschutzmitteln und Wachstumsregulatoren
 - Düngemittelversuche
 - Sortenversuche (und Züchterprüfungen)
 - Untersuchungen zu Boden- und Pflanzenhilfsstoffen, Pflanzenstärkungs-mitteln
 - Versuche zu Biologicals (Bio-Fertilizers, Bio-Pesticides, Biostimulants)
 - Versuche zu produktionstechnischen Verfahren (Strategien, Intensitäten)

weitere Betätigungsfelder:

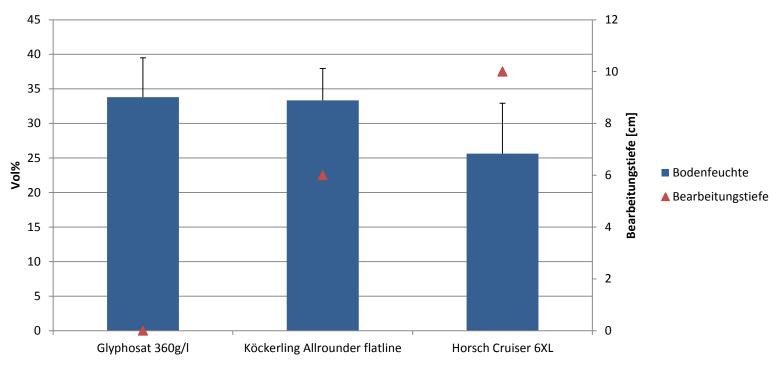
- Biometrie und Datenmanagement
- Forschungs- und Entwicklungsprojekte (z.B. Schlagdatenerfassung mittels UAV)
- Landwirtschaftlicher Erosions- & Bodenschutz (Erosionsschutzberatung in den Thüringer Gewässerschutzkooperationen)

(2) Einleitung

Grundgedanken der konservierenden Bodenbearbeitung

- Herstellung eines stabilen und tragfähigen Bodengefüges durch reduzierte Bearbeitungsintensität
- Schaffung einer organischen Substanzauflage als Schutz gegen Erosion und Verschlämmung

org. Substanzauflage ... rückt durch Klimawandel weiter in den Vordergrund


- Schutz vor Bodendegradation vor allem durch Wassererosion während
 Starkniederschlägen oder Winderosion bei anhaltender Trockenheit
- Sicherung des Bodenwasservorrates durch verbesserten Verdunstungsschutz
- Verhinderung des Oberflächenabflusses
- Schutz vor Überhitzung (Sandböden)

- Glyphosatverbot -> wird mehr Schlagkraft, Sorgfalt und Arbeitsqualität bei der Bodenbearbeitung erfordern; höhere Kosten (?)
 - Vollständige Beseitigung von Ausfallkulturen und Unkraut
 - Weitere allgemeine Anforderungen: homogene Einarbeitung der Ernterückstände in die Ackerkrume (bes. > 50 dt/ha Stroh),
 Schadverdichtungen beheben, Kapilarität brechen, Schädligsbekämpfung (Mäuse, Schnecken), Hinterlassen einer feinkrümligen und rückverfestigten Ackeroberfläche (Bodenfeuchte)
- Allgemein gilt: die Beseitigung des Rapses am besten im Zweiblattstadium, Getreide im Dreiblattstadium
- Die Zeitspanne ohne Bewuchs bis zur Aussaat verlängert sich -> Bodenschutz tritt vermehrt in den Vordergrund (org. Substanzauflage wichtig)
- Wichtig: Schaffung optimaler Keimbedingungen nach Ernte (verhindern der sekundären Keimruhe) um dichten Ausfallbestand mit gegenseitiger Konkurrenzwirkung zu erzielen -> verhindert Überwachsen und schafft damit Zeit bis zur Bodenbearbeitung

Bodenfeuchte-Messung* mit TDR-350 am 18.09.2019

*Hinweis: durch den hohen Tongehalt wird der Wassergehalt etwas überschätzt

Jede Bodenbearbeitung so flach wie möglich, so tief wie nötig!

