Feldversuchsbericht 2012 und 2013

Ölfrüchte und Nachwachsende Rohstoffe

Impressum

Herausgeber: Thüringer Landesanstalt für Landwirtschaft

Naumburger Str. 98, 07743 Jena

Tel.: (03641) 683-0, Fax: (03641) 683 390 Mail: postmaster@tll.thueringen.de

Autoren: Andrea Biertümpfel

Roland Bischof Daniel Freund Torsten Graf Maren Schmidt Corinna Ormerod Heike Rudel Angela Werner

Redaktionelle Bearbeitung: Andrea Biertümpfel

Februar 2014

Copyright:

Diese Veröffentlichung ist urheberrechtlich geschützt. Alle Rechte, auch die des Nachdrucks von Auszügen und der fotomechanischen Wiedergabe sind dem Herausgeber vorbehalten.

Inhalt

		Seite
	Einleitung und Erläuterungen	5
1	Ölfrüchte	6
1.1	Winterraps	6
1.2	Öllein	15
2	Nachwachsende Rohstoffe	16
2.1	Alternative Ölpflanzen	16
2.1.1	Senf	16
2.1.2	Saflor	16
2.2	Heil-, Duft- und Gewürzpflanzen	17
2.2.1	Große Brennnessel (Fasernessel)	17
2.2.2	Echte Kamille	17
2.2.3	Pfefferminze	20
2.2.4	Melisse	23
2.2.5	Baldrian	29
2.3	Faserpflanzen	33
2.3.1	Hanf	33
2.4	Energiepflanzen	35
2.4.1	Energiegetreide	35
2.4.2	Großgräser	37
2.4.3	Energieholz	38
2.4.4	Knötericharten	40
2.4.5	Hirsearten	40
2.4.6	Durchwachsene Silphie	43
2.4.7	Ungarisches Riesenweizengras (Szarvasi)	60
2.4.8	Blühmischungen	61
2.4.9	Energiepflanzen zur Biogasgewinnung	62
2.5	Hopfen	70
2.6	Sonstige Versuche zu nachwachsenden Rohstoffen	71
2.6.1	Dauerdüngungsversuche mit Presskuchen und Asche	71

Einleitung und Erläuterungen

Der vorliegende Versuchsbericht beinhaltet einen Überblick über die vom Thüringer Zentrum Nachwachsende Rohstoffe der TLL in Zusammenarbeit mit den Versuchsstationen des Landes Thüringen durchgeführten Feldversuche zu Ölpflanzen und nachwachsenden Rohstoffen. Er umfasst hauptsächlich den Versuchszeitraum 2012 und 2013. Insbesondere bei Dauerkulturen werden auch Versuchsergebnisse vorangegangener Jahre vorgestellt.

Die Versuche konzentrieren sich auf Fruchtarten, die in Thüringen angebaut werden bzw. für die Chancen für einen zukünftigen Anbau bestehen. Des Weiteren sind Versuche dargestellt, die im Rahmen sogenannter "Drittmittelthemen" von Auftraggebern außerhalb Thüringens, wie z. B. der Fachagentur Nachwachsende Rohstoffe e.V., finanziert werden. Den Schwerpunkt bilden agrotechnische Versuche zur Steigerung der Effizienz der Produktion. Der Bereich der Ölpflanzen, insbesondere der Winterraps, der Heil-, Duft- und Gewürzpflanzen und der Faserpflanzen ist ebenso vertreten wie der Hopfen, bei dem die Versuche ausschließlich auf Praxisflächen erfolgen. Ein weiterer Schwerpunkt der Arbeiten liegt bei den Energiepflanzen, hier besonders im Bereich der Biogassubstrate und des Energieholzanbaus.

Im Versuchsbericht sind die Ergebnisse der zahlreichen Einzelversuche in Tabellen dargestellt. Auf eine Interpretation der Ergebnisse wird weitestgehend verzichtet. Diese erfolgt für ausgewählte Versuche in Forschungsberichten sowie Veröffentlichungen in der einschlägigen Fachpresse.

Der Bericht steht in erster Linie für die Beratung zur Verfügung. Er soll jedoch gleichzeitig für interessierte Landwirte und Abnehmer als Information über in Thüringen anbauwürdige Pflanzen und deren erzielbare Ertragshöhe und Qualität dienen.

Auszüge und Ergebnisse des Berichtes dürfen nur nach Abstimmung mit den Autoren weiterverwendet werden.

1 Ölfrüchte

1.1 Winterraps

Anbauversuch Winterraps

Versuchsfrage: Vergleich von mineralischer N-Düngung und Düngung mit Gülle bzw. Gärrest

 Tabelle 1.1/1:
 Einfluss der Düngung (mineralisch, Gülle, Biogasgärrest) auf den Kornertrag von Winterraps, Sorte ,Elektra', VS Dornburg 2010 bis 2012

Versuchsnummer: 120 750

PG	,	N-Düngung (kg/ha)				Kornertrag (dt/ha, 91 % TS)		
	Herbst	Frühjahr 1. Gabe	Frühjahr 2. Gabe	Summe	2010	2011	2012	
1	0	0	0	0	34,9	15,1	17,4	
2	0	80 (KAS)	80 (KAS)	160	44,0	37,6	34,0	
3	0	80 (Gülle)	80 (KAS)	160	44,7	34,2	33,7	
4	40 (KAS)	80 (KAS)	80 (KAS)	200	43,4	43,0	35,5	
5	40 (Gülle)	80 (KAS)	80 (KAS)	200	46,3	42,5	35,8	
6	40 (Gülle)	80 (Gülle)	80 (KAS)	200	45,1	37,1	33,4	
7	40 (Gülle)	80 (Gülle, stab.)	80 (KAS)	200	48,1	37,1	33,6	
8	40 (Gärrest)	80 (KAS)	80 (KAS)	200	47,6	47,2	36,8	
9	40 (Gärrest)	80 (Gärrest)	80 (KAS)	200	45,6	43,6	35,8	
10	40 (Gärrest)	80 (Gärrest, stab.)	80 (KAS)	200	47,9	42,3	35,0	
11	40 (Gülle)	140 (Entec)	0	180	47,2	41,7	33,5	
12	40 (Gärrest)	140(Entec)/2010	0	180/200	47,2	44,8	33,2	
		160 (Entec)						
	GD t, 5 %				4,0	2,1	2,2	

Tabelle 1.1/2: Einfluss der Düngung (mineralisch, Gülle, Biogasgärrest) auf den Ölgehalt von Winterraps, Sorte "Elektra", VS Dornburg 2010 bis 2012

PG	N-Düngung			Ölgehalt				
		(kg/ha)			(% TM)			
	Herbst	Frühjahr 1. Gabe	Frühjahr 2. Gabe	Summe	2010	2011	2012	
1	0	0	0	0	51,1	51,8	50,4	
2	0	80 (KAS)	80 (KAS)	160	47,7	49,2	46,5	
3	0	80 (Gülle)	80 (KAS)	160	48,5	50,3	48,0	
4	40 (KAS)	80 (KAS)	80 (KAS)	200	47,2	49,1	46,6	
5	40 (Gülle)	80 (KAS)	80 (KAS)	200	47,5	49,4	46,8	
6	40 (Gülle)	80 (Gülle)	80 (KAS)	200	47,8	50,2	47,9	
7	40 (Gülle)	80 (Gülle, stab.)	80 (KAS)	200	48,0	49,9	47,9	
8	40 (Gärrest)	80 (KAS)	80 (KAS)	200	46,9	49,9	46,6	
9	40 (Gärrest)	80 (Gärrest)	80 (KAS)	200	47,9	49,8	47,5	
10	40 (Gärrest)	80 (Gärrest, stab.)	80 (KAS)	200	47,5	49,9	47,3	
11	40 (Gülle)	140 (Entec)	0	180	47,1	49,9	48,1	
12	40 (Gärrest)	140(Entec)/2010	0	180/200	47,9	49,2	47,2	
		160 (Entec)						
	GD t, 5 %				1,1	0,6	0,6	

Tabelle 1.1/3: Einfluss der Düngung (mineralisch, Gülle, Biogasgärrest) auf den Ölertrag von Winterraps, Sorte "Elektra", VS Dornburg 2010 bis 2012

PG	, <u> </u>	N-Düngu				Ölertrag	
rG		(kg/ha)			3		
			4	ı _	i	(dt/ha)	
	Herbst	Frühjahr 1. Gabe	Frühjahr 2. Gabe	Summe	2010	2011	2012
1	0	0	0	0	16,2	7,1	8,0
2	0	80 (KAS)	80 (KAS)	160	19,1	16,8	14,4
3	0	80 (Gülle)	80 (KAS)	160	19,7	15,6	14,7
4	40 (KAS)	80 (KAS)	80 (KAS)	200	18,6	19,2	15,1
5	40 (Gülle)	80 (KAS)	80 (KAS)	200	20,0	19,1	15,2
6	40 (Gülle)	80 (Gülle)	80 (KAS)	200	19,7	16,9	14,6
7	40 (Gülle)	80 (Gülle, stab.)	80 (KAS)	200	21,0	16,9	14,6
8	40 (Gärrest)	80 (KAS)	80 (KAS)	200	20,3	21,0	15,6
9	40 (Gärrest)	80 (Gärrest)	80 (KAS)	200	19,8	19,7	15,5
10	40 (Gärrest)	80 (Gärrest, stab.)	80 (KAS)	200	20,7	19,2	15,1
11	40 (Gülle)	140 (Entec)	0	180	20,2	18,9	14,7
12	40 (Gärrest)	140(Entec)/2010	0	180/200	20,6	20,1	14,3
		160 (Entec)					
	GD t, 5 %				1,6	1,0	1,1

Tabelle 1.1/4: Einfluss der Düngung (mineralisch, Gülle, Biogasgärrest) auf den N-Gehalt von Winterraps, Sorte "Elektra", VS Dornburg 2010 bis 2012

PG	, <u> </u>	N-Düngu			1	N-Gehalt im Korr	1
' '		(kg/ha)			(% TM)		
	Herbst	Frühjahr 1. Gabe	Frühjahr 2. Gabe	Summe	2010	2011	2012
1	0	0	0	0	2,88	2,80	2,9
2	0	80 (KAS)	80 (KAS)	160	3,44	3,22	3,5
3	0	80 (Gülle)	80 (KAS)	160	3,31	3,04	3,2
4	40 (KAS)	80 (KAS)	80 (KAS)	200	3,51	3,26	3,5
5	40 (Gülle)	80 (KAS)	80 (KAS)	200	3,50	3,22	3,5
6	40 (Gülle)	80 (Gülle)	80 (KAS)	200	3,41	3,07	3,2
7	40 (Gülle)	80 (Gülle, stab.)	80 (KAS)	200	3,38	3,08	3,3
8	40 (Gärrest)	80 (KAS)	80 (KAS)	200	3,56	3,30	3,5
9	40 (Gärrest)	80 (Gärrest)	80 (KAS)	200	3,39	3,18	3,4
10	40 (Gärrest)	80 (Gärrest, stab.)	80 (KAS)	200	3,41	3,16	3,4
11	40 (Gülle)	140 (Entec)	0	180	3,49	3,14	3,3
12	40 (Gärrest)	140(Entec)/2010	0	180/200	3,40	3,30	3,4
		160 (Entec)					
	GD t, 5 %				0,19	0,09	0,09

Tabelle 1.1/5: Einfluss der Düngung (mineralisch, Gülle, Biogasgärrest) auf die N-Hinterlassenschaft von Winterraps, Sorte, Flektra', VS Dornburg 2010 bis 2012

	Softe , Elektra , VS Domburg 2010 bis 2012							
PG		N-Düngu	ıng		N _{min} nach Ernte (0 bis 60 cm)			
		(kg/ha)				(kg/ha)		
	Herbst	Frühjahr 1. Gabe	Frühjahr 2. Gabe	Summe	2010	2011	2012	
1	0	0	0	0	35	16	20	
2	0	80 (KAS)	80 (KAS)	160	54	18	24	
3	0	80 (Gülle)	80 (KAS)	160	40	18	24	
4	40 (KAS)	80 (KAS)	80 (KAS)	200	45	18	32	
5	40 (Gülle)	80 (KAS)	80 (KAS)	200	51	24	24	
6	40 (Gülle)	80 (Gülle)	80 (KAS)	200	46	20	25	
7	40 (Gülle)	80 (Gülle, stab.)	80 (KAS)	200	58	20	24	
8	40 (Gärrest)	80 (KAS)	80 (KAS)	200	52	22	24	
9	40 (Gärrest)	80 (Gärrest)	80 (KAS)	200	72	20	24	
10	40 (Gärrest)	80 (Gärrest, stab.)	80 (KAS)	200	62	20	41	
11	40 (Gülle)	140 (Entec)	0	180	54	18	20	
12	40 (Gärrest)	140(Entec)/2010	0	180/200	61	20	29	
		160 (Entec)						

Tabelle 1.1/6: Einfluss der Düngung (mineralisch, Gülle, Biogasgärrest) auf die N-Salden (Düngung – N-Entzug Korn) von Winterraps Sorte Flektra' VS Dornburg 2010 bis 201

	Korn) von Winterraps, Sorte 'Elektra', VS Dornburg 2010 bis 201						
PG		N-Düngu	ing	N-Saldo (Düngung abzgl. N-Entzug Korn			
		(kg/ha)			(kg/ha)	
	Herbst	Frühjahr 1. Gabe	Frühjahr 2. Gabe	Summe	2010	2011	2012
1	0	0	0	0	-93	-39	-47
2	0	80 (KAS)	80 (KAS)	160	22	50	52
3	0	80 (Gülle)	80 (KAS)	160	25	57	60
4	40 (KAS)	80 (KAS)	80 (KAS)	200	62	72	87
5	40 (Gülle)	80 (KAS)	80 (KAS)	200	53	68	86
6	40 (Gülle)	80 (Gülle)	80 (KAS)	200	60	81	101
7	40 (Gülle)	80 (Gülle, stab.)	80 (KAS)	200	52	80	100
8	40 (Gärrest)	80 (KAS)	80 (KAS)	200	46	65	83
9	40 (Gärrest)	80 (Gärrest)	80 (KAS)	200	60	98	91
10	40 (Gärrest)	80 (Gärrest, stab.)	80 (KAS)	200	51	102	92
11	40 (Gülle)	140 (Entec)	0	180	50	53	80
12	40 (Gärrest)	140(Entec)/2010	0	180/200	54	73	97
		160 (Entec)					

Fazit: Außer bei der ungedüngten Kontrolle lagen die Erträge aller Prüfglieder, unabhängig von der Düngermenge und -form, 2010 auf gleichem Level. Im Jahr 2011 traten teilweise signifikante Ertragsunterschiede auf, die sich 2012 nur teilweise bestätigten. Den höchsten Ertrag erreichte in beiden Jahren das im Herbst mit Gärrest und im Frühjahr mit KAS gedüngte Prüfglied 8. Die Varianten mit stabilisiertem N-Dünger im Frühjahr schnitten generell etwas schlechter ab. Alle gedüngten Varianten wiesen in den drei Versuchsjahren signifikant niedrigere Ölgehalte auf. Trotzdem reichte der höhere Ölgehalt des ungedüngten Prüfglieds nicht aus, um das Ertragsdefizit im Ölertrag auszugleichen. Die N-Hinterlassenschaft nach der Ernte war sehr unterschiedlich. Nach relativ hohen Werten

2010 fielen die N-Gehalte im Boden nach der Ernte 2011 durchweg niedrig aus, was sich 2013 weitgehend bestätigte. Tendenziell wiesen die höchsten Düngungsstufen (200 kg N/ha gesamt) auch den meisten N nach der Ernte auf. Insgesamt deuten die Versuchsergebnisse darauf hin, dass die Herbstdüngung problemlos mit Gülle oder Gärrest erfolgen kann, im Frühjahr jedoch nicht stabilisierter, mineralischer Dünger die sicherere Variante ist.

Versuchsnummer: 120 715

Anbauversuch Winterraps

Versuchsfrage: Vergleich von mineralischer N-Düngung beim Winterraps/VS Dornburg

Tabelle 1.1/7: Einfluss der verschiedenen Düngungsvarianten auf den Kornertrag von Winterraps, Sorte 'Hammer', VS Dornburg 2013

	V3 Domburg 2013						
PG		N-Düngi		Kornertrag			
		(kg/ha		(dt/ha, 91 % TS)			
	Herbst	Frühjahr 1. Gabe	Frühjahr 2. Gabe	Summe	2013		
1	0	80 (KAS)	100 (KAS)	180	47,9		
2	0	80 (KAS)	70 (KAS)	150	47,9		
	0	80 (KAS) +	100 (KAS)	180	47,7		
		65 S (Kieserit)					
4	0	80 (KAS) +	70 (KAS)	150	46,7		
		65 S (Kieserit)					
5	0	80 (Piamon) (33 + 12)	100 (Piamon) (33+12)	180	48,0		
6	0	80 (Piamon) (33 + 12)	70 (Piamon) (33+12)	150	48,1		
]	+ Kieseritaufdüngung	+ Kieseritaufdüngung				
7	0	80 (Alzon), ohne S	100 (Alzon), ohne S	180	47,5		
8	0	80 (Alzon), ohne S	100 (Alzon), ohne S	180	47,0		
9	60 (Alzon)	120 (Piamon) (33 + 12)	-	180	50,6		
		+ Kieseritaufdüngung					
10	100 (Alzon),	80 (Piamon) (33 + 12)	-	180	49,9		
	ohne S	+ Kieseritaufdüngung					
	GD t, 5 %				2,2		

Tabelle 1.1/8: Einfluss der verschiedenen Düngungsvarianten auf den Ölgehalt von Winterraps, Sorte 'Hammer', VS Dornburg 2013

PG		N-Düngı (kg/ha		Ölgehalt (% TM)	
	Herbst	Frühjahr 1. Gabe	Frühjahr 2. Gabe	Summe	2013
1	0	80 (KAS)	100 (KAS)	180	49,0
2	0	80 (KAS)	70 (KAS)	150	50,0
3	0	80 (KAS) + 65 S (Kieserit)	100 (KAS)	180	49,4
4	0	80 (KAS) + 65 S (Kieserit)	70 (KAS)	150	50,0
5	0	80 (Piamon) (33 + 12)	100 (Piamon) (33+12)	180	49,4
6	0	80 (Piamon) (33 + 12) + Kieseritaufdüngung	70 (Piamon) (33+12) + Kieseritaufdüngung	150	50,5
7	0	80 (Alzon), ohne S	100 (Alzon), ohne S	180	49,4
8	0	80 (Alzon), ohne S	100 (Alzon), ohne S	180	50,6
9	60 (Alzon)	120 (Piamon) (33 + 12) + Kieseritaufdüngung	-	180	49,1
10	100 (Alzon), ohne S	80 (Piamon) (33 + 12) + Kieseritaufdüngung	-	180	49,3
	GD t, 5 %	3. 3.			1,35

Tabelle 1.1/9: Einfluss der verschiedenen Düngungsvarianten auf den Ölertrag von Winterraps, Sorte 'Hammer', VS Dornburg 2013

PG		N-Düngi		Ölertrag	
	Herbst	(kg/ha Frühjahr 1. Gabe	ı) Frühjahr 2. Gabe	Summe	(dt/ha) 2013
1	0	80 (KAS)	100 (KAS)	180	23,0
2	0	80 (KAS)	70 (KAS)	150	23,6
3	0	80 (KAS) +	100 (KAS)	180	23,0
		65 S (Kieserit)			
4	0	80 (KAS) +	70 (KAS)	150	23,0
		65 S (Kieserit)			
5	0		100 (Piamon) (33+12)	180	23,2
6	0		70 (Piamon) (33+12)	150	23,7
		+ Kieseritaufdüngung	+ Kieseritaufdüngung		
7	0	80 (Alzon), ohne S	100 (Alzon), ohne S	180	23,0
8	0	80 (Alzon), ohne S	100 (Alzon), ohne S	180	22,4
9	60 (Alzon)	120 (Piamon) (33 + 12)	-	180	24,0
		+ Kieseritaufdüngung			
10	100 (Alzon),	80 (Piamon) (33 + 12)	-	180	24,0
	ohne S	+ Kieseritaufdüngung			
	GD t, 5 %				1,75