(3) Versuchsanlage und Versuchsablauf

Versuchsfrage:

 Welche Wirkung erzielen mechanische Bodenbearbeitungsgeräte auf Ausfallraps und organischer Substanzauflage im Vergleich zur Glyphosatanwendung?

Versuchsanlage:

- 14 Bodenbearbeitungsvarianten in Form einer 1-fach wiederholte
 Streifenanlange mit 2 Bearbeitungsbereichen
 - Stoppelbereich (nach Ernte keine weitere Bearbeitung) ->
 Beurteilung Stoppelbearbeitung/Stroheinarbeitung
 - Mulchbereich (Mulchgang nach Ernte für besseren Auflauf des Ausfallrapses sowie Strohzerkleinerung) -> Beurteilung der Ausfallrapsbeseitigung
- 1 Glyphosatvariante zum Vergleich (AWM 4l/ha)

Versuchsdesign:

Standortbeschreibung:

Geologische Herkunft:

Mesozoikum, Trias, Oberer Muschalkalk

Bodentyp:

steinreiche Rendzina/Pararendzina (Ah/cC bzw. Ah/eC) aus Grus- und Schutt führendem, carbonatischem Ton über Kalk- und Tonmergelstein

Höhe:420 mBodenart:LT, LBodengruppe:5 - 6Bodenzahl36 - 48

Wetterstation Wendehausen:

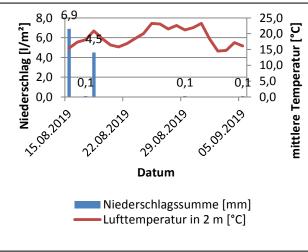
lgj. NS-summe: 581 mm

lgj. Temp.-mittel: 8,9°C

Versuchsablauf:

• 15.08.19 Ernte Winterraps

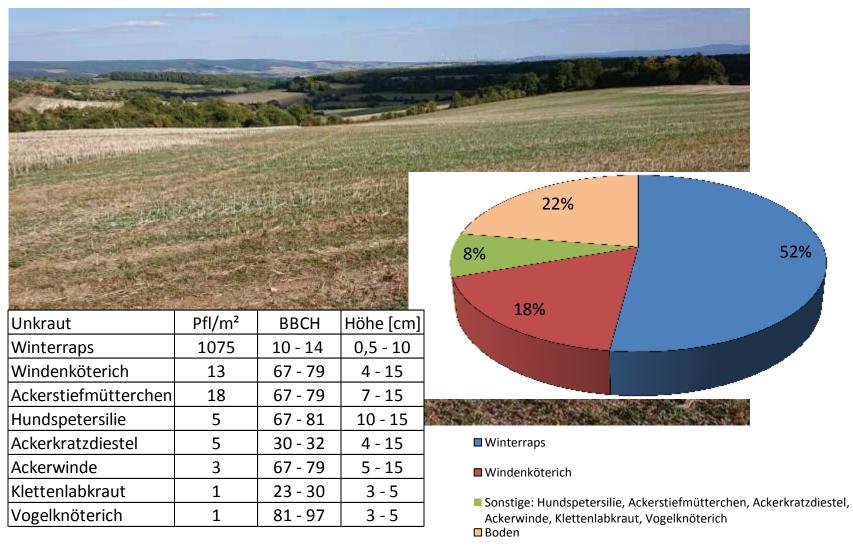
03.09.19 Bestandsaufnahme


04. – 06.09.2019 Bodenbearbeitung/ Glyphosatanwendung

• 10.09.19 Bonitur der org. Substanzauflage, mechanischer

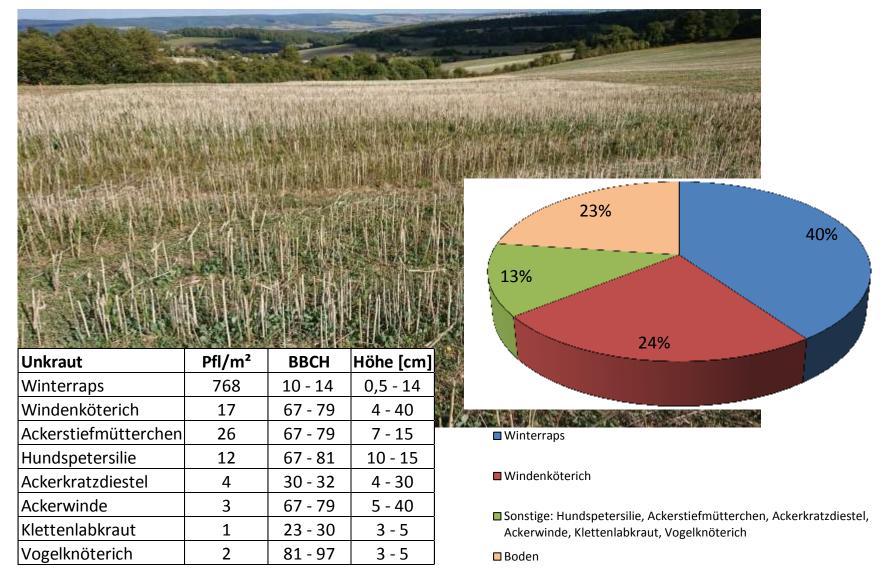
Bekämpfungsgrad, Bearbeitungsbild, Befliegung

Witterung:


16.08.19

03.09.19

3. Augustdekade deutlich zu warm und sehr trocken



Unkrautdeckung - Mulchfläche (Mulchhöhe ~12cm):

Unkrautdeckung - Stoppelfläche (Stoppelhöhe ~40cm):

Weitere Besonderheiten:

(4) Vorstellung der Maschinen

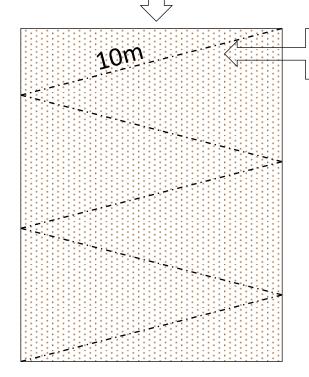
Flachgrubber: (Arbeitstiefe bis 15 cm)

Modell	Strich- abstand	Reihen	Rahmen- höhe	Werkzeug	Einebnung	Walze	Vorläufer	Nach-läufer
Betriebsmaschine	13,0 cm	~	~	Schmalschare 60 mm	~	~	-	~
Güttler SuperMaxx 60-7 Bio	13,0 cm	7	530 mm	Gänsefußschar 180 mm	-	-	-	Doppel- striegel
Köckerling Allrounder flatline 750	13,0 cm	6	600 mm	Gänsefußschar 200 mm	-	Doppel-STS Walze 530 mm	Messer- walze	Striegel
Horsch Cruiser 6 XL	15,0 cm	6	600 mm	Gänsefußschar 200 mm	Einebnungs- scheiben	Doppel RollPack Packer 550 mm	-	Striegel
Kerner Stratos SA 500	15,0 cm	4	630 mm	Gänsefußschar 180 mm	Sternverteiler	Crackerwalze 550 mm	X CUT Messer	Striegel
Farmet Fantom 650 PRO	19,0 cm	5	655 mm	Pfeilschar 230 mm	Einebnungs- scheiben	SD-Walze 525 mm	Flexiboard	-
Väderstad Swift	19,3 cm	4	770 mm	Gänsefußschar 24 cm	Sternverteiler	-	-	Striegel

Kurzscheibeneggen:

Modell	Werkzeug	Strich- abstand	Anstell- winkel	Reihen	Einebnung	Walze	Vorläufer	Nach- läufer
Väderstad Carrier 650 CrossCutter Disc	CrossCutter Disk 450 mm	12,5 cm	14°	2	-	Single SteelRunner 550 mm	-	-
Amazone Catros+ 8003- 2TX	gezackte Hohlscheibe 510 mm	1 1 5 cm	17°(vorn)/ 14°(hinten)	, ,	Crushboard	Keilringwalze Matrixprofil 650 mm	Crushboard	Striegel
Betriebsmaschine	gezackte Hohlscheibe 510 mm	12,5 cm	~	~	-	~	-	~
Horsch Joker 8 RT	gezackte Hohlscheibe 520 mm	12,5 cm	17°	2	-	Doppel RollPack Packer 550 mm	-	-
Farmet Softer 8 PS	gezackte Hohlscheibe 560 mm	12,0 cm	k.A.	2	-	SD-Walze 525 mm	-	-
Lemken Rubin 10/500 KUA	gezackte Hohlscheibe, DuraMaxx 645 mm	12,5 cm	17°(vorn)/ 15°(hinten))	Nivellier- striegel	Doppelprofilwalze DPW 540/540	Striegel	-

Grubber-Scheibeneggen-Kombination: (Arbeitstiefe bis 30cm)


Modell	Strich- abstand	Reihen	Rahmen- höhe	Werkzeug	Einebnung	Walze	Vorläufer	Nachläufer
Amazone Ceus 5000-2TX	12,5cm	2	800 mm	gezackte Hohlscheibe 510 mm	Einebnungs-	Keilringwalze Matrixprofil 650 mm	Scheibenegge	
	40,0 cm	3		Gänsefußschar 320 mm	scheiben			-

(5) Methodik

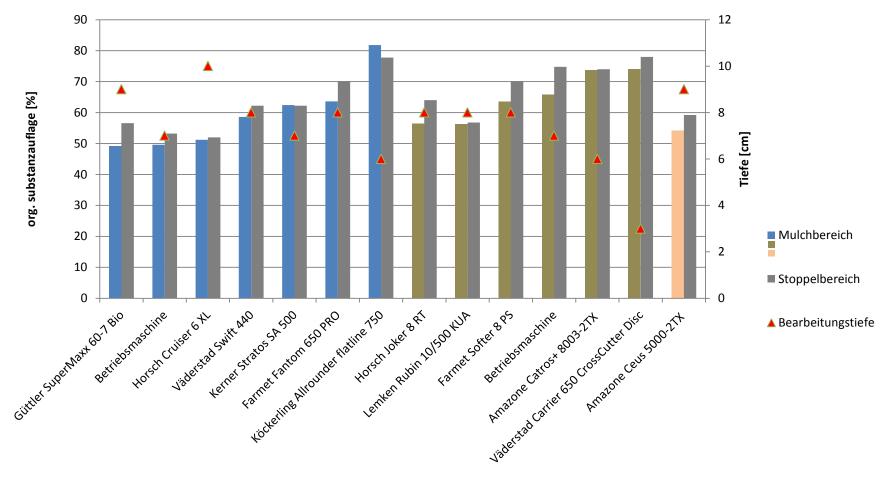
- Bestimmung des Ausgangsbesatzes mittels Zählung im Göttinger Zählrahmen
- Ermittlung der Substanzauflage und der mech. Bekämpfungsleistung nach Bodenbearbeitung mittels Schnurmethode

Be arbeit ung sstreife

Schnur mit 100 Punktmarkierungen

- Jeweils 5 Zählungen für Mulchund Stoppelbereich
- Zählung relevanter org.
 Substanzreste an den
 Schnittpunkten
- Zählung aller Restpflanzen 5cm ober- und unterhalb entlang der Schnur (Auszählung von 1m² auf 10m Länge)

- Freilegen der Bearbeitungssohle und Bestimmung der durchschnittlichen Bearbeitungstiefe
- Beurteilung der Einebnung, Krümelung etc.