Tabelle 1.1/10: Einfluss der verschiedenen Düngungsvarianten auf den N-Gehalt im Korn von Winterraps, Sorte "Hammer", VS Dornburg 2013

PG	,, 	nammer, vo Domburg 20		I	N-Gehalt im Korn
FG		N-Düngı (kg/ha		(% TM)	
	Herbst		r e	Summe	2013
-	пегрег	Frühjahr 1. Gabe	Frühjahr 2. Gabe		
1	0	80 (KAS)	100 (KAS)	180	3,04
2	0	80 (KAS)	70 (KAS)	150	2,90
3	0	80 (KAS) +	100 (KAS)	180	2,99
		65 S (Kieserit)	, ,		·
4	0	80 (KAS) +	70 (KAS)	150	2,87
		65 S (Kieserit)	, ,		·
5	0	80 (Piamon) (33 + 12)	100 (Piamon) (33+12)	180	2,97
6	0	80 (Piamon) (33 + 12)	70 (Piamon) (33+12)	150	2,81
		+ Kieseritaufdüngung	+ Kieseritaufdüngung		
7	0	80 (Alzon), ohne S	100 (Alzon), ohne S	180	3,01
	0	80 (Alzon), ohne S	100 (Alzon), ohne S	180	2,81
9	60 (Alzon)	120 (Piamon) (33 + 12)	-	180	3,05
	, ,	+ Kieseritaufdüngung			
10	100 (Alzon),	80 (Piamon) (33 + 12)	-	180	2,99
	ohne S	+ Kieseritaufdüngung			
	GD t, 5 %				2,00

Tabelle 1.1/11: Einfluss der verschiedenen Düngungsvarianten auf den N-Hinterlassenschaft von Winterraps, Sorte "Hammer", VS Dornburg 2013

	,1	laminer, vo bomburg 20	713		
PG		N-Düngi			N _{min} nach Ernte (0 bis 60 cm)
		(kg/ha	1)	_	(kg/ha)
	Herbst	Frühjahr 1. Gabe	Frühjahr 2. Gabe	Summe	2013
1	0	80 (KAS)	100 (KAS)	180	35
	0	80 (KAS)	70 (KAS)	150	20
3	0	80 (KAS) +	100 (KAS)	180	24
]	65 S (Kieserit)			
4	0	80 (KAS) +	70 (KAS)	150	20
]	65 S (Kieserit)			
5	0	80 (Piamon) (33 + 12)	100 (Piamon) (33+12)	180	20
6	0	80 (Piamon) (33 + 12)	70 (Piamon) (33+12)	150	20
]	+ Kieseritaufdüngung	+ Kieseritaufdüngung		
7	0	80 (Alzon), ohne S	100 (Alzon), ohne S	180	20
8	0	80 (Alzon), ohne S	100 (Alzon), ohne S	180	16
9	60 (Alzon)	120 (Piamon) (33 + 12)	-	180	35
		+ Kieseritaufdüngung			
10	100 (Alzon),	80 (Piamon) (33 + 12)	-	180	35
	ohne S	+ Kieseritaufdüngung			
	GD t, 5 %				n.b.

Tabelle 1.1/12: Einfluss der verschiedenen Düngungsvarianten auf den N-Salden von Winterraps, Sorte 'Hammer', VS Dornburg 2013

PG	T	N-Düngi	ına		N-Saldo (Düngung abzgl. N-Entzug Korn
. •		(kg/ha		(kg/ha)	
	Herbst	Frühjahr 1. Gabe	Summe	2013	
1	0	80 (KAS)	100 (KAS)	180	37,0
2	0	80 (KAS)	70 (KAS)	150	13,7
3	0	80 (KAS) +	100 (KAS)	180	41,0
]	65 S (Kieserit)			
4	0	80 (KAS) +	70 (KAS)	150	18,2
		65 S (Kieserit)			
5	0		100 (Piamon) (33+12)	180	40,3
6	0	80 (Piamon) (33 + 12)	70 (Piamon) (33+12)	150	17,7
		+ Kieseritaufdüngung	+ Kieseritaufdüngung		
	0	80 (Alzon), ohne S	100 (Alzon), ohne S	180	39,2
8	0	80 (Alzon), ohne S	100 (Alzon), ohne S	180	25,5
9	60 (Alzon)	120 (Piamon) (33 + 12)	-	180	31,1
		+ Kieseritaufdüngung			
10	100 (Alzon),	80 (Piamon) (33 + 12)	-	180	34,5
	ohne S	+ Kieseritaufdüngung			
	GD t, 5 %				20,0

<u>Fazit:</u> Im ersten Versuchsjahr schnitten die im Herbst gedüngten Varianten tendenziell besser ab als die ohne Herbstdüngung. Signifikanter Unterschiede zwischen den in Summe mit 150 bzw. 180 kg N/ha gedüngten Prüfgliedern bestanden dagegen bei allen Prüffaktoren nicht durchgehend. Der Versuch wird weitergeführt.

Anbauversuch Winterraps

<u>Versuchsfrage:</u> Vergleich von mineralischer N-Düngung beim Winterraps VS Kirchengel

Tabelle 1.1/13 Einfluss der verschiedenen Düngungsvarianten auf den Kornertrag von Winterraps, Sorte 'Hammer', VS Kirchengel 2013

Versuchsnummer: 120 715

PG		N-Düng			Kornertrag
		(kg/h	a)		(dt/ha, 91 % TS)
	Herbst	Frühjahr 1. Gabe	Summe	2013	
1	60 (Alzon)	120 (Piamon) (33 + 12)	-	180	49,0
]	+ Kieseritaufdüngung			
2	100 (Alzon),	80 (Piamon) (33 + 12)	-	180	47,6
	ohne S	+ Kieseritaufdüngung			
3	0	80 (KAS) + Kieserit	100 (KAS)	180	49,0
4	0	80 (KAS) + Kieserit	70 (KAS)	150	49,7
5	0	80 (Piamon) (33 + 12)	100 (Piamon) (33 + 12)	180	48,9
6	0	80 (Piamon) (33 + 12)	70 (Piamon) (33 + 12)	150	52,4
		+ Kieseritaufdüngung			
	GD t, 5 %				4,1

Tabelle 1.1/14: Einfluss der verschiedenen Düngungsvarianten auf den Ölgehalt von Winterraps, Sorte 'Hammer', VS Kirchengel 2013

PG		N-Düng	gung		Ölgehalt		
		(kg/h	a)	_	(% TM)		
	Herbst	Frühjahr 1. Gabe	Summe	2013			
1	60 (Alzon)	120 (Piamon) (33 + 12)	-	180	49,8		
]	+ Kieseritaufdüngung					
2	100 (Alzon),	80 (Piamon) (33 + 12)	-	180	49,1		
	ohne S	+ Kieseritaufdüngung	1	[
3	0	80 (KAS) + Kieserit	100 (KAS)	180	50,1		
4	0	80 (KAS) + Kieserit	70 (KAS)	150	50,6		
5	0	80 (Piamon) (33 + 12)	100 (Piamon) (33 + 12)	180	50,2		
6	0	80 (Piamon) (33 + 12)	70 (Piamon) (33 + 12)	150	51,2		
		+ Kieseritaufdüngung					
	GD t, 5 %				1,42		

Tabelle 1.1/15: Einfluss der verschiedenen Düngungsvarianten auf den Ölertrag von Winterraps, Sorte 'Hammer', VS Kirchengel 2013

PG		N-Düng (kg/h			Ölertrag (dt/ha)
	Herbst	Frühjahr 1. Gabe	Summe	2013	
1	60 (Alzon)	120 (Piamon) (33 + 12)	-	180	24,4
2	100 (Alzon),	+ Kieseritaufdüngung 80 (Piamon) (33 + 12)	-	180	23.3
	ohne S	+ Kieseritaufdüngung			
3	0	80 (KAS) + Kieserit	100 (KAS)	180	24,8
4	0	80 (KAS) + Kieserit	70 (KAS)	150	25,2
5	0	80 (Piamon) (33 + 12)	100 (Piamon) (33 + 12)	180	24,5
6	0	80 (Piamon) (33 + 12)	70 (Piamon) (33 + 12)	150	26,8
		+ Kieseritaufdüngung	+ Kieseritaufdüngung		
	GD t, 5 %				2,92

Tabelle 1.1/16: Einfluss der verschiedenen Düngungsvarianten auf den N-Gehalt im Korn von Winterraps, Sorte .Hammer'. VS Kirchengel 2013

PG		N-Düng	jung		N-Gehalt im Korn
		(kg/h	a) Frühjahr 2. Gabe	1 _	(% TM)
	Herbst	Frühjahr 1. Gabe	Summe	2013	
1	60 (Alzon)	120 (Piamon) (33 + 12)	-	180	2,84
]	+ Kieseritaufdüngung			
2	100 (Alzon),	80 (Piamon) (33 + 12)	-	180	2,88
L	ohne S	+ Kieseritaufdüngung			
3	0	80 (KAS) + Kieserit	100 (KAS)	180	2,84
4	0	80 (KAS) + Kieserit	70 (KAS)	150	2,39
5	0	80 (Piamon) (33 + 12)	100 (Piamon) (33 + 12)	180	2,90
6	0	80 (Piamon) (33 + 12)	70 (Piamon) (33 + 12)	150	2,72
		+ Kieseritaufdüngung	+ Kieseritaufdüngung		
	GD t, 5 %				0,15

Tabelle 1.1/17: Einfluss der verschiedenen Düngungsvarianten auf den N-Hinterlassenschaft von Winterraps, Sorte "Hammer", VS Kirchengel 2013

PG	,	N-Düng (kg/h			N _{min} nach Ernte (0 bis 60 cm) (kg/ha)
	Herbst	Frühjahr 1. Gabe	Summe	2013	
1	60 (Alzon)	120 (Piamon) (33 + 12) + Kieseritaufdüngung	-	180	32
2	100 (Alzon), ohne S	80 (Piamon) (33 + 12) + Kieseritaufdüngung	-	180	32
3	0	80 (KAS) + Kieserit	100 (KAS)	180	35
4	0	80 (KAS) + Kieserit	70 (KAS)	150	49
5	0	80 (Piamon) (33 + 12)	100 (Piamon) (33 + 12)	180	35
6	0	80 (Piamon) (33 + 12)	70 (Piamon) (33 + 12)	150	32
	GD t, 5 %	+ Kieseritaufdüngung	+ Kieseritaufdüngung		

Tabelle 1.1/18: Einfluss der verschiedenen Düngungsvarianten auf den N-Salden von Winterraps, Sorte 'Hammer', VS Kirchengel 2013

PG		N-Düng	jung		N-Saldo (Düngung abzgl. N-Entzug		
		(kg/h	_	Korn (kg/ha)			
	Herbst	Frühjahr 1. Gabe	Summe	2013			
1	60 (Alzon)	120 (Piamon) (33 + 12)	-	180	40,9		
]	+ Kieseritaufdüngung					
2	100 (Alzon),	80 (Piamon) (33 + 12)	-	180	43,2		
	ohne S	+ Kieseritaufdüngung		[
3	0	80 (KAS) + Kieserit	100 (KAS)	180	39,7		
4	0	80 (KAS) + Kieserit	70 (KAS)	150	11,4		
5	0	80 (Piamon) (33 + 12)	100 (Piamon) (33 + 12)	180	38,0		
6	0	80 (Piamon) (33 + 12)	70 (Piamon) (33 + 12)	150	7,5		
		+ Kieseritaufdüngung					
	GD t, 5 %				30,3		

<u>Fazit:</u> Bei einem ähnlichen Versuch in Kirchengel bestätigte sich die günstige Wirkung der Herbstdüngung im ersten Versuchsjahr nicht. Zwischen den Prüfgliedern traten keine signifikanten Unterschiede im Ertrag auf. Der Versuch wird ab 2014 mit den gleichen Varianten wie in Dornburg fortgesetzt.

Versuchsnummer: 120 045

Versuchsfrage: Einfluss und Wirkung von Senfdurchwuchs im Winterraps

Tabelle 1.1/19: Einfluss der Senfeinsaat auf die Pflanzenzahlen vor Winter von Winterraps, Sorte "Fangio" und Senf "Zlata". VS Dornburg und VS Friemar 2010 bis 2012

	,Ziata , Vo Domburg und Vo Themai 2010 bis 2012														
PG	Raps	Senf	Saatzeit					Pfla	nzen/m ²	vor W	inter				
	$(K\ddot{o}./m^2)$	(Kö./m²)	Gelbsenf												
						Dorn	burg					Frie	mar		
				W	interra	os		Senf		W	interrar/	os		Senf	
				09/10	10/11	11/12	09/10	10/11	11/12	09/10	10/11	11/12	09/10	10/11	11/12
1	50	0	-	27	46	26	-	-	-	36	19	34	-	-	-
2	50	50	mit Raps	23	26	16	13	39	31	31	17	33	24	27	43
3	50	30	mit Raps	23	41	17	15	22	23	33	16	26	19	18	21
4	50	50	14 d nach	24	33	22	22	34	16	24	17	31	26	17	32
			Raps												

Tabelle 1.1/20: Einfluss der Senfeinsaat auf den Kornertrag (dt/ha, 91 % TS) von Winterraps, Sorte 'Fangio' VS Dornburg und VS Friemar 2010 bis 2012

PG		Dornburg		Friemar			
	2009/10	2010/11	2011/2012	2009/10	2010/11	2011/2012	
1	54,0	40,8	30,8	58,3	38,3	50,9	
2	36,1	28,7	21,6	35,2	28,3	33,0	
3	41,0	33,7	26,1	46,3	34,9	37,8	
4	49,1	34,1	28,0	50,8	37,0	45,0	
GD t, 5 %	2,1	6,1	2,7	6,0	7,4	3,9	

Tabelle 1.1/21: Einfluss der Senfeinsaat auf das TKG (g) von Winterraps, Sorte 'Fangio' VS Dornburg und VS Friemar 2010 bis 2012

PG		Dornburg			Friemar	
	2009/10	2010/11	2011/2012	2009/10	2010/11	2011/2012
1	4,76	4,70	4,3	5,28	4,54	5,30
2	4,86	4,31	4,1	4,77	4,68	5,30
3	4,80	4,30	4,1	4,78	4,64	5,50
4	4,76	4,30	4,2	4,98	4,57	5,40
GD t, 5 %	0,16	0,41	n. b.	0,17	0,22	n. b.

Tabelle 1.1/22: Einfluss der Senfeinsaat auf Ölgehalt und Ölertrag von Winterraps, Sorte 'Fangio' VS Dornburg und VS Friemar 2011

	vo boilibarg and ve	Tricinal Zori			
PG	Ölgehalt	t (% TM)	Ölertrag (dt/ha)		
	Dornburg	Friemar	Dornburg	Friemar	
1	49,0	48,4	19,4	16,9	
2	47,5	48,5	13,4	13,0	
3	47,8	48,8	15,8	16,1	
4	48,1	48,7	16,1	17,1	
GD t, 5 %	0,6	0,5	1,6	2,8	

<u>Fazit:</u> Der in den Raps eingesäte Senf wirkte allen Versuchsjahren und an beiden Standorten ertragsmindernd auf den Raps. Dies lag weniger an einer Unterdrückung der Rapspflanzen im Herbst, die sich in allen Prüfgliedern nahezu gleich entwickelten, als an einer starken Wuchsdepression der Rapspflanzen im Frühjahr in der Schossphase. Alle Prüfglieder, in denen Senf angesät war, bildeten keinen Haupttrieb und blieben im Wachstum zurück. Als Ursache hierfür kommt nur die allelopathische Wirkungen des Senfes in Betracht, sei es durch Wurzelausscheidungen oder bei der Verrottung freigesetzte Stoffe, da die Nährstoffversorgung aller Prüfglieder optimal nach den vorhandenen N_{min}-Gehalten im Boden erfolgte.

Anbauversuch Winterraps

<u>Versuchsfrage:</u> Vorfruchtwert von Winterraps im Vergleich zu Wintergetreide

Tabelle 1.1.1/23: Erträge der Vor- und Nachfrüchte im Vorfruchtversuch Winterraps VS Heßberg 2010 bis 2012 (Anlage 1)

PG	Vorfrucht	1. Nachfrucht	2. Nachfrucht		Kornertrag		
					(dt/ha, Basisfeuchte)		
				Vorfrucht	 Nachfrucht 	Nachfrucht	
				2010	2011	2012	
					Winterweizen	Winterweizen	
1.1	Winterraps	Winterweizen	Winterweizen	14,8	66,6	86,6	
1.2	Wintergerste	Winterweizen	Winterweizen	66,4	62,0	85,9	
1.3	Winterweizen	Winterweizen	Winterweizen	63,0	60,0	86,5	
GD t, 5 %					4,0	2,4	
					Sommergerste	Winterweizen	
1.1	Winterraps	Sommergerste	Winterweizen	15,9	53,6	88,7	
1.2	Wintergerste	Sommergerste	Winterweizen	79,3	41,2	91,1	
1.3	Winterweizen	Sommergerste	Winterweizen	79,2	45,0	90,7	
GD t, 5 %					7,2	2,1	

Tabelle 1.1.1/24: Erträge der Vor- und Nachfrüchte im Vorfruchtversuch Winterraps VS Heßberg 2011 bis 2013 (Anlage 2)

	VS Heisberg 2011 bis 2013 (Affiage 2)										
PG	Vorfrucht	 Nachfrucht 	Nachfrucht	Kornertrag							
					(dt/ha, Basisfeuc	hte)					
				Vorfrucht	 Nachfrucht 	Nachfrucht					
				2011	2012	2013					
					Winterweizen	Winterweizen					
1.1	Winterraps	Winterweizen	Winterweizen	Keine Ernte	84,2	73,7					
1.2	Wintergerste	Winterweizen	Winterweizen	26,0	82,6	80,2					
1.3	Winterweizen	Winterweizen	Winterweizen	46,8	85,5	84,5					
GD t, 5 %					5,6	7,8					
					Sommergeste	Winterweizen					
1.1	Winterraps	Sommergerste	Winterweizen	Keine Ernte	78,8	87,6					
1.2	Wintergerste	Sommergerste	Winterweizen	32,8	78,9	82,1					
1.3	Winterweizen	Sommergerste	Winterweizen	53,9	81,5	88,4					
GD t, 5 %					6,7	4,1					

<u>Fazit:</u> Nach den Vorfrüchten Winterraps, Wintergerste und Winterweizen erreichten die ersten Nachfrüchte Winterweizen und Sommergerste im ersten Versuchsjahr jeweils nach Winterraps signifikant höhere Kornerträge als nach beiden Getreidearten, was auf eine gute Vorfruchtwirkung des Rapses hindeutet. Im zweiten Versuchsjahr bestätigte sich dieser Trend jedoch nicht und auch in der zweiten Nachfrucht waren keine klaren Tendenzen zu erkennen.

Anbauversuch Winterraps

<u>Versuchsfrage:</u> Kann durch einen Schröpfschnitt im Herbst ein Überwachsen des Winterrapses verhindert werden?

Versuchsnummer: 120 754

Tabelle 1.1/25: Einfluss von Saattermin und Schröpfschnitt auf den Kornertrag von Winterraps, Sorte 'Avatar' VS Dornburg und VS Kirchengel 2013

PG Varianten und Saattermine 2012 Kornertrag (dt/ha, 91 % TS) 2013 Kirchengel Dornburg Kirchengel Dornburg Sehr frühe Aussaat (10. bis 15.08.) 13.08. 10.08. 52,8 37,1 Sehr frühe Aussaat (10. bis 15.08.) 13.08./19.10. 48,7 + Schröpfen bei 30 cm Wuchshöhe Ortsüblicher optimaler Saattermin 23.08. 27.08. 50,9 53,7 10.09. 25,9 Späte Aussaat (10. bis 15.09.) 10.09. 54,0 GD t, 5 % 2,9 6,5

Tabelle 1.1/26: Einfluss von Saattermin und Schröpfschnitt auf Ölgehalt und Ölertrag von Winterraps, Sorte "Avatar"

VS Dornburg und VS Kirchengel 2013

PG	Ölge (%	ehalt TM)	Ölertrag (dt/ha)		
	Dornburg	Kirchengel	Dornburg Kirchengel		
1	48,4	51,4	25,6	19,1	
2	47,6	-	23,2	-	
3	47,8	48,3	25,7	24,6	
4	49,0	45,9	26,4	11,9	
GD t, 5 %	0,64	5,95	1,61	13,1	

Fazit: Im ersten Versuchsjahr hatte der nur in Dornburg durchgeführte Schröpfschnitt des sehr früh gesäten Winterrapses keinen positiven Einfluss auf den Ertrag. Dies könnte der kühlen Herbstwitterung geschuldet sein, die ein Überwachsen des Rapses in 2012 kaum zuließ. In Dornburg lagen auch alle Saatzeiten auf einem Niveau, während in Kirchengel der optimale Saattermin signifikant über dem frühen und dem späten lag. Der Versuch wird fortgesetzt.

Anbauversuch Winterraps

Versuchsfrage: Einsaat von Körnerleguminosen zu Verbesserung der N-Versorgung im Herbst bei Winterraps

Versuchsnummer: 120 747

Versuchsnummer: 120 784

Tabelle 1.1/27: Einfluss der Einsaat von Leguminosen auf Kornertrag, Ölgehalt und Ölertrag von Winterraps, Sorte Avatar', VS Dornburg 2013

	,Avaiai , vo Doilibuig 2	2010		
PG	Varianten 2013	Kornertrag (dt/ha, 91 % TS)	Ölgehalt (% TM)	Ölertrag (dt/ha)
1	Normale Rapssaat 50 Kö./m²	50,6	48,3	24,5
2	Einsaat Futtererbse 30 bis 40 Kö./m²	52,3	48,6	25,4
3	Einsaat Futtererbse 15 bis 20 Kö./m²	53,2	48,4	25,8
4	Einsaat Ackerbohne 20 Kö./m²	53,7	48,3	26,2
5	Einsaat Ackerbohne 10 Kö./m²	54,4	48,5	26,0
	GD t, 5 %	1,6	0,92	1,52

Tabelle 1.1/28: Einfluss der Einsaat von Leguminosen auf den N-Gehalt im Boden VS Dornburg 2013

PG	N _{min} Herbst (0 bis 60 cm)	N _{min} Frühjahr (0 bis 60 cm)	N _{min} nach Ernte (0 bis 60 cm)
	(kg/ha)	(kg/ha)	(kg/ha)
1	20	16	28
2	16	16	39
3	16	16	39
4	24	16	36
5	20	16	36

Fazit: Im ersten Versuchsjahr wiesen alle Varianten mit Leguminoseneinsaat signifikant höhere Erträge auf als die Vergleichsvariante ohne Einsaat. Bezüglich der N_{min}-Gehalte im Boden traten nur nach der Ernte Unterschiede auf, indem die Einsaat-Varianten etwas höhere Werte zeigten. Der Versuch wird weitergeführt.

Anbauversuch Winterraps

<u>Versuchsfrage:</u> Auswirkung der Anbaukonzentration von Winterraps (Liniensorten und Hybriden) auf den Kornertrag bei konventioneller und pflugloser Bodenbearbeitung

Fruchtfolgen:

- 1 Winterraps Selbstfolge (100 % Anteil in der FF)
- 2 Winterraps Winterweizen im Wechsel (50 % Anteil in der FF)
- 3 Winterraps Winterweizen Wintergerste (33 % Anteil in der FF)
- 4 Winterraps Winterweizen Wintergerste Sommergerste (25 % Anteil in der FF)

Tabelle 1.1/29: Einfluss der Anbaukonzentration auf den Kornertrag (dt/ha, 91 % TS) von Winterraps bei konventioneller und pflugloser Bearbeitung
VS Dornburg 2011 bis 2013

	. • 2 • 11 2 a g 2 • 1 2 a e 2 • 1 e								
	Anbaukonzentration (%)								
	10	00	5	50		33		50 (25)	
	konv.	minimal	konv.	minimal	konv.	minimal	konv.	minimal	
2011 (Anlagejahr)									
Linie	38,1	40,0	41,2	44,2	41,2	44,0	38,7	37,7	
Hybride	40,4	45,3	43,7	46,8	42,7	49,3	43,8	42,3	
2012									
Linie	27,2	30,3	-	-	-	-	-	-	
Hybride	33,6	33,8	-	-	-	-	-	-	
2013									
Linie	34,4	37,0	44,4	42,2	-	-	-	-	
Hybride	44,9	41,0	48,4	47,2	-	-	-	-	

<u>Fazit:</u> Im 2011 angelegten Versuch zur Prüfung der Wirkung der Anbaukonzentration auf den Winterrapsertrag sind erst nach längerer Laufzeit belastbare Ergebnisse zu erwarten. Im dritten Jahr 2013 lag die Selbstfolge im Mittel der Sorten und Bodenbearbeitungsvarianten etwa 15 % unter der Fruchtfolge 2 mit 50 % Rapsanteil.

Versuchsnummer: 710 800

1.2 Öllein

Sortenprüfung Winteröllein

<u>Versuchsfrage:</u> Ertragsleistung von Winteröllein unter Thüringer Standortbedingungen

Tabelle 1.2/1: Kornertrag, Ölgehalt und Ölertrag von Winterölleinsorten VS Dornburg 2013

Sorte	Kornertrag	Ölgehalt	Ölertrag	
	(dt/ha, 91 % TS)	(% TM)	(dt/ha)	
Sideral	22,5	40,4	9,1	
Hivernal	21,2	39,9	8,4	
Glacial	15,0	40,0	6,0	
Mistral	27,4	41,8	10,3	
GD t, 5 %	1,6		0,6	

<u>Fazit:</u> Die Erträge der geprüften Winterölleinsorten erreichten bzw. übertrafen in Dornburg das Niveau des Sommerölleins im gleichen Erntejahr. Der parallel dazu in Kirchengel angelegte Versuch winterte dagegen vollständig aus. Dies verdeutlicht das Anbaurisiko dieser Kultur.

2 Nachwachsende Rohstoffe

2.1 Alternative Ölpflanzen

2.1.1 Senf

Anbauversuch Senf Versuchsnummer: 122 814

<u>Versuchsfrage:</u> Einfluss der Saatstärke auf den Ertrag von Gelbsenf

Tabelle 2.1.1/1: Pflanzen/m², Feldaufgangsrate und Kornertrag von Gelbsenf, Sorte 'Severka', in Abhängigkeit von der Saatstärke

VS Dornburg und Kirchengel 2012 und 2013

Saatstärke	Pflanzen/m²			Feldaufgangsrate			Kornertrag			
	_				(%)		(dt	(dt/ha, 91 % TS)		
(Kö./m²)	Dornburg	Kirch	engel	Dornburg	Dornburg Kirchengel		Dornburg	Kirch	engel	
	2012	2012	2013	2012	2012	2013	2012	2012	2013	
50	52	84	50	104	168	100	20,7	26,1	20,7	
100	89	86	74	89	86	74	22,9	28,8	20,8	
150	99	114	116	66	76	77	23,4	28,4	21,0	
200	168	122	156	84	61	78	23,4	29,1	21,7	
GD t, 5 %							1,4	1,9	1,1	

<u>Fazit:</u> Im ersten Versuchsjahr 2012 erreichten alle Saatstärken oberhalb von 50 Kö./m² signifikant höhere Erträge als die geringste Saatstärke, unterschieden sich jedoch nicht voneinander. Im zweiten Jahr lagen die Erträge aller Varianten in Kirchengel auf einem Level. In Dornburg war der Versuch, aufgrund von Erosionsschäden und Verschlämmungen im Frühjahr, nicht auswertbar. Der Versuch wird weitergeführt.

2.1.2 Saflor

Stammprüfung Saflor

Versuchsnummer: 519 700

<u>Versuchsfrage:</u> Ertragsleistung unterschiedlicher Saflorsorten/-stämme

Tabelle 2.1.2/1: Kornertrag, TKG, Ölgehalt und Ölertrag von Saflor-Stämmen VS Dornburg 2012

	701115419 2012	TICO	Ö	ÖL 1
Prüfglied	Kornertrag	TKG	Ölgehalt	Ölertrag
	(dt/ha, 91 % TS)	(g)	(% TM)	(dt/ha)
1 'Sabina'	31,5	34,7	23,7	6,80
2	24,9	38,1	28,0	6,32
3	24,8	34,6	28,6	6,45
4	29,3	33,1	28,0	7,45
5	19,8	40,6	27,4	4,95
6	25,4	38,6	26,4	6,05
7	24,5	41,6	27,2	6,07
8	20,3	34,9	27,6	5,10
9	21,6	35,0	27,3	5,35
10	24,6	34,4	27,1	6,07
X	24,6	36,6	27,1	6,06
GD t, 5 %	4,5	3,3	1,6	1,0

Fazit: Im Jahr 2012 erreichte der Saflor durchschnittliche Erträge. Ein beginnender Befall mit Botrytis im feuchten Juni kam mit einsetzender trockener und warmer Witterung ab Mitte Juli zum Stillstand. Den höchsten Kornertrag erreichte die Sorte 'Sabina', gleichfalls signifikant höhere Erträge wies das PG 4 auf. Allerdings war bei 'Sabina' wiederum ein signifikant niedrigerer Ölgehalt als bei allen Stämmen zu verzeichnen, so dass ihr Ölertrag je Flächeneinheit unter dem des PG 4 und auf einem Niveau mit weiteren fünf Stämmen lag. Die Versuche zu Saflor wurden aus Kapazitätsgründen nach der Ernte 2012 eingestellt.

2.2 Heil-, Duft- und Gewürzpflanzen

2.2.1 Große Brennnessel (Fasernessel)

Anbauversuch Große Brennnessel

<u>Versuchsfrage:</u> Eignung von Fasernesselstämmen für die pharmazeutische Nutzung

Tabelle 2.2.1/1: Ertrag und Blattertrag von Fasernesselstämmen bei mehrschnittiger Nutzung (Schnitt bei 50 bis 70 cm Wuchshöhe)

Versuchsnummer:

526 861

VS Dornburg 2012 (1 Wdh.)

Stamm	1. Schnitt		2. Schnitt		3. Schnitt		Gesamt	
	Ertrag (dt TM/ha)	Blattertrag (dt TM/ha)						
1	58,0	27,0	126,9	68,0	44,9	27,4	229,9	122,5
2	57,5	21,2	112,3	69,3	47,6	33,3	217,4	123,8
3	57,0	34,3	86,3	39,7	35,6	25,2	178,8	99,2
4	55,7	26,6	111,0	49,3	42,3	25,5	208,9	101,4
5	53,0	23,8	114,0	56,1	70,1	39,4	237,2	119,3
6	47,8	28,8	56,7	27,4	42,7	28,0	147,2	84,1
7	57,1	27,6	67,9	33,2	42,9	31,3	167,9	92,1
8	73,4	29,5	59,0	25,1	61,0	36,0	193,4	90,6
9	55,8	27,4	41,0	21,7	26,2	18,3	123,1	67,4
10	69,3	32,6	70,5	36,8	51,4	29,9	191,2	99,3
11	56,4	23,3	59,9	28,6	55,3	31,6	171,6	83,6
12	55,6	22,5	125,8	60,7	43,3	30,9	224,7	114,1

Tabelle 2.2.1/2: Ertrag und Blattertrag von Fasernesselstämmen bei mehrschnittiger Nutzung (Schnitt bei 50 bis 70 cm Wuchshöhe)
VS Dornburg 2013 (1 Wdh.)

Stamm	1. Sc	chnitt	2. Schnitt		3. Schnitt		Gesamt	
	Ertrag (dt TM/ha)	Blattertrag (dt TM/ha)						
1	50,8	19,8	39,3	26,8	37,5	23,7	127,6	70,4
2	57,4	24,8	31,4	23,8	28,5	21,7	117,4	70,3
3	44,8	19,6	30,6	22,0	40,8	29,8	116,3	71,5
4	51,1	22,1	39,6	28,9	39,3	27,9	130,0	78,8
5	45,2	21,9	26,1	19,8	36,9	26,7	108,2	68,4
6	61,5	31,2	32,4	21,5	26,0	19,0	119,8	71,7
7	54,4	32,2	45,5	30,8	39,7	29,1	139,6	92,2
8	52,5	23,3	40,8	26,8	34,3	24,8	127,6	74,9
9	28,5	17,9	-	-	-	-	28,5	17,9
10	62,9	31,1	44,1	31,4	42,8	31,3	149,8	93,8
11	64,9	30,4	44,7	30,1	39,6	28,4	149,2	88,9
12	57,1	24,2	40,2	26,7	35,5	27,7	132,9	78,5

<u>Fazit:</u> Hinsichtlich des Ertrages traten zwischen den Stämmen deutliche Unterschiede auf. Dabei erwiesen sich die Stämme 1, 4 und 12 als besonders wüchsig. Ergebnisse zu den für eine pharmazeutische Nutzung wichtigen Inhaltsstoffen liegen nicht vor. Die niedrigeren Erträge des Jahres 2013 sind den späten Vegetationsbeginn und die trockene Witterung nach dem ersten Schnitt bedingt. Da sich für die Fasernessel weder im Bereich der technischen, noch der pharmazeutischen Nutzung ein Bedarf abzeichnet, wurde der Versuch nach der letzten Ernte 2013 umgebrochen.

2.2.2 Echte Kamille

Anbauversuch Kamille Versuchsnummer: 616 759/01

<u>Versuchsfrage:</u> Einfluss von Sätechnik und Saatstärke auf die Bestandesetablierung und den Ertrag von Echter Kamille

Tabelle 2.2.2/1: Einheitlichkeit des Bestandes, Lagerneigung, Verzweigungen und Ausdehnung des Blühhorizontes bei Kamille in Abhängigkeit von Sätechnik und Saatstärke bei Kamille, Sorte 'Bodegold' (Frühjahrsaussaat), VS Großenstein 2011

PG-Nr.	Variante	Einheitlichkeit des Bestandes (1 – 9)*	Lagerneigung (1 – 9)*	Anzahl Verzweigun- gen/Pflanze	Ausdehnung Blühhorizont (cm)
1 1	Hogo 75 2 0 kg/bo		4.2	4.4	\ /
[1.1	Hege 75 – 2,0 kg/ha	2,0	4,∠	4,4	10,6
1.2	Hege 75 – 2,5 kg/ha	1,8	4,0	4,0	8,0
1.3	Hege 75 – 3,0 kg/ha	1,5	5,8	3,7	6,3
2.1	Saphir – 2,0 kg/ha	3,0	1,5	9,7	17,1
2.2	Saphir – 2,5 kg/ha	3,8	1,0	13,0	23,4
2.3	Saphir - 3,0 kg/ha	3,8	1,2	10,5	22,1
GD t, 5%				4,1	7,2

^{* 1:} einheitlich, 9: sehr heterogen

Tabelle 2.2.2/2: Bestandesdichte und Ertrag (1. Pflücke) in Abhängigkeit von Sätechnik und Saatstärke bei Kamille, Sorte Bodegold' (Frühiahrsaussaat). VS Großenstein 2011

PG-Nr.	Variante	Pflanzen/m²	Blütenertrag (dt TM/ha)
1.1	Hege 75 – 2,0 kg/ha	496	9,8
1.1 1.2 1.3	Hege 75 – 2,5 kg/ha	976	10,1
1.3	Hege 75 – 3,0 kg/ha	1007	12,6
2.1	Saphir – 2,0 kg/ha	97	9,5
2.1 2.2	Saphir – 2,5 kg/ha	55	7,0
2.3	Saphir – 3,0 kg/ha	67	7,2
GD t, 5%	, 0		2,3

<u>Fazit:</u> Im ersten Versuchsjahr wurden, trotz extremer Witterungsbedingungen (Trockenheit und starker Wind), mit beiden Verfahren annehmbare Erträge erzielt. Interessant ist, dass sich die niedrigen Bestandesdichten der modifizierten Sätechnik "Saphir" nicht in erwartetem Maße im Ertrag widerspiegelten. Im Nachgang des Versuches erfolgte eine Optimierung der Maschine, die ab der Herbstaussaat 2011 zum Einsatz kam.

Anbauversuch Kamille

Versuchsnummer: 616 759/02

<u>Versuchsfrage:</u> Einfluss von Sätechnik, Saatstärke und Saatgutbehandlung auf die Bestandesetablierung und den Ertrag von Echter Kamille

Tabelle 2.2.2/3: Einheitlichkeit des Bestandes, des Blühhorizontes, Verzweigungszahl und Ausdehnung des Blühhorizontes bei Kamille, Sorte 'Bodegold', in Abhängigkeit von Sätechnik, Saatstärke und Saatgutbehandlung, Herbstaussaat VS Großenstein 2011

PG	Variante	Einheitlichkeit des	Einheitlichkeit des	Anzahl Verzweigun-	Ausdehnung
		Bestandes (1 – 9)*	Blühhorizontes (1 – 9)*	gen/Pflanze	Blühhorizont (cm)
1.1	Hege 75 – 2,0 kg/ha	1,5	3,0	9,2	13,7
1.2	Hege 75 – 2,5 kg/ha	1,2	3,0	8,1	13,0
1.3	Hege 75 – 3,0 kg/ha	1,2	3,0	7,9	12,6
2.1	Saphir – 2,0 kg/ha	1,0	2,0	4,7	9,5
2.2	Saphir – 2,5 kg/ha	1,2	2,5	5,1	9,8
2.3	Saphir – 3,0 kg/ha	1,8	2,8	5,0	8,1
2.4	Saphir – upgrade	2,0	2,5	5,6	8,0
2.5	Saphir – coating	2,0	3,0	4,6	6,2
GD t,	5%			1,8	3,0

^{* 1:} einheitlich, 9: sehr heterogen

Tabelle 2.2.2/4: Bestandesdichte und Ertrag (1. Pflücke) in Abhängigkeit von Sätechnik, Saatstärke und Saatgutbehandlung bei Kamille, Sorte "Bodegold", Herbstaussaat VS Großenstein 2011

PG	Variante	Pflanzen/m²	Blütenertrag (dt TM/ha)
1.1	Hege 75 – 2,0 kg/ha	252	10,2
1.2	Hege 75 – 2,5 kg/ha	378	10,8
1.3	Hege 75 – 3,0 kg/ha	354	10,5
2.1	Saphir – 2,0 kg/ha	802	10,2
2.2	Saphir – 2,5 kg/ha	1184	10,6
2.3	Saphir – 3,0 kg/ha	1180	10,4
2.4	Saphir – 2,5 kg/ha upgrade	876	9,3
2.5	Saphir – 2,5 kg/ha coating	862	7,9
GD t,	5%	374	1,4

Fazit: Bei der Wiederholung des Versuches im Herbst 2011 deutete sich an, dass die erneute Modifizierung der Lemken Saphir-Sämaschine eine deutliche Verbesserung der Aufgangsrate nach sich zog. Die Pflanzenzahlen je Flächeneinheit überstiegen die der Parzellendrillmaschine Hege 75 bei gleicher Saatstärke um ein Vielfaches und erreichten in jedem Fall die angestrebte Bestandesdichte von 500 Pflanzen/m². Allerdings wurden diese höheren Bestandesdichten wiederum nicht ertragswirksam. Lediglich die Varianten mit behandeltem Saatgut erreichten teilweise signifikant niedrigere Erträge, ohne das hierfür eine Erklärung möglich ist. Deutlich wurde auch ein ausgeglicheneres Bestandesbild und eine geringere Ausdehnung des Blühhorizontes bei der neuen Technik, die bei maschineller Ernte durchaus eine Rolle spielen könnte.