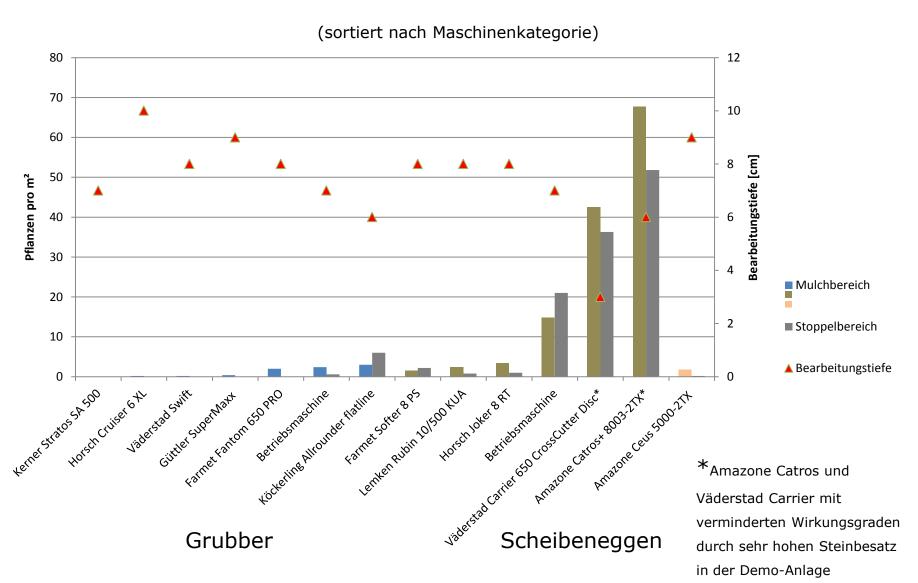
(6) Ergebnisse

Organische Substanzauflagen im Mulch- und Stoppelbereich

(sortiert nach Maschinenkategorie)

Grubber

Scheibeneggen


- Höchste Substanzauflage von ca. 80% durch Grubber Köckerling Allrounder flatline -> entspricht theoretisch der Bedeckung des Rapsbestandes (Glyphosatvariante)
- Im Mittel unterscheiden sich die Substanzauflagen sortiert nach der

	Mulch-	Stoppel-	Differenz in	mittlere
Bauart	variante	variante	Prozentpunkten	Bearbeitungs-
	[%]	[%]	(Mulch/Stoppel)	tiefe [cm]
Grubber	59	62	3	8
Scheibeneggen	60	64	4	7
Grubber-Scheibeneggen-Komb.	54	59	5	9

- In der Regle arbeiten Grubber "Langstroh" (Stoppelvariante) besser ein als Scheibeneggen
- Höhere Substanzauflagen bei Grubber mit Gänsefußschare, da einheitlich flache Bearbeitung mit geringem Zugkraftbedarf möglich
- Grubber-Scheibeneggen Kombination (Amazone Ceus) kann durch separate Einstellung der Werkzeugfelder alle Vorteile miteinander kombinieren

Nicht ausreichend bekämpfte Rapspflanzen im Mulch- und Stoppelbereich

- alle Grubber mit 100% Wirkungsgrad
- Scheibeneggen ebenso mit sehr guter Wirkung bei der Ausfallrapsbeseitigung, relativ zum Ausgangsbesatz erreichen in Mulch- und Stoppelvariante alle Geräte eine 99% Wirkung auf Ausfallraps
- Ein überdurchschnittlicher Steinbesatz im Boniturbereich von Amazone Catros+ 2TX und Väderstad Carrier Crosscutter Disk erschwerte hier die flächige und mischende Bodenbewegung und vermindert damit deutlich die Wirkungsgrade (Demo-Anlage!)
- Nicht erfasste Pflanzen können aufgrund des niedrigen Entwicklungsstadiums in nachfolgenden Arbeitsgängen leicht beseitigt werden

(7) Vergleich Buttelstedt 2018

Standortbeschreibung:

Geologische Herkunft:

Trias, Unterer Keuper

Bodentyp:

Tschernosem aus Grus führendem Lehm (Axh/Cl)