Anbauversuch Kamille

<u>Versuchsfrage:</u> Einfluss von Sätechnik, Saatstärke und Saatgutbehandlung auf die Bestandesetablierung und den Ertrag von Echter Kamille

Versuchsnummer:

Versuchsnummer:

616 759/04

616 759/03

Tabelle 2.2.2/5: Einheitlichkeit des Bestandes, Lagerneigung, Verzweigungen und Ausdehnung des Blühhorizontes bei Kamille, Sorte "Zloty Lan", in Abhängigkeit von Sätechnik, Saatstärke und Saatgutbehandlung, Frühiahrsaussaat VS Großenstein 2012

			-		
PG	Variante	Einheitlichkeit des	Einheitlichkeit des	Anzahl Verzweigun-	Ausdehnung
		Bestandes (1 – 9)*	Blühhorizontes (1 – 9)*	gen/Pflanze	Blühhorizont (cm)
1.1	Hege 75 – 2,0 kg/ha	4,5	3,0	11,9	15,8
1.2	Hege 75 – 2,5 kg/ha	4,2	3,0	11,3	14,3
1.3	Hege 75 – 3,0 kg/ha	4,2	3,0	11,3	15,8
2.1	Saphir – 2,0 kg/ha	3,0	2,0	10,9	13,0
2.2	Saphir – 2,5 kg/ha	2,0	2,0	10,5	14,0
2.3	Saphir – 3,0 kg/ha	2,5	2,0	8,8	13,2
2.4	Saphir – coating I	2,0	2,0	8,9	12,3
2.5	Saphir – coating II	2,0	2,0	9,6	13,6
GD t,	5%			1,6	2,2

^{* 1:} einheitlich, 9: sehr heterogen

Tabelle 2.2.2/6: Bestandesdichte und Ertrag (1. Pflücke) in Abhängigkeit von Sätechnik, Saatstärke und Saatgutbehandlung bei Kamille, Sorte "Zloty Lan", Frühjahrsaussaat VS Großenstein 2012

PG	Variante	Pflanzen/m²	Blütenertrag (dt TM/ha)
1.1	Hege 75 – 2,0 kg/ha	240	7,2
1.2	Hege 75 – 2,5 kg/ha	338	7,5
1.3	Hege 75 – 3,0 kg/ha	342	6,6
2.1	Saphir – 2,0 kg/ha	187	10,2
2.2	Saphir – 2,5 kg/ha	160	10,5
2.3	Saphir - 3,0 kg/ha	305	10,5
2.4	Saphir – coating I	180	9,7
2.5	Saphir – coating II	178	8,4
GD t,	5%	90	2,2

<u>Fazit:</u> Bei der Wiederanlage des Versuches im Frühjahr 2012 erreichte keine der Varianten die geforderte Bestandesdichte, was an den extrem trockenen Bedingungen des Frühjahrs 2012 lag. Allerdings bestätigten sich die Ergebnisse bezüglich der Einheitlichkeit des Bestandes und des Blühhorizontes, was sich auch in signifikant höheren Erträgen der Saphir-Varianten mit unbehandeltem Saatgut widerspiegelt.

Anbauversuch Kamille

<u>Versuchsfrage:</u> Einfluss von Sätechnik und Saatstärke auf die Bestandesetablierung und den Ertrag von Echter Kamille

Tabelle 2.2.2/7: Einheitlichkeit des Bestandes sowie Einheitlichkeit, Verzweigungen und Ausdehnung des Blühhorizontes bei Kamille, Sorte Zloty Lan' in Abhängigkeit von Sätechnik und Saatstärke, Herbstaussaat VS Großenstein 2012

PG	Variante	Einheitlichkeit des	Einheitlichkeit des Blühhorizontes (1 – 9)*	Anzahl Verzweigun- gen/Pflanze	Ausdehnung
		Bestandes (1 – 9)*	Biunnonzonies (1 – 9)	gen/Phanze	Blühhorizont (cm)
1.2	Hege 75 – 2,0 kg/ha	2	3	0,6	7,2
1.3	Hege 75 – 2,5 kg/ha	2	3	0,4	7,0
1.4	Hege 75 – 3,0 kg/ha	2	3	0,3	5,2
2.1	Saphir – 1,0 kg/ha	2	3	0,2	4,8
2.2	Saphir – 2,0 kg/ha	2	3	0,2	5,8
2.3	Saphir – 2,5 kg/ha	2	3	0,2	6,7
2.4	Saphir – 3,0 kg/ha	2	3	0,1	6,7
GD t,	5%			0,2	1,8

^{* 1:} einheitlich, 9: sehr heterogen

Tabelle 2.2.2/8: Bestandesdichte und Ertrag (1. Pflücke) in Abhängigkeit von Sätechnik und Saatstärke bei Kamille, Sorte "Zloty Lan", Herbstaussaat VS Großenstein 2012

		Horbotadocadt vo Grotochictom Zorz	
PG	Variante	Pflanzen/m²	Blütenertrag (dt TM/ha)
			1
1.1	Hege 75 – 2,0 kg/ha	313	6,9
1.2	Hege 75 – 2,5 kg/ha	519	8,6
1.3	Hege 75 – 3,0 kg/ha	788	7,5
2.1	Saphir – 1,0 kg/ha	481	9,0
2.2	Saphir – 2,0 kg/ha	505	9,4
2.3	Saphir – 2,5 kg/ha	650	8,6
2,4	Saphir – 3,0 kg/ha	845	8,9
GD t,	5%	210	1,1

<u>Fazit:</u> Im Herbst 2012 kam der Versuch letztmalig zur Anlage. Wie bereits im Herbst 2011 überschritten die Pflanzenzahlen der Saphir-Varianten die der Hege-Prüfglieder bei gleicher Saatstärke deutlich. Sogar bei einer stark verminderten Saatstärke von 1,0 kg/ha wurde die angestrebte Pflanzenzahl von 500 Pflanzen/m² nahezu erreicht, was mit der Hege-Parzellentechnik erst ab der doppelten Saatstärke gelang. Die Erträge der Saphir-Varianten lagen auf einem Niveau, aber teilweise signifikant über denen der Parzellendrilltechnik. Insgesamt hat die modifizierte Sätechnik ihre Eignung für die Kamilleaussaat auf bindigen Lössböden unter Beweis gestellt. Erprobungen der Technik in insgesamt vier Praxisversuchen im Hektarmaßstab in der Agrargenossenschaft Nöbdenitz im Vergleich zur betriebsüblichen Technik bestätigten diese Aussage.

2.2.3 Pfefferminze

Anbauversuch Pfefferminze

<u>Versuchsfrage:</u> Einfluss der N-Düngung auf Ertrag und sekundäre Pflanzeninhaltsstoffe von Pfefferminze

Versuchsnummer:

615 715

Tabelle 2.2.3/1: Varianten und Erntetermine des N-Düngungsversuchs zu Pfefferminze im 1. und 2. Erntejahr, Sorte "Multimentha", VS Dornburg 2011 und 2012

	inditinentia, vo bombarg 2011 and 2012							
PG	N-Düngungvarianten 2011 und 2012	Erntetern	Erntetermine 2011		Erntetermine 2012			
		1. Schnitt	2. Schnitt	1. Schnitt	Schnitt	Schnitt		
1	Ohne	27.06.	18.08.	11.06.	01.08.	26.09.		
2	N-Sollwert 70 kg/ha zu Vegetationsbeginn,	27.06.	18.08.	11.06.	01.08.	26.09.		
1	je 50 kg N/ha nach jedem Schnitt							
3	N-Sollwert 100 kg/ha zu Vegetationsbeginn,	27.06.	18.08.	11.06.	01.08.	26.09.		
1	je 35 kg N/ha nach jedem Schnitt							
4	N-Sollwert 130 kg/ha zu Vegetationsbeginn,	27.06.	18.08.	11.06.	01.08.	26.09.		
	ie 65 kg N/ha nach iedem Schnitt							

Tabelle 2.2.3/2: Einfluss der N-Düngung auf die Wuchshöhe (cm) von Pfefferminze im 1. und 2. Erntejahr, Sorte "Multimentha", VS Dornburg 2011 und 2012

PG	2011		2012 1. Schnitt 2. Schnitt 3. Schnitt				
	 Schnitt 	Schnitt	1. Schnitt	Schnitt	Schnitt		
1	55	45	45	25	11		
2	65	53	56	45	28		
3	61	46	56	50	32		
4	66	58	62	52	32		
GD t, 5 %	7,3	6,4	8,1	11,5	9,9		

Tabelle 2.2.3/3: Einfluss der N-Düngung auf den Ertrag (dt TM/ha) von Pfefferminze im 1. und 2. Erntejahr, Sorte "Multimentha", VS Dornburg 2011 und 2012

	,	. ,					
PG	2011			2012			
	 Schnitt 	Schnitt	Gesamt	1. Schnitt	2. Schnitt	Schnitt	Gesamt
1	32,7	32,9	65,6	33,4	17,2	6,4	57,1
2	46,7	34,2	80,9	50,1	39,2	19,4	108,6
3	53,7	36,1	89,8	57,9	44,4	19,6	121,8
4	58,5	38,1	96,7	56,6	47,7	22,7	127,0
GD t. 5 %	10.6	3.5	13.0	11.8	12.6	7.2	30.0

Tabelle 2.2.3/4: Einfluss der N-Düngung auf den Blattertrag (dt TM/ha) von Pfefferminze im 1. und 2. Erntejahr, Sorte "Multimentha", VS Dornburg 2011 und 2012

	,	,					
PG	2011			2012			
	1. Schnitt	Schnitt	Gesamt	1. Schnitt	2. Schnitt	Schnitt	Gesamt
1	18,3	19,9	38,2	18,9	12,8	5,1	36,8
2	26,1	19,3	45,4	27,7	22,5	13,8	64,0
3	29,2	19,1	48,2	31,4	25,5	13,8	70,7
4	31,5	20,9	52,4	32,7	26,0	15,8	74,5
GD t, 5 %	5,6	1,8	6,2	6,2	5,8	4,7	16,0

Tabelle 2.2.3/5: Einfluss der N-Düngung auf den Gehalt an ätherischem Öl (ml/100 g TM) von Pfefferminze im 1. und 2. Erntejahr, Sorte "Multimentha", Extraktion von frischem Erntegut, VS Dornburg 2011 und 2012

	z. Emiejani, oon	e, ividitiirieritiia, Extra	Klion von machem En	itegat, vo Dombarg z	2011 0110 2012		
PG	20)11	2012				
	1. Schnitt 2. Schnitt		1. Schnitt 2. Schnitt 1. Schnitt 2. Schnitt		Schnitt		
1	1,17	1,53	1,22	1,88	2,63		
2	1,17	1,38	1,19	1,68	2,40		
3	1,46	1,46	1,11	1,52	2,48		
4	1,30	1,25	1,29	1,63	1,94		
GD t, 5 %	0,29	0,21	0,13	0,23	0,31		

Tabelle 2.2.3/6: Einfluss der N-Düngung auf den Gehalt an ätherischem Öl (ml/100 g TM) von Pfefferminze im 1. und 2. Erntejahr, Sorte "Multimentha", Extraktion von trockenem Erntegut, VS Dornburg 2011 und 2012

	Z. Efficjani, Con	o , ivialili i i ci i i i a , Extra	KIIOIT VOIT LIOCKCITCITI L	Integat, ve bembar	1 2011 and 2012			
PG	20	11	2012					
	1. Schnitt	Schnitt	1. Schnitt	Schnitt	Schnitt			
1	1,23	1,34	1,05	1,88	1,53			
2	1,36	1,16	1,28	1,84	2,39			
3	1,55	1,23	1,25	1,86	1,78			
4	1,57	1,19	1,44	1,70	2,16			
GD t, 5 %	0,38	0,15	0,23	0,16	0,41			

Tabelle 2.2.3/7: Einfluss der N-Düngung auf den Ertrag an ätherischem Öl (I/ha) bei Extraktion von frischem Erntegut von Pfefferminze im 1. und 2. Erntejahr, Sorte "Multimentha", VS Dornburg 2011 und 2012

	VOIT 1 10110	111111120 1111 1. 0	na z. Emiojam	, corte indiamentia, ve bombarg 2011 and 2012					
PG		2011		2012					
	1. Schnitt	2. Schnitt	Gesamt	1. Schnitt	Schnitt	Schnitt	Gesamt		
1	38,4	51,0	89,4	40,8	32,0	17,8	90,7		
2	54,8	47,5	102,3	59,5	65,7	46,0	171,1		
3	77,2	52,1	129,3	64,1	67,6	48,1	179,8		
4	75,8	47,6	123,4	73,2	77,6	43,9	194,7		
GD t, 5 %	19,7	8,1	18,4	15,2	18,8	14,1	44,0		

Tabelle 2.2.3/8: Einfluss der N-Düngung auf den Ertrag an ätherischem Öl (I/ha) bei Extraktion von getrocknetem Erntegut von Pfefferminze im 1. und 2. Erntejahr, Sorte "Multimentha", VS Dornburg 2011 und 2012

PG		2011		2012				
	1. Schnitt	Schnitt	Gesamt	1. Schnitt	2. Schnitt	Schnitt	Gesamt	
1	40,2	43,9	84,1	34,9	32,7	10,1	77,7	
2	63,1	39,8	102,9	64,8	71,8	46,4	183,0	
3	81,5	44,6	126,1	72,3	81,8	35,1	189,2	
4	91,7	45,5	137,2	81,7	80,9	48,6	211,2	
GD t, 5 %	25,2	6,2	26,6	22,0	21,5	17,7	56,8	

Tabelle 2.2.3/9: Einfluss der N-Düngung auf den Gehalt an Rosmarinsäure in Pfefferminze im 1. Erntejahr, Sorte "Multimentha", Bestimmung im getrocknetem Blatt sowie in getrockneten Extraktionsrückständen (Blatt) bei frisch und trocken extrahiertem Material, VS Dornburg 2011

PG	Getrockn	etes Blatt	Extraktions	srückstand,	Extraktionsrückstand,		
	(% `	TM)	frisch extral	niert (% TM)	trocken extrahiert (% TM)		
	 Schnitt 	Schnitt	 Schnitt 	Schnitt	 Schnitt 	Schnitt	
1	3,07	2,54	3,05	-	1,82	1,52	
2	2,88	2,19	2,77	-	2,26	1,31	
3	2,30	2,35	3,17	-	1,55	1,37	
4	2,43	2,17	2,72	-	1,50	1,04	

Tabelle 2.2.3/10: Einfluss der N-Düngung auf den Ertrag an Rosmarinsäure in Pfefferminze im 1. Erntejahr, Sorte "Multimentha", Bestimmung im getrocknetem Blatt sowie in getrockneten Extraktionsrückständen (Blatt) bei frisch und trocken extrahiertem Material, VS Dornburg 2011

PG	Ge	trocknetes B	latt	Extraktionsrückstand,			Extraktionsrückstand,		
		(kg/ha)		frisch extrahiert (kg/ha)			trocken extrahiert (kg/ha)		
	1.Schn.	2.Schn.	Gesamt	1.Schn.	2.Schn.	Gesamt	1.Schn.	2.Schn.	Gesamt
1	56,2	50,5	106,7	55,8	-	-	20,1	30,2	50,3
2	75,2	42,3	117,5	72,3	-	-	59,0	25,3	84,3
3	67,2	44,9	112,1	92,6	-	-	45,3	26,2	71,5
4	76,5	45,4	121,9	85,7	-	-	47,2	21,7	68,9

Tabelle 2.2.3/11: Einfluss der N-Düngung auf den Gehalt an Rosmarinsäure in Pfefferminze im 2. Erntejahr, Sorte "Multimentha", Bestimmung im getrocknetem Blatt sowie in getrockneten Extraktionsrückständen (Blatt) bei frisch und trocken extrahiertem Material, VS Dornburg 2012

		Diatty DCI 1113	on and trocke	on extrament	ill Material,	o Dombarg	2012		
PG	Ge	trocknetes B	latt	Extra	aktionsrückst	and,	Extraktionsrückstand,		
		(% TM)		frisch extrahiert (% TM)			trocken extrahiert (% TM)		
	1. Schnitt	2. Schnitt	Schnitt	1. Schnitt	2. Schnitt	Schnitt	1. Schnitt	2. Schnitt	Schnitt
1	4,01 3,63 3,32		3,86	4,60	4,30	2,66	2,17	2,67	
2	3,52 2,51 3,95			3,66	4,34	4,10	2,16	1,44	1,59
3	3,12 2,26 3,54			3,49	3,55	4,44	2,14	1,28	1,79
4	2.89	1.91	3.08	3.61	3.49	3.25	2.06	1.12	1.50

Tabelle 2.2.3/12: Einfluss der N-Düngung auf den Ertrag an Rosmarinsäure in Pfefferminze im 2. Erntejahr, Sorte "Multimentha", Bestimmung im getrocknetem Blatt sowie in getrockneten Extraktionsrückständen (Blatt) bei frisch und trocken extrahiertem Material, VS Dornburg 2012

		(Blatt)	ooi iiiooii ,	aria troone	III OALIAIII	ortoni iviai	cinal, vo	Dombarg	2012			
PG		Getrockn	etes Blatt		Extraktionsrückstand,			Extraktionsrückstand,				
		(kg	/ha)		frisch extrahiert (kg/ha)			trocken extrahiert (kg/ha)				
	1.Schn.	2.Schn.	3.Schn.	Gesamt	1.Schn.	2.Schn.	3.Schn.	Gesamt	1.Schn.	2.Schn.	3.Schn.	Gesamt
1	75,8	46,5	16,9	139,2	73,0	58,9	21,9	153,8	50,3	27,8	13,6	91,7
2	97,5	56,5	54,5	208,5	101,4	97,6	56,6	255,6	59,8	32,4	21,9	114,2
3	98,0	57,6	48,8	204,4	109,6	90,5	61,3	261,4	67,2	32,6	24,7	124,5
4	94,5	49,7	48,7	192,8	118,0	97,7	51,4	260,1	67,4	29,1	23,7	120,2

Tabelle 2.2.3/13: Einfluss der N-Düngung auf den N-Gehalt (% TM) von Pfefferminze im 1. und 2. Erntejahr, Sorte .Multimentha'. VS Dornburg 2011 und 2012

	,iviuitiirieritia, vo	Domburg 2011 und 2	2012		
PG	20	11		2012 2. Schnitt	
	1. Schnitt	Schnitt	 Schnitt 	Schnitt	Schnitt
1	1,38	1,74	1,25	1,82	2,39
2	1,78	1,87	1,62	1,90	2,58
3	1,82	1,86	1,76	1,93	2,85
4	1,97	2,10	2,13	2,39	3,27

Tabelle 2.2.3/14: Einfluss der N-Düngung auf den N-Entzug (kg/ha) von Pfefferminze im 1. und 2. Erntejahr, Sorte .Multimentha'. VS Dornburg 2011 und 2012

	,	,	3						
PG		2011		2012					
	1. Schnitt	Schnitt	Gesamt	1. Schnitt	Schnitt	Schnitt	Gesamt		
1	45,2	57,2	102,4	41,7	31,3	15,4	88,4		
2	82,9	64,0	146,9	81,8	74,7	50,0	206,5		
3	96,9	67,0	163,9	101,7	86,1	55,5	243,3		
4	114,9	80,5	195,4	120,8	113,3	74,0	308,1		

Fazit: Die Pfefferminze reagierte in starkem Maße auf die Höhe der N-Düngung. Die Krauterträge stiegen nahezu proportional zur verabreichten N-Menge an. Allerdings waren die Unterschiede zwischen den Düngungsstufen nicht in jedem Fall statistisch gesichert, während alle Düngungsstufen signifikant über dem ungedüngten Prüfglied lagen. Da sich der gualitätsbestimmende Blattanteil durch die Erhöhung der N-Gabe nicht wesentlich veränderte. erhöhten sich die Blatterträge nahezu analog zum Gesamtertrag. Die N-Düngung hatte keinen gesicherten Einfluss auf die Ausbeute des ätherischen Öls der Pfefferminze. Hier waren lediglich jahres- und witterungsbedingte Einflüsse zu verzeichnen. Bei der Extraktion frischer und getrockneter Pfefferminze wurden ähnliche Gehalte an ätherischem Öl bestimmt. Durch den fehlenden Einfluss der Düngung folgten die berechneten Erträge an ätherischem Öl weitgehend dem Ertrag, so dass auch hier die höchsten Düngungsstufen den höchsten Ölertrag erzielten. In diesem Merkmal waren die Unterschiede zwischen der Kontrolle und den gedüngten Varianten ebenfalls signifikant, die Differenzen zwischen den Düngungsstufen jedoch überwiegend nicht statistisch gesichert. Weiterhin wurde im Erntegut der Gehalt an Rosmarinsäure untersucht. Es zeigte sich, dass die Pfefferminze im getrockneten Blatt zwischen 2 und 4 % Rosmarinsäure enthält. Ähnliche bzw. sogar höhere Gehalte wurden im Extraktionsrückstand der Frischextraktion analysiert. Die Rückstände der Extraktion getrockneter Waren lagen mit 1 bis 2,5 % deutlich darunter. Auch bei der Rosmarinsäure war ein Jahreseinfluss festzustellen, der sich in höheren Gehalten 2012 widerspiegelte. In Bezug auf den Gehalt an Rosmarinsäure hatte die N-Düngung einen negativen Einfluss, der sich in sinkenden Gehalten bei steigender N-Düngung äußerte. Im Durchschnitt fiel der Rosmarinsäuregehalt der höchsten Düngungsstufe um ca. 1 % im Vergleich zur Kontrolle ab. Aus der Multiplikation der Blatterträge und Rosmarinsäuregehalte resultierten trotzdem beim ungedüngten Prüfglied deutlich niedrigere Rosmarinsäureerträge als bei den gedüngten Varianten. Innerhalb dieser hoben sich jedoch die steigenden Blatterträge und sinkenden Inhaltsstoffgehalte weitgehend auf, so dass letztlich alle Prüfglieder bezüglich des Rosmarinsäureertrages auf einem Niveau lagen. Die Ergebnisse lassen die Schlussfolgerung zu, dass eine Doppelnutzung der Pfefferminze zur Gewinnung ätherischen Öls und Rosmarinsäure vorstellbar wäre, wenn die Extraktionsrückstände frisch verarbeiteten Erntegutes zum Einsatz kommen. Die N-Gehalte im Erntegut stiegen mit steigender N-Düngung ebenfalls an, so dass die Pfefferminze der höchsten Düngungsstufe auch den meisten Stickstoff enthielt. Insgesamt bestätigte sich der hohe N-Bedarf der Pfefferminze, die auf unzureichende N-Düngung mit Mindererträgen reagiert, ohne das das für die Qualität maßgebliche ätherische Öl negativ beeinflusst wird.

2.2.4 Melisse

Anbauversuch Melisse Versuchsnummer: 629 715

<u>Versuchsfrage:</u> Einfluss der N-Düngung auf Ertrag und sekundäre Pflanzeninhaltsstoffe von

Melisse

Tabelle 2.2.4/1: Varianten und Erntetermine des N-Düngungsversuchs bei Melisse Sorte 'Citronella' im 1. und 2. Erntejahr, VS Dornburg 2011 und 2012

PG	N-Düngungsvarianten 2011 und 2012	Erntetermin 2011			Erntetermin 2012			
		1. Schnitt	2. Schnitt	3. Schnitt	1. Schnitt	2. Schnitt	3. Schnitt	
1	Ohne	06.06.	18.07.	22.09.	31.05.	23.07.	18.09.	
2	N-Sollwert 70 kg/ha zu Vegetationsbeginn,	06.06.	18.07.	22.09.	31.05.	23.07.	18.09.	
	je 50 kg N/ha nach jedem Schnitt							
	N-Sollwert 100 kg/ha zu Vegetationsbeginn,	06.06.	18.07.	22.09.	31.05.	23.07.	18.09.	
	je 35 kg N/ha nach jedem Schnitt							
	N-Sollwert 130 kg/ha zu Vegetationsbeginn,	06.06.	18.07.	22.09.	31.05.	23.07.	18.09.	
	je 65 kg N/ha nach jedem Schnitt							

Tabelle 2.2.4/2: Einfluss der N-Düngung auf die Wuchshöhe (cm) von Melisse im 1. und 2. Erntejahr, Sorte ,Citronella', VS Dornburg 2011 und 2012

PG		2011		2012				
	 Schnitt 	Schnitt	Schnitt	 Schnitt 	Schnitt	Schnitt		
1	45	22	17	35	20	10		
2	45	40	29	51	40	16		
3	46	45	33	55	46	18		
4	47	47	39	60	48	21		
GD t, 5 %	n. b.	10,7	8,8	10,5	11,7	4,3		

Tabelle 2.2.4/3: Einfluss der N-Düngung auf den Ertrag (dt TM/ha) von Melisse im 1. und 2. Erntejahr, Sorte ,Citronella', VS Dornburg 2011 und 2012

PG		20	11		2012				
	1. Schnitt	2. Schnitt	Schnitt	Gesamt	1. Schnitt	2. Schnitt	Schnitt	Gesamt	
1	41,4	15,8	9,5	66,7	29,9	14,4	5,4	49,7	
2	46,0	33,7	21,5	101,2	49,0	28,0	13,4	90,4	
3	50,8	35,9	24,9	111,6	45,8	30,6	15,3	91,8	
4	55,1	37,2	31,6	124,0	47,9	33,6	17,2	98,7	
GD t, 5 %	6,6	10,0	8,7	23,9	10,5	8,1	5,6	22,9	

Tabelle 2.2.4/4: Einfluss der N-Düngung auf den Blattertrag (dt TM/ha) von Melisse im 1. und 2. Erntejahr, Sorte "Citronella", VS Dornburg 2011 und 2012

PG		20	11		2012				
	 Schnitt 	Schnitt	Schnitt	Gesamt	1. Schnitt	Schnitt	Schnitt	Gesamt	
1	25,1	11,4	7,3	43,7	21,2	11,3	4,6	37,1	
2	26,8	23,1	13,6	63,5	32,0	18,8	11,5	62,4	
3	29,8	22,6	15,9	68,2	29,7	20,2	13,0	62,9	
4	32,4	23,5	18,7	74,6	30,1	22,2	13,5	65,8	
GD t, 5 %	3,6	6,1	4,6	13,1	5,8	4,5	4,4	13,7	

Tabelle 2.2.4/5: Einfluss der N-Düngung auf den Gehalt an ätherischem Öl (ml/100 g TM) von Melisse im 1. und 2. Erntejahr, Sorte 'Citronella', Extraktion von frischem Erntegut, VS Dornburg 2011 und 2012

PG	-	2011		2012			
	 Schnitt 	Schnitt	Schnitt	 Schnitt 	2. Schnitt	Schnitt	
1	0,05	0,16	0,10	0,03	0,30	n. b.	
2	0,06	0,15	0,04	0,05	0,21	0,21	
3	0,05	0,07	0,05	0,04	0,19	0,11	
4	0,05	0,09	0,04	0,05	0,12	0,20	

Tabelle 2.2.4/6: Einfluss der N-Düngung auf den Gehalt an ätherischem Öl (ml/100 g TM) von Melisse im 1. und 2. Erntejahr, Sorte "Citronella", Extraktion von getrocknetem Erntegut, VS Dornburg 2011 und 2012

		· · · · · · · · · · · · · · · · · · ·	manusii ron gono	enanotom = miegat,			
PG		2011		2012			
	 Schnitt 	Schnitt	Schnitt	 Schnitt 	2. Schnitt	Schnitt	
1	0,05	0,17	0,12	0,08	0,30	0,33	
2	0,05	0,22	0,15	0,11	0,26	0,16	
3	0,05	0,14	0,11	0,09	0,21	0,23	
4	0,03	0,15	0,11	0,08	0,20	0,24	

Tabelle 2.2.4/7: Einfluss der N-Düngung auf Ertrag an ätherischem Öl (I/ha) von Melisse im 1. und 2. Erntejahr, Sorte "Citronella", Extraktion von frischem Erntegut, VS Dornburg 2011 und 2012

		,	ma, Examino		· =				
	PG		20	11		2012			
		1. Schnitt	2. Schnitt	Schnitt	Gesamt	1. Schnitt	Schnitt	Schnitt	Gesamt
Ī	1	2,07	2,54	0,76	5,36	0,97	4,32	n. b.	-
ſ	2	2,76	5,05	0,43	8,24	2,31	6,00	2,78	11,09
	3	2,54	2,51	0,75	5,80	1,80	5,69	1,71	9,20
ſ	4	2,76	3,35	0,95	7,06	2,48	4,12	3,48	10,08

Tabelle 2.2.4/8: Einfluss der N-Düngung auf Ertrag an ätherischem Öl (I/ha) von Melisse im 1. und 2. Erntejahr, Sorte "Citronella", Extraktion von getrocknetem Erntegut, VS Dornburg 2011 und 2012

PG		20	11		2012			
	1. Schnitt	2. Schnitt	Schnitt	Gesamt	1. Schnitt	2. Schnitt	Schnitt	Gesamt
1	2,07	2,69	1,14	5,90	2,46	4,30	1,73	8,49
2	2,30	7,41	3,23	12,94	5,35	7,31	2,19	14,85
3	2,54	5,03	2,74	10,30	4,01	6,38	3,55	13,94
4	1,65	5,59	3,48	10,72	3,89	6,61	4,06	14,56

Tabelle 2.2.4/9: Einfluss der N-Düngung auf den Gehalt an Rosmarinsäure in Melisse im 1. Erntejahr, Sorte 'Citronella', Bestimmung im getrocknetem Blatt sowie in getrockneten Extraktionsrückständen bei frisch und trocken extrahiertem Material (Blatt), VS Dornburg 2011

_											
	PG	Ge	Getrocknetes Blatt			Extraktionsrückstand,			Extraktionsrückstand,		
		(% TM)			frisch extrahiert (% TM)			trocken extrahiert (% TM)			
		1. Schnitt	2. Schnitt	3. Schnitt	1. Schnitt	2. Schnitt	Schnitt	1. Schnitt	2. Schnitt	Schnitt	
	1	6,41	5,03	5,74	6,58	6,39	5,74	3,84	3,64	2,93	
[2	6,10	4,79	5,54	6,40	5,14	5,25	3,59	3,14	2,73	
[3	5,76	3,77	5,79	5,60	4,55	5,34	3,32	2,23	2,59	
Γ	4	5,45	3,22	6,01	5,40	4,57	5,26	3,76	2,54	3,39	

Tabelle 2.2.4/10: Einfluss der N-Düngung auf den Ertrag an Rosmarinsäure in Melisse im 1. Erntejahr, Sorte 'Citronella', Bestimmung im getrocknetem Blatt sowie in getrockneten Extraktionsrückständen bei frisch und trocken extrahiertem Material (Blatt), VS Dornburg 2011

I	PG		Getrocknetes Blatt			Extraktionsrückstand,			Extraktionsrückstand,				
		(kg/ha)				frisch extrahiert (kg/ha)			trocken extrahiert (kg/ha)				
		1. Schn.	2. Schn.	3. Schn.	Gesamt	1. Schn.	2. Schn.	3. Schn.	Gesamt	1. Schn.	2. Schn.	3. Schn.	Gesamt
	1	160,9	57,3	41,9	260,1	165,2	72,8	41,9	279,9	96,4	41,5	21,4	159,3
ſ	2	163,5	110,6	75,3	349,5	171,5	118,7	71,4	361,7	96,2	72,5	37,1	205,9
ſ	3	171,6	85,2	92,1	348,9	166,9	102,8	84,9	354,6	98,9	50,4	41,2	190,5
	4	176,6	75,7	112,4	364,6	175,0	107,4	98,4	380,7	121,8	59,7	63,4	244,9

Tabelle 2.2.4/11: Einfluss der N-Düngung auf den Gehalt an Rosmarinsäure in Melisse im 2. Erntejahr, Sorte ,Citronella', Bestimmung im getrocknetem Blatt sowie in getrockneten Extraktionsrückständen bei frisch und trocken extrahiertem Material (Blatt), VS Dornburg 2012

	a content extra montent material (Blatt), ve Bernburg 2012										
PG	Ge	trocknetes B	latt	Extraktionsrückstand,			Extraktionsrückstand,				
		(% TM)		frisch extrahiert (% TM)			trocken extrahiert (% TM)				
	1. Schnitt	Schnitt	Schnitt	1. Schnitt	Schnitt	Schnitt	1. Schnitt	2. Schnitt	Schnitt		
1	6,66	7,24	6,22	7,32	7,53	-	4,38	4,93	3,65		
2	6,64	6,97	6,65	6,19	7,81	6,08	4,13	4,27	4,54		
3	5,82	6,01	6,51	6,12	6,90	6,46	3,81	3,99	3,50		
4	5,66	6,03	6,52	6,38	6,60	6,42	3,82	3,68	3,55		

Tabelle 2.2.4/12: Einfluss der N-Düngung auf den Ertrag an Rosmarinsäure in Melisse im 2. Erntejahr, Sorte 'Citronella', Bestimmung im getrocknetem Blatt sowie in getrockneten Extraktionsrückständen bei frisch und trocken extrahiertem Material (Blatt), VS Dornburg 2012

	onon extramental material (Blatt), ve Belliburg 2012											
PG		Getrocknetes Blatt				Extraktionsrückstand, frisch extrahiert			Extraktionsrückstand, trocken			
	(kg/ha)			(kg/ha)				extrahiert (kg/ha)				
	1. Schn.	2. Schn.	3. Schn.	Gesamt	1. Schn.	2. Schn.	3. Schn.	Gesamt	1. Schn.	2. Schn.	3. Schn.	Gesamt
1	141,2	81,8	28,6	251,6	155,2	85,1	-	-	92,9	55,7	16,8	165,4
2	212,5	131,0	76,5	420,0	198,1	146,8	69,9	414,8	132,2	80,3	52,2	264,6
3	172,9	121,4	84,6	378,9	181,8	139,4	84,0	405,1	113,2	80,6	45,5	239,3
4	170,4	133,9	88,0	392,3	192,0	146,5	86,7	425,2	115,0	81,7	47,9	244,6

Tabelle 2.2.4/13: Einfluss der N-Düngung auf den N-Gehalt (% TM) von Melisse im 1. und 2. Erntejahr, Sorte ,Citronella'. VS Dornburg 2011 und 2012

	.a, 10 Do	5 a. g = 5 a a = 5	· -				
PG		2011		2012			
	 Schnitt 	Schnitt	Schnitt	1. Schnitt	2. Schnitt	Schnitt	
1	1,46	1,85	2,13	1,41	1,96	2,11	
2	1,38	2,04	1,84	1,86	2,15	1,90	
3	1,64	2,34	1,98	2,16	2,67	2,08	
4	1,64	2,43	1,83	2,38	2,68	1,90	

Tabelle 2.2.4/14: Einfluss der N-Düngung auf den N-Entzug (kg/ha) von Melisse im 1. und 2. Erntejahr, Sorte ,Citronella', VS Dornburg 2011 und 2012

PG		20	11		2012				
	1. Schnitt	2. Schnitt	Schnitt	Gesamt	1. Schnitt	Schnitt	Schnitt	Gesamt	
1	59,4	29,3	20,1	108,8	42,1	28,3	11,2	81,6	
2	63,5	68,8	43,4	175,7	90,6	61,3	25,3	177,2	
3	82,5	83,9	49,4	215,8	99,4	82,7	31,6	213,7	
4	91,3	90,2	58,0	239,5	113,5	89,8	32,8	236,1	

Fazit: Bei Melisse war ebenfalls ein signifikanter Einfluss der Düngung auf Wuchshöhe und Ertrag nachweisbar. Dabei lagen wiederum alle gedüngten Prüfglieder über der Kontrolle ohne sich untereinander signifikant zu unterscheiden. Allerdings wiesen die gedüngten Prüfglieder einen um ca. 5 % niedrigeren Blattanteil auf als die Kontrolle, wodurch die Unterschiede im Blattertrag etwas weniger deutlich waren als im Krautertrag. Trotzdem lagen alle gedüngten Varianten bezüglich dieses Merkmals signifikant über der ungedüngten. Die Bestimmung der Ausbeuten an ätherischem Öl erfolgte, wegen der genetisch bedingten niedrigen Gehalte der Melisse, prüfgliedweise aus frischem und getrocknetem Erntegut. Dabei wurden bei der Extraktion der Droge durchgehend höhere Werte erzielt als bei der Verarbeitung frischer Ware. Beim Vergleich der Gehalte an ätherischem Öl in den einzelnen Prüfgliedern war insbesondere bei der Frischextraktion ein Rückgang der Ölausbeuten mit steigender N-Düngung zu verzeichnen. Dieser Trend war tendenziell auch bei der Extraktion der Droge erkennbar. Es trat also mit zunehmender Düngergabe ein gewisser "Verdünnungseffekt" ein. Melisse gilt als wichtiger Rohstoff zur Gewinnung pflanzlicher Rosmarinsäure. Auch bezüglich der Rosmarinsäure reagierte die Melisse negativ auf die Erhöhung der N-Düngung. Im Mittel der Schnitte und Jahre fiel der Gehalt bei allen Vorbehandlungen um ca. 1 % von der ungedüngten Kontrolle zur höchsten Düngungsstufe ab. Insgesamt ist einzuschätzen, dass die Melisse ein lohnender pflanzlicher Rohstoff zur Gewinnung von Rosmarinsäure ist, der im Versuch die It. Arzneibuch geforderten Mindestgehalte von 1 % deutlich übertraf. Dabei scheint auch hier eine Doppelnutzung des ätherischen Öls und der Rosmarinsäure möglich. Trotz der geringeren Gehalte in den Rückständen der Trockenextraktion im Vergleich zur Frischverarbeitung bzw. zur unbehandelten Droge lagen die Werte hier noch über dem Niveau unbehandelter Pfefferminze. In Bezug auf die N-Gehalte im Erntegut war festzustellen, dass die Werte mit steigender N-Düngung bei den ersten beiden Schnitten in jedem Jahr tendenziell anstiegen, die Düngungsstufen sich beim dritten Schnitt jedoch auf einem Level befanden, das sich unter dem der Kontrolle befand. Durch die höheren Erträge und N-Gehalte im Erntegut stiegen auch die N-Entzüge mit der Erhöhung der N-Düngung. Die Entzugswerte der Düngungsstufen lagen in beiden Jahren auf dem gleichen Niveau. Der Vergleich der N-Düngermengen und der Entzüge zeigt, dass die Melisse bis zu einer Düngung von 200 kg N/ha den verabreichten Stickstoff vollständig aufbrauchte. Lediglich bei der höchsten Düngungsstufe von 260 kg N/ha blieb ein geringer Überschuss von etwa 20 kg. Damit bestätigt sich der hohe Nährstoffbedarf der Melisse, der jedoch etwas unter dem der Pfefferminze zu liegen scheint. Da eine zu hohe N-Düngung negative Auswirkungen auf die Qualität des Erntegutes haben kann, dürfte eine N-Düngung von 150 bis 200 kg/ha unter Berücksichtigung des Ertragsniveaus und der Jahreswitterung angemessen sein.