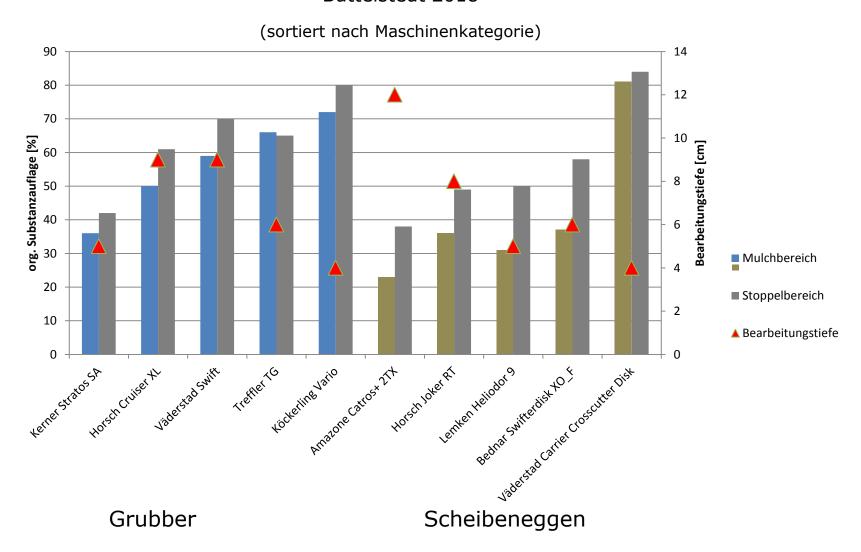
Höhe: 220 m

Bodenart: sL

Bodengruppe: 4

Bodenzahl 43 – 70

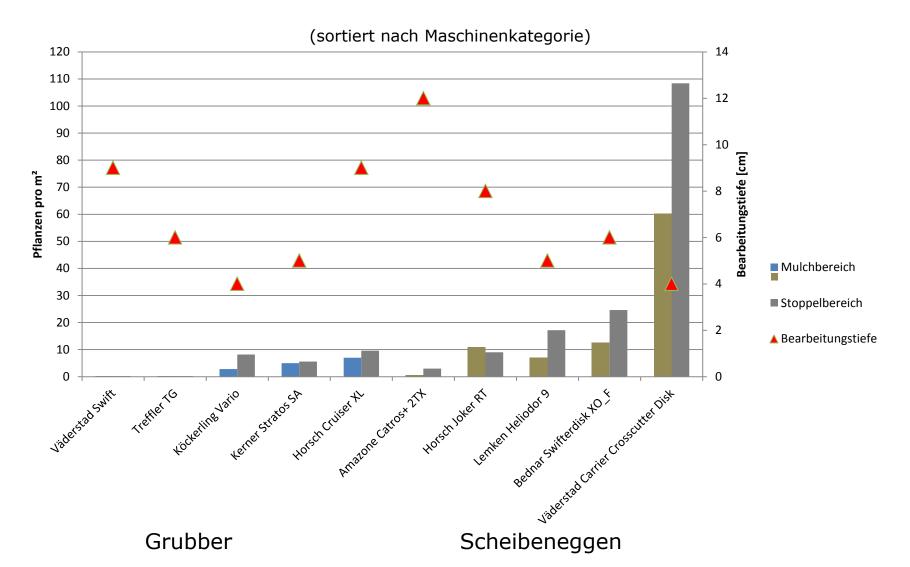
Wetterstation Buttelstedt:


lgj. NS-summe: 535 mm lgj. Temp.-mittel: 9,0°C

- 6-wöchige Aufwuchszeit von der Ernte bis zur Bodenbearbeitung
- ca. 350 Rapspflanzen/m², BBCH 12 16, Wuchshöhen bis 25cm
- Winden- und Vogelknöterich: 10 Pfl/m²
- Mittlerer Bedeckungsgrad: 70%
- Rapsstoppellänge: 50cm

Organische Substanzauflagen im Mulch- und Stoppelbereicht Buttelstedt 2018

 Grubber hinterlassen in Mulch- und Stoppelvariante durchschnittlich eine signifikant höhere Substanzauflage als die Scheibeneggen