Anbauversuch Melisse

Versuchsnummer: 629 759/01

<u>Versuchsfrage:</u> Einfluss von Sätechnik und Saatstärke auf den Feldaufgang und den Ertrag von Melisse im Vergleich zur Pflanzung

Tabelle 2.2.4/15: Bestandesdichte sowie Wuchshöhe vor Winter und zur Ernte in Abhängigkeit von Sätechnik und Saatstärke bei Melisse, Sorte ,Citronella', im Vergleich zur Pflanzung, Frühsommersaat VS Großenstein 2011

Variante	Saatstärke (kg/ha)	Pflanzen/m²	Wuchshöhe (cm)	
	(ng/na)		13.10.11	07.06.12
Hege 75	5,0	170	17,6	66,9
	7,5	211	17,1	62,0
	10,0	303	16,8	63,0
Mini-Air	0,65 (5er Block)	34	18,8	64,7
	1,17 (9er Block)	51	21,0	65,8
	1,30 (Gleichstand, 160 Loch)	11	22,1	67,4
Pflanzung	50 x 30 cm	7	22,8	68,3
GD t, 5 %		-	3,1	4,4

Tabelle 2.2.4/16: Kraut- und Blattertrag in Abhängigkeit von Sätechnik und Saatstärke bei Melisse, Sorte 'Citronella', im Vergleich zur Pflanzung, Frühsommersaat VS Großenstein 2011

Variante	Saatstärke (kg/ha)	Krautertrag (dt TM/ha)	Blattertrag (dt TM/ha)
Hege 75	5,0	52,8	28,1
	7,5 10,0	54,5 51,3	28,7 27,3
Mini-Air	0,65 (5er Block)	47,6	25,3
	1,17 (9er Block)	49,8	25,8
	1,30 (Gleichstand, 160 Loch)	44,8	23,7
Pflanzung	50 x 30 cm	54,9	29,3
GD t, 5 %		4,7	2,8

<u>Fazit:</u> Insgesamt ist im Ergebnis des ersten Versuches einzuschätzen, dass die Frühsommersaat der Melisse am Standort Großenstein erfolgversprechend verlief und einige Saatvarianten in ertraglicher Hinsicht der Pflanzung ebenbürtig waren. Im Interesse der Risikominimierung wurde in 2012 die mit der Mini-Air Nova ausgebrachte Saatmenge entsprechend den technischen Möglichkeiten der Maschine durch modifizierte Säscheiben etwas erhöht.

Anbauversuch Melisse

<u>Versuchsfrage:</u> Einfluss von Sätechnik und Saatstärke auf den Feldaufgang und den Ertrag von Melisse im Vergleich zur Pflanzung

Versuchsnummer:

629 759/02

Tabelle 2.2.4/17: Bestandesdichte, Fehlstellen und maximale Bestandeslücken in Abhängigkeit von Sätechnik, Saatstärke und Andruckrolle bei Melisse, Sorte ,Citronella', im Vergleich zur Pflanzung, Frühsommersaat VS Großenstein 2012

	Saat VO Großenstein 2012			
Variante	Saatstärke	Pflanzen/m ²	Fehlstellen	Max. Bestandeslücke
	(kg/ha)		(%)	(cm)
Hege 75	5,0	17	60,4	270
	7,5	18	48,3	261
	10,0	32	51,7	200
Mini-Air	1,17 (9er Block)	27	45,9	200
	1,30 (Gleichstand, 160 Loch)	12	43,7	153
	2,60 (Gleichstand, 320 Loch)	53	20,4	80
	2,60 (Gleichstand, 320 Loch),	36	28,2	120
	Wulstandruckrolle vorn]
	2,60 (Gleichstand, 320 Loch),	39	26,0	120
	Wulstandruckrolle hinten			J
	2,60 (Gleichstand, 320 Loch),	40	22,7	110
	Wulstandruckrolle hinten, ohne Walze			
Pflanzung	50 x 30 cm	7	-	-

Tabelle 2.2.4/18: Wuchshöhe vor Winter bzw. zur Ernte sowie Kraut- und Blattertrag in Abhängigkeit von Sätechnik, Saatstärke und Andruckrolle bei Melisse, Sorte ,Citronella', im Vergleich zur Pflanzung, Frühsommersaat VS Großenstein 2012

Variante	Saatstärke (kg/ha)		Wuchshöhe (cm)		Blattertrag (dt TM/ha)
		09.11.12	24.06.12		
Hege 75	5,0	8,0	91,4	38,0	18,3
	7,5	8,0	94,0	46,4	20,8
	10,0	8,5	93,8	46,0	20,1
Mini-Air	1,17 (9er Block)	8,2	97,2	52,9	24,6
	1,30 (Gleichstand, 160 Loch)	9,2	94,4	51,4	22,2
	2,60 (Gleichstand, 320 Loch)	9,0	97,0	65,3	28,5
	2,60 (Gleichstand, 320 Loch), Wulstandruckrolle vorn	9,2	95,6	59,2	26,8
	2,60 (Gleichstand, 320 Loch), Wulstandruckrolle hinten	9,2	97,1	55,3	24,9
	2,60 (Gleichstand, 320 Loch), Wulstandruckrolle hinten, ohne Walze	8,0	97,0	62,4	26,3
Pflanzung	50 x 30 cm	11,5	100,4	59,3	29,1
GD t, 5 %		1,3	3,3	9,7	4,8

<u>Fazit:</u> Die Ergebnisse bestätigten das Resultat des vorjährigen Versuchs und zeigten, dass es bei günstigen Bedingungen möglich ist, mit der Mini-Air bei deutlich verminderter Saatstärke im Vergleich zur Hege-Parzellendrilltechnik ausgeglichene Bestände zu erzielen, die den gepflanzten im Ertrag nicht nachstehen.

Anbauversuch Melisse

Versuchsnummer: 629 759/03

<u>Versuchsfrage:</u> Einfluss von Sätechnik und Saatstärke auf den Feldaufgang und den Ertrag von Melisse im Vergleich zur Pflanzung

Tabelle 2.2.4/19: Bestandesdichte sowie Wuchshöhe vor Winter und zur Ernte in Abhängigkeit von Sätechnik und Saatstärke bei Melisse 'Sorte 'Quedlinburger Niederliegende', im Vergleich zur Pflanzung, Spätsommersaat VS Großenstein 2012

	mersaar vo Großenstein 2012								
Variante	Saatstärke	Pflanzen/m²	Wuchshöhe						
	(kg/ha)		(с	m)					
			09.11.12	25.07.2013					
Hege 75	5,0	7	2,4	52,2					
	7,5	14	2,0	44,0					
Mini-Air	1,17 (9er Block)	15	1,4	51,2					
	1,30 (Gleichstand, 160 Loch)	7	2,1	53,0					
	2,60 (Gleichstand, 320 Loch)	16	2,0	56,2					
Pflanzung	50 x 30 cm	7	6,5	78,8					
GD t, 5 %			1,7	12,7					

Tabelle 2.2.4/20: Kraut- und Blattertrag in Abhängigkeit von Sätechnik und Saatstärke bei Melisse, Sorte 'Quedlinburger Niederliegende', im Vergleich zur Pflanzung, Spätsommersaat VS Großenstein 2012

Variante	Saatstärke (kg/ha)	Krautertrag (dt TM/ha)	Blattertrag (dt TM/ha)
Hege 75	5,0	10,5	5,7
	7,5	6,6	3,7
Mini-Air	1,17 (9er Block)	13,0	7,0
	1,30 (Gleichstand, 160 Loch)	13,1	7,1
	2,60 (Gleichstand, 320 Loch)	17,5	9,1
Pflanzung	50 x 30 cm	25,5	9,7
GD t, 5 %		7,6	3,1

<u>Fazit:</u> Die Ergebnisse der Spätsommersaat waren insgesamt unbefriedigend, was an den trockenen Witterungsbedingungen im Sommer und Herbst 2012 sowie der extremen Nässe im Frühjahr 2013 lag. Trotzdem gelang es auch hier, mit der Mini-Air Bestände zu etablieren, die bezüglich des Blattertrages auf gleichem Niveau mit der Pflanzung lagen.

Anbauversuch Melisse

Versuchsnummer: 629 759/04

Versuchsnummer: 626 759/01

Versuchsnummer: 626 759/02

<u>Versuchsfrage:</u> Einfluss unterschiedlicher Bedeckung auf den Feldaufgang von Melisse in Abhängigkeit von Saatstärke und Sorte

Tabelle 2.2.4/21: Bestandesdichte in Abhängigkeit von Sorte, Saatstärke und Bedeckung (Aussaat mit Mini-Air Nova), Frühsommersaat VS Großenstein 2013

Sorte	Saatvariante	Saatstärke	Zuschlagstoff	Pflanzen/m²
		(kg/ha)	_	
Citronella	Gleichstandsaat 320er Lochscheibe	2,60	ohne	4,0
Citronella	Gleichstandsaat 320er Lochscheibe	2,60	Perlite	15,5
Citronella	Gleichstandsaat 320er Lochscheibe	2,60	Vermiculite	1,75
Citronella	Gleichstandsaat, 160er Lochscheibe	1,30	ohne	0,2
Citronella	Blocksaat, 9er Block	1,17	ohne	0,8
Quedl. Niederliegende	Gleichstandsaat 320er Lochscheibe	2,60	ohne	8,8
Quedl. Niederliegende	Gleichstandsaat 320er Lochscheibe	2,60	Perlite	23,0
Quedl. Niederliegende	Gleichstandsaat 320er Lochscheibe	2,60	Vermiculite	15,8
Quedl. Niederliegende	Blocksaat, 9er Block	1,17	ohne	5,2

<u>Fazit:</u> Die geringen Aufgangsraten des Versuchs lassen auf ein saatgutbedingtes Problem schließen. Allerdings führte die Bedeckung der Saat mit einem im Gartenbau üblichen Zuschlagsstoff im Vergleich zur Erdabdeckung die Aufgangsraten deutlich. Insgesamt lässt sich aus den Versuche schließen, dass es durch aus möglich ist, Melisse erfolgreich durch Aussaat zu etablieren. Voraussetzung dafür ist eine Sätechnik, die eine gleichmäßig flache Ablage des Saatgutes gewährleistet. Gleichzeitig müssen die Saatgutqualität stimmen und die Bodentemperaturen in einem für die Keimung der Melisse optimalen Bereich von mindestens 16 bis 18 °C liegen. Bewässerungsmöglichkeiten und die Abdeckung der Saat mit Zuschlagstoffen minimieren das Risiko des Verfahrens.

2.2.5 Baldrian

Anbauversuch Baldrian

<u>Versuchsfrage:</u> Einfluss von Flach- und Dammsaat auf die Bestandesdichte und den Ertrag von Baldrian

Tabelle 2.2.5/1: Bestandesdichte, Wurzelertrag (gewaschen) sowie Beimengungen in Abhängigkeit von Sävariante, Saatstärke und –tiefe bei Baldrian, Bonitur am 10.09.2013, Frühsommersaat Parzellenversuch Rockendorf 2012

Variante	Saatstärke (kg/ha)/ Saattiefe (cm)	Pflanzen/m²	FM-Ertrag (dt/ha)	TM-Ertrag (dt/ha)	Erdanteil bei Ernte (%)
Flachsaat	2,88/0,5	13,5	63,7	12,0	40,2
	2,88/1,0	6,3	60,5	14,5	42,2
Dammsaat	1,30/1,0	5,8	33,5	7,4	43,5
	2,88/0,5	9,8	56,7	12,8	40,6
	2,88/1,0	15,0	45,4	10,4	41,1
GD t, 5 %		4,8	20,0	4,9	7,2

^{* 1 =} einheitlich, 9 = heterogen

<u>Fazit:</u> Die Erträge des Versuchs liegen auf einem niedrigen Niveau. Ob dies den extremen Witterungsbedingungen oder dem Säverfahren geschuldet ist, kann momentan nicht geklärt werden. Gravierende Unterschiede zwischen Damm- und Flachsaat traten bei gleicher Saatstärke nicht auf.

Anbauversuch Baldrian

<u>Versuchsfrage:</u> Einfluss von der Saattiefe bei Flachsaat auf die Bestandesdichte und den Ertrag von Baldrian im Vergleich zur Pflanzung

Tabelle 2.2.5/2: Bestandesdichte, Wurzelertrag (gewaschen) sowie Beimengungen in Abhängigkeit von Saattiefe bei Baldrian, Frühsommersaat Parzellenversuch Rockendorf 2013

Variante	Saattiefe (cm)	Pflanzen/m²	FM-Ertrag	TM-Ertrag	Erdanteil bei Ernte
			(dt/ha)	(dt/ha)	(%)
Flachsaat	0,5	16,0	86,5	25,0	58,2
	1,0	9,0	64,7	23,4	54,2
Pflanzung		5,3	102,9	33,0	58,0
GD t, 5 %			32,1	10,0	

<u>Fazit:</u> Soll Baldrian durch Saat etabliert werden, ist eine Flachsaat aussichtsreicher, wobei auch hier der Bodenfeuchte bzw. der Wasserversorgung entscheidende Bedeutung zukommt. Dabei kann eine Frühjahrsaussaat ertraglich nicht mit einer Pflanzung konkurrieren.

Versuchsnummer: 626

Herbizidversuch Baldrian (Lückenindikation)

<u>Versuchsfrage:</u> Wirkung und Verträglichkeit von Herbiziden in gesätem Baldrian

Tabelle 2.2.5/3: Varianten des Herbizidversuchs in Baldrian VS Großenstein 2012

	V 0 01013011010111 20	<u> </u>	
PG	Mittel	Aufwandmenge	Anwendungszeitpunkt
		(I bzw. kg/ha)	
1	Unbehandelte Kontrolle		
2	Basta	3,0	Vorauflauf
3	BCP 222 (Patoran)	2,0	Vorauflauf
4	BCP 222 (Patoran)	1,0	Vorauflauf
5	Kerb Flo	1,25	Vorauflauf
6	Spritzfolge 2 x Stomp Aqua	je 1,5	Vorauflauf, Nachauflauf 1
7	Spritzfolge 3 x Goltix Gold	je 1,0	Nachauflauf 2, Nachauflauf 3, Nachauflauf 4
8	Spektrum	0,7	Nachauflauf 2

Tabelle 2.2.5/4: Ergebnisse des Herbizidversuchs in Baldrian (Anlage im April) VS Großenstein 2012

						18.04.201	2						
Zielorganismus	NNNNN	TTTTT	CHEAL	LAMSS	POLCO	THLAR							
Symptom	DG	DG	DG	DG	DG	DG							
1 Kontrolle	0	0	0	0	0	0							
						15.05.201							
Zielorganismus			THLAR	POLCO	LAMSS	CHEAL	NNNNN	NNNN		INNN	NNNNN		
Symptom	DG	DG	DG	DG	DG	DG	PHYTO	AD	'	ND	WH		
1 Kontrolle	2,0	7,3	4,8	1,3	1,0	1,0							
2 Basta							0	0		0	0		
3 BCP222							0	0		0	0		
4 BCP222							0	0		0	0		
5 Kerb FLO							0	0		0	0		
6 Stomp Aqua							0	0		0	0		
						08.06.201							
Zielorganismus					STEME	LAMSS	-	POLLA	NNN		NNNN	NNNNN	NNNNN
Symptom	DG	DG	DG	DG	DG	DG	DG	DG	PHYT	0	AD	WD	WH
1 Kontrolle	4,0	38,3	20,0	4,0	4,0	3,3	2,8	2,5					
2 Basta									0		0	0	0
3 BCP222									0		0	0	0
4 BCP222									0		0	0	0
5 Kerb FLO									0		0	0	0
6 Stomp Aqua									10		0	0	10
						11.07.201	2						
Zielorganismus	NNNN			NNNN	NNNNN	NNNNN							
Symptom	DG		YTO	AD	WD	WH							
1 Kontrolle	15,0												
2 Basta			0	0	0	0							
3 BCP222			3	3	0	0							
4 BCP222			0	0	0	0							
5 Kerb FLO			0	0	0	0							
6 Stomp Aqua			5	0	0	5							
7 Goltix Gold			5	0	5	0							
8 Spectrum			0	0	0	0							

<u>Fazit:</u> Nach der Saat war es sehr trocken und es dauerte 21 Tage bis zum Auflaufen der Kultur. Die Mittelverträglichkeit der Vorauflaufherbizide konnte erst Mitte Mai eingeschätzt werden.

Zur Applikation der Nachauflaufvarianten war BBCH 12 des Baldrians erforderlich, was die Pflanzen erst am 08.06.2012 erreichten. Zu diesem Zeitpunkt waren die Unkräuter schon überwiegend im Knospenstadium. Um eine Benetzung der Kulturpflanze mit dem Mittel zu erreichen und so die Verträglichkeit einschätzen zu können, wurde vor der Applikation der Nachauflaufherbizide ein Schröpfschnitt durchgeführt. Die Vorauflaufvariante mit dem Totalherbizid Basta, die erst beim Auflaufen der ersten Unkräuter appliziert wurde, bewirkte eine deutliche Unkrautminderung gegenüber der unbehandelten Kontrolle. Aufgrund fehlender Phytotoxizität ist diese Variante auch als Vorlage für Nachauflaufherbizide geeignet. Die Varianten 3 und 4 mit Anwendung des Prüfmittels BCP222 (Patoran) hielten die Kultur sehr sauber, allerdings wurden die Unkräuter bei der geringeren Aufwandmenge nicht vollständig bekämpft. Dies war bei der höheren Aufwandmenge der Fall, wobei hier jedoch, im Gegensatz zu Variante 4, eine leichte, tolerierbare Ausdünnung auf zwei der vier Parzellen auftrat. Eine sehr gute Mittelverträglichkeit wies auch Kerb FLO im Vorauflauf auf, wobei hier jedoch die Wirkung unzureichend war. Dagegen zeigte die Spritzfolge Stomp Aqua im Vor- und Nachauflauf eine deutliche Wirkung. Allerdings trat eine Wuchsdepression auf, deren Tolerierbarkeit in weiteren Versuchen zu prüfen ist. Die Wirkung der Spritzfolge Goltix Gold im Nachauflauf ist nicht einschätzbar, da die Applikation entsprechend dem Versuchsplan erst sehr spät erfolgte. Ein Teil der festgestellten Wuchsdepressionen könnte durchaus von der starken Unkrautkonkurrenz herrühren. Auch bei der Einzelanwendung von Spektrum kann die Wirkung nicht beurteilt werden. Bei beiden Varianten wäre die Vorlage eines Vorauflaufmittels, z. B. Basta, erforderlich.

Tabelle 2.2.5/5: Ergebnisse des Herbizidversuchs in Baldrian (Anlage im Mai) VS Großenstein 2012

-	vs Großens	ICIT ZUTZ								
				3.05.2012						
Zielorganismus	NNNNN	TTTTT	CHEAL	MATSS	POLLA					
Symptom	DG	DG	DG	DG	DG					
1 Kontrolle	0	0	0	0	0					
	18.06.2012									
Zielorganismus	NNNNN	TTTTT	CHEAL	MATSS	POLLA	NNNNN	NNNNN	NNNNN		
Symptom	DG	DG	WIRK	WIRK	WIRK	PHYTO	AD	WD		
1 Kontrolle	3,0	4,3	1,0	2,0	1,3					
2 Basta			88	85	73	0	0	0		
3 BCP222			100	100	100	5	0	5		
4 BCP222			96	100	85	0	0	0		
5 Kerb FLO			28	0	96	0	0	0		
6 Stomp Aqua			99	98	83	0	0	0		
			1(0.07.2012						
Zielorganismus	NNNNN	TTTTT	CHEAL	MATSS	POLLA	NNNNN	NNNNN	NNNNN		
Symptom	DG	DG	WIRK	WIRK	WIRK	PHYTO	AD	WD		
1 Kontrolle	5,0	21,8	5,8	11,8	4,3					
2 Basta			58	85	40	0	0	0		
3 BCP222			100	100	100	10	5	5		
4 BCP222			100	100	73	1	1	0		
5 Kerb FLO			53	0	100	3	0	3		
6 Stomp Aqua			100	98	93	3	0	3		
			25	5.07.2012						
			30	3.08.2012						
Zielorganismus	NNNNN	TTTTT	CHEAL	MATSS	POLLA	NNNNN	NNNNN	NNNNN		
Symptom	DG	DG	WIRK	WIRK	WIRK	PHYTO	AD	WD		
1 Kontrolle	25,0	33,8	13,3	14,3	6,3					
2 Basta						0	0	0		
3 BCP222						5	5	0		
4 BCP222						1	1	0		
5 Kerb FLO						0	0	0		
6 Stomp Aqua			100	93	90	1	0	1		
7 Goltix Gold			30	80	90	0	0	0		
8 Spectrum			23	28	25	0	0	0		

<u>Fazit:</u> Da bei Baldrian die optimale Saatzeit eher in den Sommermonaten liegt und zu diesem Zeit-punkt ein etwas anderes Unkrautspektrum vorherrscht, wurde der Versuch in der letzten Maidekade nochmals wiederholt. Auch hier war die Witterung trocken, jedoch die Bedingungen für den Feldaufgang etwas besser als im April. Trotzdem dauerte es nahezu

drei Wochen bis zum Auflaufen des Baldrians. Der Aufgang war wesentlich gleichmäßiger, was eine bessere Einschätzung der Verträglichkeit der Vorauflaufmittel ermöglichte. Hier war bei der höheren Aufwandmenge von Patoran eine leichte Wuchsdepression feststellbar, die sich jedoch rasch verwuchs. Zum Zeitpunkt der Nachauflaufapplikation war der Unkrautdruck etwas geringer, auch wenn die Unkräuter bereits wieder sehr weit entwickelt waren. Eine sehr deutliche Unkrautverminderung gegenüber der unbehandelten Kontrolle hatte PG 2 (Basta), die aber mit fortschreitender Versuchsdauer nachließ. Mit Ausnahme des Ampferblättrigen Knöterichs fiel Kerb FLO durch eine schlechte Mittelwirkung bei sehr guter Mittel-verträglichkeit auf. Die vorgesehenen Nachauflauf 1 und Nachauflauf 2-Behandlungen der PG 6 bis 8 wurden aufgrund der fortgeschrittenen Unkrautentwicklung zusammengefasst. PG 6 (Stomp Aqua) führte zu einer geringfügigen Wuchsverzögerung beim Baldrian, hatte aber eine deutliche und sehr gute Mittelwirkung. Goltix Gold (PG 7) wurde nicht mit einem öligen FHS angewendet. Es zeigte, trotz sehr spätem Behandlungszeitpunkt bei der Kamille und beim Ampferblättrigen Knöterich, noch eine bemerkenswerte Mittelwirkung, sollte aber mit einer Vorauflauf-Behandlung kombiniert werden. Mit der Einzelanwendung von Spectrum (PG 8) zu diesem späten Termin wurde kaum eine Mittelwirkung erzielt. Insgesamt stimmten die Ergebnisse und die Einschätzung der Varianten des Versuches mit dem im April gedrillten Baldrian überein.

2.3 Faserpflanzen

2.3.1 Hanf

Sortenversuch Hanf Versuchsnummer: 523 800

<u>Versuchsfrage:</u> Ertragspotenzial ausgewählter Hanfsorten

Tabelle 2.3.1/1: Stängelertrag (dt TM Grünstroh/ha) geprüfter Sorten von Faserhanf VS Burkersdorf 2011 und 2012

Sorte	2011	2012
Futura	118,4	93,7
Bialobrzeskie	109,4	90,3
Santhica	102,4	77,8
Uso	82,0	65,7
Uso zur Samenreife	85,5	72,2
GD t, 5 %	7,2	6,3

<u>Fazit:</u> In 2011 und 2012 kam der Sortenversuch nur noch auf einem Standort in der Nähe des Thüringer Hanfanbaus in der Praxis zur Anlage. Zwischen den Sorten sind erhebliche Ertragsunterschiede feststellbar. Insbesondere "Futura" stellte ihr hohes Ertragsniveau unter Beweis. Die frühe Sorte "Uso" hat ein geringeres Ertragspotenzial, wird aber in der Thüringer Praxis zur kombinierten Ernte von Korn und Stroh angebaut. Aufgrund fehlender Neuzulassungen wurde der Sortenversuch nach der Ernte 2012 eingestellt.

Anbauversuch Hanf Versuchsnummer: 523 715

<u>Versuchsfrage:</u> Einfluss der N-Düngung (mineralisch, organisch) auf Ertrag und Qualität von

Hanf

Tabelle 2.3.1/2: Wuchshöhe, Ertrag und Stängelertrag von Faserhanf in Abhängigkeit von der N-Düngung VS Dornburg 2010 bis 2012 (Biogasgülle 2010 als Kopfdüngung nach der Saat, ab 2011 als Vorsaateinarbeitung)

N-Düngungsvariante		Wuchshöhe			Ganzpflanzenertrag			Stängelertrag		
	(cm)			(dt TM/ha)			(dt TM/ha)			
(auf N-Sollwert)	2010	2011	2012	2010	2011	2012	2010	2011	2012	
160 kg/ha zur Saat mineralisch (KAS)	217	224	224	131,5	93,6	120,0	105,4	70,6	102,7	
160 kg/ha zur Saat organisch (Biogasgülle)	268	220	238	101,5	89,8	104,8	76,4	63,9	95,1	
80 kg/ha zur Saat + 80 kg/ha bei 20 cm	225	220	242	116,7	94,0	118,1	87,6	69,9	94,9	
Wuchshöhe (Biogasgülle)										
160 kg/ha bei 20-30 cm Wuchshöhe	230	224	245	108,3	85,5	109,4	90,3	65,3	84,5	
organisch (Biogasgülle)										
GD t, 5 %	25,2	14,8	12,2	15,9	10,5	10,3	19,7	15,4	10,9	

Tabelle 2.3.1/3: N-Gehalt, N-Entzug und N-Hinterlassenschaft von Faserhanf in Abhängigkeit von der N-Düngung VS Dornburg 2010 und 2011 (Biogasgülle 2010 als Kopfdüngung nach der Saat, ab 2011 als Vorsaateinarbeitung)

N-Düngungsvariante		N-Gehalt Ganzpflanze			N-Entzug Ganzpflanze			N-Hinterlassenschaft (kg/ha, 0-30 cm Boden)		
		(% TM)			(kg/ha)		(kg/na,	0-30 cm	Boden)	
(auf N-Sollwert)	2010	2011	2012	2010	2011	2012	2010	2011	2012	
160 kg/ha zur Saat mineralisch (KAS)	1,26	-	0,77	165,0		92,4	32	24	28	
160 kg/ha zur Saat organisch (Biogasgülle)	1,12	-	0,92	113,2	-	96,4	28	20	36	
80 kg/ha zur Saat + 80 kg/ha bei 20 cm	1,06	-	0,98	123,7	-	115,7	28	24	28	
Wuchshöhe (Biogasgülle)										
160 kg/ha bei 20-30 cm Wuchshöhe	1,26	-	0,91	136,5	-	99,6	28	32	36	
organisch (Biogasgülle)										

<u>Fazit:</u> Die in 2010 als Kopfdüngung nach der Saat ausgebrachte Biogasgülle führte zu einer starken Verkrustung der Bodenoberfläche und infolgedessen zu Auflaufverzögerungen bzw. einem schlechteren Feldaufgang. Deshalb wurde die Gülle 2011 vor der Saat appliziert und eingearbeitet. In allen drei Versuchsjahren lagen das mineralisch zur Saat gedüngte Prüfglied und die Variante mit der gesplitteten Biogasgüllegabe ertraglich auf einem Niveau. Signifikant schlechter als die mineralische N-Düngung schnitten die Güllega-

be zur Saat und die Kopfdüngung ab. Klare Tendenzen bezüglich der N-Hinterlassenschaft im Boden gab es bei den einzelnen Varianten nicht. Insgesamt belegt der Versuch, dass es möglich ist, Faserhanf mit Biogasgülle ausreichend mit Stickstoff zu versorgen, wenn die Düngung zum richtigen Zeitpunkt erfolgt.

Anbauversuch Hanf Versuchsnummer: 523 759

<u>Versuchsfrage:</u> Einfluss von Saattiefe und Oberflächenverdichtungen auf den Feldaufgang

von Hanf

Tabelle 2.3.1/4: Einfluss von Saattiefe und Oberflächenverdichtungen auf Feldaufgangsrate und Pflanzenentwicklung von Faserhanf

VS Großenstein 2010 bis 2012

Behandlung	Saattiefe	Feldaufgangsrate					Wuchshöhe						
nach der Saat		(%)				(cm)							
		Nac	Nach Aufgang 2 Wo. nach Aufgang			2 Wo. nach Aufgang			4 Wo.	4 Wo. nach Aufgang			
		2010	2011	2012	2010	2011	2012	2010	2011	2012	2010	2011	2012
keine	2,5 bis 3 cm	39,8	81,5	97,0	37,2	82,5	97,0	26	2	12	78	21	54
	3 bis 4 cm	33,0	90,6	98,0	37,0	89,5	98,0	27	2	13	78	19	50
	3,5 bis 4,5 cm	44,4	80,2	99,0	41,9	79,5	98,8	30	2	14	86	19	54
	4,5 bis 5 cm	35,8	68,1	98,0	35,3	67,9	98,0	25	2	14	73	22	52
Walzen	2,5 bis 3 cm	20,5	74,1	97,0	19,5	75,1	97,0	29	2	12	88	17	56
	3 bis 4 cm	16,5	78,3	97,0	15,0	77,5	96,7	26	2	14	72	19	54
	3,5 bis 4,5 cm	17,4	62,4	97,0	20,3	62,2	96,7	24	2	11	76	18	46
	4,5 bis 5 cm	18,6	58,1	97,0	18,6	58,4	96,2	20	2	11	66	18	47

Fazit: Im ersten Versuchsjahr 2010 war die Feldaufgangsrate wegen schlechter Keimfähigkeitswerte des Saatguts generell sehr niedrig, was eine Auswertung des Versuches schwierig macht. Während die Saattiefe keinen Einfluss hatte, deutete sich an, dass die durch das Walzen nach der Saat hervorgerufene Oberflächenverdichtung die Aufgangsrate verminderte. Dieses Ergebnis bestätigte sich auch 2011, wobei hier auch ein deutlicher Einfluss der Saattiefe erkennbar war. Beide Faktoren zusammen, also zu tiefe Ablage des Saatgutes und eine Oberflächenverdichtung verursachten einen gravierenden Rückgang der Feldaufgangsrate. In 2012 bestätigten sich diese Ergebnisse nicht, was möglicherweise an den trockenen Bodenverhältnissen zur Anlage und der dadurch nur eingeschränkten Verdichtung des Bodens durch das Walzen lag. Trotzdem sollte Hanf relativ flach abgelegt werden. Ein Aufbrechen eventuell auftretender Verkrustungen nach der Saat wirkt sich günstig auf die Feldaufgangsrate aus.

2.4 Energiepflanzen

2.4.1 Energiegetreide

Anbauversuch Energiegetreide

Versuchsfrage: Einfluss von Saatstärke und Saatzeit auf den Ertrag von Winterroggen und Wintertriticale sowie deren Mischung bei Nutzung als Ganzpflanzengetreide

Versuchsnummer: 102/105/700 800

Versuchsnummer: 102/105/700 715

Tabelle 2.4.1/1: Einfluss von Saatstärke und Saatzeit auf Ganzpflanzenertrag und TS-Gehalt verschiedener Getreidearten und -mischungen, VS Haufeld 2012 und 2013

a	irten und –misc	hungen, VS Haufe	ad 2012 und 2013	3			
Fruchtart	Saatzeit	Saatstärke	TM-E	TS-Gehalt			
		(%)	(dt/	ha)	(%)		
			2012	2013	2012	2013	
Winterroggen	früh	80	93,0	144,5	33,6	34,4	
		100	96,8	140,7	33,7	32,7	
		120	97,4	145,1	33,8	32,6	
	spät	80	76,5	106,3	32,5	32,0	
		100	74,1	105,3	32,2	30,8	
		120	77,1	108,5	32,5	31,4	
GD t, 5 %			6,5	11,9	0,4	1,2	
Wintertriticale	früh	80	120,4	149,6	34,9	27,7	
		100	123,8	153,6	35,0	27,6	
		120	126,4	155,3	35,1	27,3	
	spät	80	99,4	121,2	33,1	27,2	
		100	103,1	122,6	33,0	27,1	
		120	105,5	127,6	32,8	27,1	
GD t, 5 %			7,0	9,2	0,7	0,6	
Artenmischung	früh	80	81,0	129,1	33,2	27,4	
		100	85,1	137,9	33,2	28,8	
		120	80,0	142,2	33,2	28,7	
	spät	80	61,8	112,4	30,4	29,0	
		100	61,6	116,8	31,2	29,2	
		120	59,5	116,9	31,0	28,3	
GD t, 5 %			9,0	9,3	0,8	1,0	

Fazit: Die Saatzeit hatte in beiden Versuchsjahren einen signifikanten Einfluss auf den Trockenmasse-Ertrag der geprüften Getreidearten, während dieser bei den getesteten Saatstärken nicht nachzuweisen war. Lediglich bei der Frühsaat der Artenmischung im Jahr 2013 unterschieden sich die geringe und die hohe Saatstärke signifikant voneinander. Wintertriticale war in beiden Versuchsjahren die ertragsstärkste Getreideart und zeigte somit das größte Ertragspotential. Die Überlegenheit der Artenmischung gegenüber den Reinsaaten, welche im vorangegangenen Projekt zum Teil festgestellt wurde, kam in den Versuchsjahren 2012 und 2013 nicht zum Ausdruck. Die Frühsaat reifte im Jahr 2012 bei allen getesteten Fruchtarten und im Jahr 2013 beim Winterroggen signifikant schneller ab als die Spätsaat (siehe TS-Gehalte). Somit scheint die Saatzeit unter bestimmten Bedingungen die Abreife der Kulturen zu beeinflussen.

Anbauversuch Energiegetreide

Versuchsfrage: Einfluss der N-Düngung auf den Ertrag von Winterroggen und Wintertriticale sowie deren Mischung bei Nutzung als Ganzpflanzengetreide

Tabelle 2.4.1/2: Einfluss der N-Düngung auf Ganzpflanzenertrag und TS-Gehalt verschiedener Getreidearten und – mischungen. VS Haufeld 2012 und 2013

Fruchtart	N-Düngung		Ertrag	TS-G	Sehalt
Traciliait	14 Dangang	(dt/ha)			%)
		2012	2013	2012	2013
Winterroggen	Ohne	69,4	66,8	36,6	36,4
	SBA – 30 %	90,3	102,8	34,3	34,9
	SBA	98,5	103,1	33,1	33,8
	SBA als Alzon	99,9	97,0	33,4	33,2
GD t, 5 %		10,3	13,4	1,1	1,1
Wintertriticale	Ohne	80,1	66,8	36,5	33,7
	SBA – 30 %	112,9	112,3	34,7	31,1
	SBA	110,3	116,5	33,6	30,0
	SBA als Alzon	118,3	107,4	33,6	30,0
GD t, 5 %		12,7	16,4	1,1	1,5
Artenmischung	Ohne	58,3	68,3	35,7	35,7
	SBA – 30 %	76,7	110,7	33,3	33,5
	SBA	79,6	115,2	33,0	31,2
	SBA als Alzon	83,8	109,0	33,4	31,3
GD t, 5 %		8,2	15,4	0,9	1,5

Fazit: In beiden Versuchsjahren war bei Reduktion der Düngung um 30% sowie bei Einsatz des stabilisierten Stickstoffdüngers Alzon 46 kein signifikanter Unterschied hinsichtlich des Trockenmasse-Ertrages zur Standardvariante nach N-Sollwertanalyse (SBA) bei den geprüften Getreidearten festzustellen. Lediglich bei der ungedüngten Kontrolle war erwartungsgemäß ein signifikanter Minderertrag gegenüber der optimal gedüngten Variante zu verzeichnen. Dieser betrug im Versuchsjahr 2013 ca. 40 % und im Vorjahr ca. 30 %. Eine Reduktion der Düngung um 30 % führte bei Winterroggen in beiden Jahren und bei der Artenmischung im Jahr 2013 zu einer beschleunigten Abreife. Dieser Effekt war bei Verzicht auf Stickstoffdüngung in beiden Versuchsjahren bei allen geprüften Fruchtarten so deutlich (TS-Gehaltsunterschiede von 2,6 bis 4,5%), dass in Praxis ein vorgezogener Erntetermin in Betracht zu ziehen wäre.

Anbauversuch Energiegetreide

Versuchsfrage: Etablierung von Untersaaten in Ganzpflanzengetreide

Die zu prüfenden Untersaaten wurden in diesem Versuch im Ganzpflanzengetreide in beiden Versuchsjahren nicht erfolgreich etabliert und hatten somit keinen messbaren Einfluss auf die Trockenmasseerträge des Ganzpflanzengetreides. Daher wird an dieser Stelle auf eine Ertragstabelle wird verzichtet.

Versuchsnummer: 102/105 800

Es ist in beiden Versuchsjahren nicht gelungen, nach Ganzpflanzengetreide einen erntewürdigen Bestand der Untersaat zu etablieren. Während das Jahr 2012 von starker Vorsommertrockenheit geprägt war (137 mm Niederschlagsdefizit von Februar bis Mai), folgte
in 2013 ein überaus später Vegetationsbeginn (Mitte April) mit anschließenden Starkniederschlägen und einem Niederschlagsüberschuss von über 100 % im Mai. Ähnlich dem
Vorjahr verhinderte der starke Unkrautbesatz eine optimale Etablierung der Untersaat. Die
Weidelgrasuntersaat erreichte zumindest eine mäßige Bodendeckung von ~70 %, während die Parzellen mit Luzerne bzw. Luzernegras sehr lückig waren (~35 % Bodendeckung). Demnach sind Frühjahrseinsaaten in Ganzpflanzengetreide unter mit Haufeld vergleichbaren Standortbedingungen aufgrund des hohen Etablierungsrisikos nicht zu empfehlen.

2.4.2 Großgräser

Anbauversuch Großgräser

<u>Versuchsfrage:</u> Leistungsfähigkeit verschiedener Großgräser (Switchgras, Blaustängelgras,

Miscanthus) als Energiepflanzen unter Thüringer Standortbedingungen

Versuchsnummer: 513 456

Versuchsnummer: 513 456/2.2

Tabelle 2.4.2/1: TM-Ertrag (dt/ha) von Großgräsern (Pflanzung 06/94) VS Friemar 1996 bis 2011

1																
Art/Sorte	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Panicum Strain K	41,3	44,2	89,2	126,5	120,4	104,4	101,6	76,4	77,1	74,4	63,7	79,7	81,1	50,1	118,4	35,6
Panicum Strain C	117,5	152,2	124,4	129,6	107,1	101,6	75,2	71,8	80,0	65,8	70,9	62,9	56,3	90,0	37,4	71,2
Andropogon 1	87,0	100,0	126,5	126,8	87,0	111,3	99,2	94,0	57,7	48,3	65,0	75,4	55,9	57,6	92,8	66,6
Andropogon Sig. EE	79,9	100,9	87,3	145,5	90,3	102,2	96,8	85,6	74,4	63,3	86,8	86,0	64,1	105,0	91,0	90,2
Misc. Silberfeder	82,3	114,5	136,9	135,2	139,6	156,0	177,2	129,0	158,9	177,1	159,5	181,2	128,8	181,4	183,6	153,8
Misc. Malepartus	95,4	107,7	134,2	125,2	120,2	127,8	111,3	93,5	120,6	96,9	74,6	106,2	101,2	133,2	118,2	103,7
Miscanthus gig. 36	88,9	148,1	137,6	234,0	219,0	245,6	259,2	211,1	228,5	232,9	221,6	234,8	211,7	309,3	155,5	286,1
Miscanthus Goliath	94,5	145,6	144,8	165,5	149,8	150,0	143,1	121,8	128,2	134,7	110,7	146,1	112,9	110,6	122,9	115,6
Miscanthus Goliath	57,1	79,7	112,1	132,8	158,2	158,9	145,7	126,4	135,0	126,8	107,6	127,5	92,0	149,5	96,4	119,6
Misc. giganteus	78,0	134,5	153,6	243,7	252,9	256,7	277,0	216,5	263,9	235,5	214,0	170,2	180,8	331,1	146,2	264,5
Misc. sin. 500	ab	1997		80,3	131,8	147,3	145,1	126,1	145,8	153,9	116,2	125,9	103,2	156,1	103,8	120,6
Misc. gig. Alant	ab	1997		152,7	189,6	209,1	258,2	221,4	263,5	231,9	238,1	216,2	189,4	249,1	63,7	220,2

Tabelle 2.4.2/2: TM-Ertrag (dt/ha) von Großgräsern (Pflanzung 06/94) VF Rohrbach 1995 bis 2011

Art/Sorte	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Misc. Malepartus	46,9	78,2	130,8	137,6	143,4	131,7	127,3	88,8	108,4	159,3	-	98,7	99,5	57,6	98,6	47,0	29,5
Miscanthus Goliath	36,0	64,8	168,6	178,1	204,3	242,8	200,9	198,8	204,2	188,3	-	179,9	183,3	156,9	75,1	155,8	79,7
Misc. giganteus	84,9	90,1	236,3	199,2	267,8	280,5	237,0	252,5	176,4	207,4	-	231,3	240,0	229,7	217,2	197,3	162,9
Misc. Goliath 101	ab	1997		82,3	165,9	211,6	175,2	149,9	159,1	192,2	229,4	182,3	225,5	161,0	132,1	57,3	44,4
Misc. sin. 500	ab	1997		72,9	146,7	178,7	148,7	139,4	144,2	176,3	235,4	181,6	212,5	155,8	134,7	85,2	82,3
Misc. gig. Alant	ab	1997		83,2	206,6	233,1	176,1	206,6	148,5	217,1	273,2	221,1	220,5	229,3	252,4	206,0	183,8

Fazit: 1994 wurde an vier Thüringer Standorten mit Untersuchungen zum Anwuchsverhalten und der Ertragsleistung von drei Arten Großgräsern in verschiedenen Stämmen und Sorten begonnen. Die volle Ertragsleistung wurde bei Miscanthus in Abhängigkeit von Standort und Stamm erst im 3. bis 6. Standjahr erreicht. Die Miscanthus giganteus-Sorten bzw. Stämme erzielten jährlich die höchste Biomasseleistung, die jedoch in Abhängigkeit von Standort und Vegetationsjahr stark schwankt, jedoch auch bei fast 20jähriger Standzeit nicht generell zurückgeht. Panicum erreichte nicht die avisierten Erträge von > 20 t TM/ha. Die Andropogon-Stämme enttäuschten insgesamt. In Kirchengel (Trockenstandort) waren über alle Jahre total unbefriedigende Erträge zu verzeichnen. Dieser und der bis 2004 auch in Burkersdorf stehende Versuch wurden wegen der ebenfalls unbefriedigenden Erträge umgebrochen. In Rohrbach blieben ab 2005 nur die Miscanthus-Prüfglieder stehen. Da mit zunehmender Versuchsdauer die Prüfglieder immer stärker ineinander verwachsen waren und keine exakte Ertragsbestimmung mehr möglich war, wurden die Versuche in Friemar und Rohrbach nach der Ernte im Frühjahr 2012 beendet.