Bauart	Mulch- variante [%]	Stoppel- variante [%]	Differenz in Prozentpunkte (Mulch/Stoppel)	mittlere Bearbeitungs- tiefe [cm]
Grubber	57	64	7	6,5
Scheibeneggen*	32	49	17	7,5

^{*}ohne Väderstadt CarrierCrossCutter Disk

- ein eingeschobener Mulcharbeitsgang, hier zur Reduktion der Pflanzengröße, verringert auch übermäßig den Bedeckungsgrad bei der nachfolgenden Bodenbearbeitung, insbesondere mit Scheibeneggen -> d.h. rechtzeitige Bodenbearbeitung wichtig für den Bodenschutz
- 8-balkige Grubber Köckerling Vario hinterlässt die höchste Substanzauflage (73%) bei 4cm Arbeitstiefe -> dies entspricht dem Bedeckungsgrad im Ausgangsbestand (Glyphosatvariante)
- Aufgrund des großen, gut mischenden A-Horizontes sind die org.
 Substanzauflagen bei den Scheibeneggen bei gleicher Arbeitstiefe deutlich niedriger als am Standort Creuzburg; Grubber annähernd gleiche Substanzauflagen an beiden Standorten

Nicht ausreichend bekämpfte Rapspflanzen im Mulch- und Stoppelbereich Buttelstedt 2018

- Vorangehendes Mulchen verbessert bei allen Maschinen, insbesondere den Scheibeneggen die Wirkungsgrade (hier von 92% auf 95%)
- Grubber erzielen im Mittel bessere Wirkungsgrade als Scheibeneggen, gar 100%
 Wirkung bei Väderstad Swift (9 cm Arbeitstiefe) und Treffler TG (6 cm Arbeitstiefe)
 mit Gänsefußscharen
- Bei Scheibeneggen (Amazone Catros+) sorgt nur eine maximal tiefe Einstellung (12 cm) für sehr gute Wirkungsgrade beim Ausfallraps, aber Substanzauflage z.T. unter 30%
- Nicht erfasste Pflanzen konnten zur Herbizidbehandlung in der Folgekultur beseitigt werden

Problematik: Fahrspuren

(8) Fazit

- Ohne Glyphosat muss die Schlagkraft und Arbeitsqualität der Stoppelbearbeitung steigen
- Die frühe Räumung der Auflaufkultur macht einen erhöhten Bodenschutz notwendig (Stichwort: org. Substanzauflage)
- Auf tiefgründigen Böden kann auch noch bei hohem Entwicklungsstadium erfolgreich der Ausfallbestand beseitigt werden
- Bei schwer zu bearbeitenden Böden ist eine Bekämpfung im Zweiblattstadium des Rapses erforderlich
- Mehrbalkige Grubber mit Gänsefußscharen und einer moderaten Überlappung sind sehr gut geeignet, ganzflächig und flach auch größere Bestände zu beseitigen, hohe Substanzauflagen zu schaffen
- Langstroh (hier Stoppelvariante) kann die Substanzauflage zum Teil erheblich erhöhen und bietet bessere Barrierewirkung vor allem wenn mit Scheibeneggen gearbeitet werden soll
- Das generelle Gelingen der Stoppelbearbeitung ohne Glyphosat beginnt bereits bei der Ernte der Vorfrucht (Stroh- und Spreuverteilung, Fahrspuren bei Ernte)
- Durch das Glyphosatverbot könnten je nach Witterung Mehrkosten zwischen 10 und 75
 €/ha anfallen (Ergebnis aus Teilprojekt II, 2018)

Vielen Dank für Ihre Aufmerksamkeit und Dankeschön an alle teilnehmenden Landmaschinenhersteller

Kontakt

U.A.S. Umwelt- und Agrarstudien GmbH Ilmstraße 6 D - 07743 Jena

Tel.: +49 (0) 3641 6281700

Fax: +49 (0) 3641 6281701

E-Mail: info@uas-jena.de

Internet: http://www.uas-jena.de/

Ansprechpartner:

Sebastian Höde / Tel. 03641 6281700 / s.hoede@uas-jena.de