Anbauversuch Miscanthus

Versuchsfrage: Winterhärte und Ertragsleistung verschiedener Miscanthus-Stämme

Tabelle 2.4.2/3: Ertrag (dt TM/ha) von Miscanthus-Stämmen VF Rohrbach 1995 bis 2011

Stamm	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
В	32.0	35.7	158,3	187.5	246.1	268.0	217.4	219.0	170.2	203.2	220.0	161.5	213.1	226.3	268.9	182.6	198.0
B 12	46,7		158,2														
C	69,0	65,3	175,4	161,4	228,1	195,0	169,4	180,7	158,8	180,0	204,4	167,7	170,4	184,8	184,5	180,5	169,1
E 400	57,2	64,2	189,4	194,4	234,3	241,5	185,0	191,1	157,1	173,1	225,0	177,8	191,9	195,1	194,2	137,0	148,0
F	83,6		177,0														
G	55,2		174,3														
Τ	59,5		167,8													160,5	120,3
101	78,5		218,7													57,5	63,2
204	24,6		147,7													45,2	46,2
212	34,9		121,9													100,3	90,3
901	29,1	72,0	133,8	141,7	129,0	124,1	109,9	136,3	101,2	129,4	111,8	113,0	120,6	100,8	93,1	73,9	62,2
902	21,5		149,2													74,8	86,2
904	36,3		163,5													72,8	56,7
905	25,1		152,3													53,7	42,3
910	51,0	89,6	162,6	176,9	204,2	211,1	168,4	180,6	147,9	149,8	167,3	146,2	152,0	125,9	146,8	69,2	72,4
\bar{X}	46,9	70,6	163,3	161,8	197,3	187,6	162,1	169,1	136,4	154,4	167,1	134,2	161,3	130,8	135,5	104,6	103,2

Fazit: 1994 wurde mit der Prüfung von Stämmen eines dänischen Anbieters an zwei Standorten begonnen. Bis auf die Stämme B 12, F, T, 901 und 904 war ein gutes Anwuchs- und Überwinterungsverhalten vorhanden. Ab dem zweiten Vegetationsjahr blieb der Pflanzenbestand weitestgehend konstant. Am Standort Burkersdorf lagen die Erträge weit unter den Erwartungen, so dass der Versuch nach der Ernte 2004 umgebrochen wurde.

In Rohrbach war das Ertragsniveau bedeutend höher. Mehrere Stämme erreichten ab dem 5. Standjahr wiederholt Erträge über 20 t TM/ha. Weitere Stämme erreichten ebenfalls akzeptable Aufwüchse. Unter den trockneren Bedingungen der Jahre 2003, 2006 und 2008 wurde in den meisten Prüfgliedern ein niedrigerer Ertrag erzielt. Auch das nasskalte Frühjahr 2010 mit nachfolgender Trockenheit und Hitze sagten dem Miscanthus nicht zu. Ein genereller Ertragsrückgang ist jedoch bei den wüchsigsten Stämme auch nach 17jähriger Standzeit noch nicht zu verzeichnen. Nach der Ernte im Frühjahr 2012 wurde der Versuch beendet. Insgesamt belegt die realisierte Versuchsdauer, dass gute Miscanthus-Sorten bzw. Stämme unter günstigen Standortbedingungen auch in Thüringen in der Lage sind, hohe Erträge zu erreichen und eine Nutzungsdauer von ca. 20 Jahren durchaus möglich ist.

Versuchsnummer: 514 456/1

2.4.3 Energieholz

Anbauversuch Energieholz

<u>Versuchsfrage:</u> Eignung schnellwachsender Baumarten als Energiepflanzen

Tabelle 2.4.3/1: TM-Ertrag (dt/ha) verschiedener Energieholzarten und -sorten bei fünfjähriger Umtriebszeit VS Dornburg 1994 bis 2013

Art/Sorte	1994	- 1998	1999 -	- 2003	2004	- 2008	2009 -	- 2013
	Gesamter-	Ertrag/Jahr	Gesamter-	Ertrag/Jahr	Gesamter-	Ertrag/Jahr	Gesamter-	Ertrag/Jahr
	trag		trag		trag		trag	
Pappel								
Muhle Larsen	81,8	16,4	215,4	43,1	360,9	72,2	235,9	47,2
Androscoggin	109,9	22,0	358,7	71,7	537,2	107,8	493,4	98,7
Max 1,3,4	133,8	26,8	429,3	85,9	727,9	145,6	841,2	168,2
Max 2	133,9	26,8	428,5	85,7	762,6	152,5	761,6	152,3
Unal	97,6	19,5	259,2	51,8	293,3	58,7	120,6	24,1
Raspale	148,9	29,8	339,7	67,9	558,8	111,8	270,7	54,1
<i>⊼</i> Pappel	117,7	23,6	338,5	67,7	540,1	108,1	<i>4</i> 53,9	90,8
Robinie	489,7	97,9	643,6	128,7	699,7	139,9	615,9	123,2
Sandbirke	152,5	30,5	136,4	27,3	227,0	45,4	175,5	35,1

Tabelle 2.4.3/2: TM-Ertrag (dt/ha) verschiedener Energieholzarten und -sorten bei fünfjähriger Umtriebszeit VF Langenwetzendorf 1994 bis 2013

	vi Langonivi	otzonaon rot	0 1 010 20 10		_		_	
Art/Sorte	1994	- 1998	1999	- 2003	2004 -	- 2008	2009	- 2013
	Gesamter-	Ertrag/Jahr	Gesamter-	Ertrag/Jahr	Gesamter-	Ertrag/Jahr	Gesamter-	Ertrag/Jahr
	trag	-	trag		trag		trag	
Pappel								
Muhle Larsen	248,9	49,8	348,5	69,7	396,8	79,4	400,5	80,8
Androscoggin	359,4	71,9	450,5	90,1	609,4	121,9	599,7	119,6
Max 1,3,4	363,7	72,7	575,7	115,1	785,8	157,2	762,2	152,4
Max 2	366,7	73,3	538,2	107,6	708,9	141,8	776,8	155,6
Unal	210,9	42,2	376,0	75,2	313,9	62,8	63,9	12,8
Raspale	307,3	61,5	312,9	62,6	218,7	43,7	0	0
<i>⊼</i> Pappel	309,5	61,9	433,6	86,7	505,6	101,1	433,8	86,9
Schwarzerle	173,7	34,7	210,0	42,0	182,2	36,4	155,0	31,0
Sandbirke	179,7	35,9	161,3	32,3	120,7	24,1	0	0

Fazit: 1993 kam in Dornburg und Langenwetzendorf je ein Versuch mit 8 Pappel- und 2 Weidenklonen sowie Robinie, Schwarzerle und Birke zur Anlage, um das Anwuchsverhalten, die Wüchsigkeit, den Biomasseertrag und die Regenerationsfähigkeit im drei- und fünfjährigen Umtrieb zu ermitteln. In Langenwetzendorf schnitt bisher die längere Umtriebszeit besser ab, in Dornburg dagegen die kürzere, wenngleich sich die jährlichen Zuwachsraten hier in den letzten Aufwuchsperioden nahezu ausgeglichen haben. Interessant ist vor allem das Verhalten unterschiedlicher Klone. So stellten die "Max-Klone" und auch "Androscoggin" auf etwas niedrigerem Niveau ihre gute Eignung für Thüringer Standortverhältnisse im dreiund fünfjährigen Umtrieb unter Beweis. Dabei scheint das Ertragsmaximum auch nach 20jähriger Standzeit noch nicht erreicht zu sein. Andere Sorten dagegen, wie z. B. "Beaupré' und "Donk', die zur zweiten Ernte des dreijährigen Umtriebs überdurchschnittliche Erträge aufwiesen, konnten ihr Ertragsvermögen nicht bestätigen und scheiden damit zumindest für kurze Umtriebszeiten aus. Gleiches gilt für die insgesamt auf niedrigem Ertragsniveau liegenden Sorten Unal', Boleare' und eingeschränkt "Muhle Larsen' sowie "Raspalje". Die geprüften Weiden, Sandbirke und Schwarzerle scheiden wegen der geringen Erträge ebenfalls für einen Anbau aus. Hohe Erträge erreichte die nur in Dornburg geprüfte Robinie, die jedoch aufgrund der massiven Wurzelbrut Probleme bei der Ernte bereitete.

Anbauversuch Energieholz

Versuchsfrage: Eignung schnellwachsender Baumarten als Energiepflanzen

Tabelle 2.4.3/3: Ertrag schnellwachsender Energieholzarten bei dreijähriger Umtriebszeit (Pflanzung 1995) VS Bad Salzungen 1996 bis 2013

	V 3 L	bau Saiz	ungen i	330 DIS 2	2013							
Art/Stamm			Ert	rag					Ertrag	g/Jahr		
			(dt Ti	M/ha)					(dt TM/ha	und Jahr)	
	1998	2001	2004	2007	2010	2013	1996-98	1999-01	2002-04	2005-07	2008-10	2011-13
Pappel		_				_		_	_			
Max 1	233	330	354	421	518	584	77,7	110,0	118,0	140,2	172,8	194,5
Max 3	242	326	393	476	565	539	80,7	108,7	131,0	158,8	188,5	179,6
Androscoggin	193	296	312	296	459	539	64,3	98,7	104,0	98,6	152,9	179,5
NE 42	201	343	307	235	492	432	67,0	114,0	102,0	78,3	164,0	144,0
Schwarza	125	292	288	342	345	344	41,7	97,3	96,0	114,1	115,1	114,7
J 105	223	229	297	423	449	485	74,3	76,3	99,0	141,1	149,5	161,7
<i>⊼</i> Pappel	202,8	302,7	325,2	365,5	471,3	487,2	67,6	100,8	108,3	121,9	157,1	162,3
Weide `Tora`	231	487	490	539	596	453	77,0	162,3	163,0	179,5	198,7	151,1

Versuchsnummer: 514 456/2

Fazit: In Bad Salzungen wurde im Mittel der Klone ein höherer jährlicher Biomassezuwachs erreicht als in Dornburg und Langenwetzendorf, was z. T. daran liegt, dass in Bad Salzungen ertragsschwache Klone, wie z. B. 'Donk', 'Unal' oder 'Muhle Larsen', nicht in der Prüfung stehen. Die Max-Klone' konnten sich als die ertragreichsten bestätigen. Dabei stieg der jährliche Zuwachs von Umtrieb zu Umtrieb kontinuierlich an. Die Weide 'Tora' mit 4 bis 7 kräftigen Trieben erreichte vom 2. bis zum 5. Umtrieb die höchsten jährlichen Zuwachsraten.

2.4.4 Knötericharten

Anbauversuch Igniscum®

Versuchsfrage: Anbaueignung von Igniscum® unter Thüringer Standortverhältnissen

Tabelle 2.4.4/1: Wuchshöhe, Ertrag und TS-Gehalt zweier Igniscum®-Sorten (Pflanzung 2010) VS Dornburg 2011 bis 2013

Sorte		Wuchshöhe			TM-Ertrag			TS-Gehalt	
		(cm)	-		(dt/ha)	-		(%)	-
	2011	2012	2013	2011	2012	2013	2011	2012	2013
Candy	130	215	315	66,8	84,0	77,5	32,2	26,8	28,1
Basic	150	275	375	73,6	92,4	57,2	30,2	29,1	27,4

Versuchsnummer:

Versuchsnummer: 536 800

535 700

Tabelle 2.4.4/2: Biogas- und Methanausbeute sowie Methangehalt im Biogas und Methanertrag zweier Igniscum®-Sorten (Pflanzung 2010)

VS Dornburg 2011 und 2012 Sorte Methan Methangehalt Methanertrag **Biogas** (NI/kg oTS) (NI/kg oTS) (%) (m³/ha) 2011 2012 2013 2011 2012 2013 2011 2012 2013 2011 2012 2013 Candy 203,2 185,4 193 125,6 124,2 123 61,8 67,0 64,0 839 1044 953 142 109,4 Basic 188,3 159,5 118,1 96 62,7 68,6 67,8 869 1011 550

<u>Fazit:</u> Die Erträge der 2010 gepflanzten Igniscum-Sorten "Candy" und "Basis", von denen die erstgenannte für die Biogasproduktion geeignet sein soll, sind in der bisher 4jährigen Standzeit nicht zufriedenstellend. Im Anpflanzjahr wuchs kein erntewürdiger Bestand heran. Ein deutlicher Ertragszuwachs im 3. Standjahr, ab dem der Knöterich seine volle Ertragshöhe erreichen soll, blieb bisher aus. Ebenfalls unbefriedigend sind die geringen Biogas- und Methanausbeuten, so dass letztlich auch die Methanerträge je Flächeneinheit für eine wirtschaftliche Produktion nicht ausreichend sind. Der Versuch wird weitergeführt.

2.4.5 Hirsearten

Anbauversuch Sorghumhirse

Versuchsfrage: Biomasseleistung von Hirsearten und -sorten im Vergleich zu Mais

Tabelle 2.4.5/1: TS-Gehalt (%) verschiedener Hirsearten und -sorten im Vergleich zu Mais VS Dornburg und VS Friemar 2011 bis 2013

Sorte	20	11	20	12	20	13
	Dornburg	Friemar	Dornburg	Friemar	Dornburg	Friemar
Atletico	30,4	26,8	36,6	28,2	29,2	29,4
LG 3216	32,3	28,8	36,0	29,9	28,7	30,6
<i>⊼</i> Mais	31,4	27,8	36,3	29,0	29,0	30,0
Lussi	29,0	30,1	32,3	29,9	37,6	33,5
KWS Freya	29,4	28,0	29,3	27,3	31,6	30,2
Nutri Honey	23,4	22,8	-	-	-	-
Super Dolce	23,7	24,5	-	-	-	-
KWS Sole	-	-	31,1	27,6	34,6	31,6
<i>⊼</i> frühe Sortengruppe	26,4	26,4	30,9	28,3	34,6	31,8
Sucro Sorgho 506	23,5	22,5	22,2	19,6	-	-
Herkules	24,5	24,5	24,8	22,3	20,8	23,6
BMR 201	21,3	22,6	-	-	-	-
KWS Zerberus	27,9	27,3	27,8	24,4	24,8	26,0
KWS Odin	27,0	26,6	-	-	-	-
RHS 1092 (Amiggo)	27,7	27,1	27,4	24,5	26,3	26,1
Biomass 150	25,4	24,5	<u> </u>	-		
Niagara 2	20,1	20,9	<u> </u>	-		
Latte	22,7	22,8	<u> </u>	-		
KSH 0704	-		26,8	23,1	25,5	26,1
KWS Tarzan	-		27,4	25,1	26,8	27,7
NUS-F-17 (Uluru)	-	-	22,5	21,7		-
Kylie	-		22,8	19,9	-	-
EUG 221 F	-	-	25,4	22,3	22,1	23,3
Farmsorgho	-		22,1	20,8	24,5	28,2
RHS 1192 (Joggy)	-		-	-	21,2	22,7
EUG 121 F			-	-	21,3	22,4
PR 823 F	-	-	-	-	22,8	24,8
<i>x</i> späte Sortengruppe	24,4	24,3	24,9	22,4	23,6	25,1

Tabelle 2.4.5/2: Ertrag (dt TM/ha) verschiedener Hirsearten und -sorten im Vergleich zu Mais VS Dornburg und VS Friemar 2011 bis 2013

	burg und VS Frie					
Sorte	201	1	20	12	20	13
	Dornburg	Friemar	Dornburg	Friemar	Dornburg	Friemar
Atletico	219,6	235,5	280,1	229,1	76,8	146,3
LG 3216	220,2	234,8	258,0	228,8	74,9	143,9
<i>⊼</i> Mais	219,9	235,2	269,0	229,0	75,8	145,1
Lussi	141,4	197,2	170,8	145,9	110,0	165,3
KWS Freya	167,3	195,0	186,1	162,1	107,3	169,3
Nutri Honey	124,9	140,8	-	-	-	-
Super Dolce	113,0	181,5	-	-	-	-
KWS Sole	-	-	196,4	170,5	125,1	183,6
⊼ frühe Sortengruppe	136,6	178,6	184,4	159,5	114,1	172,7
Sucro Sorgho 506	142,8	163,8	162,2	174,4	-	-
Herkules	187,6	155,8	183,1	185,5	112,6	185,0
BMR 201	111,01	172,5	-	-	-	-
KWS Zerberus	169,4	184,7	165,8	167,1	116,2	162,1
KWS Odin	173,2	185,6	-	-	-	-
RHS 1092 (Amiggo)	154,0	206,7	167,2	162,5	118,8	169,0
Biomass 150	212,6	166,7	-	-	-	-
Niagara 2	111,9	142,9	-	-	-	-
Latte	118,5	153,0	-	-	-	-
KSH 0704	-	-	185,1	176,2	133,7	183,7
KWS Tarzan	-	-	190,9	195,0	128,2	196,5
NUS-F-17 (Uluru)	-	-	133,1	151,8	-	-
Kylie	-	-	182,2	177,4	-	-
EUG 221 F	- [192,6	178,1	136,6	174,8
Farmsorgho	- [71,1	91,0	103,1	119,5
RHS 1192 (Joggy)	- []	-	115,7	175,1
EUG 121 F	- [-]	-	131,5	174,9
PR 823 F	-			-	119,4	175,2
<i>x</i> späte Sortengruppe	153,4	170,2	163,3	165,9	121,6	171,6

Fazit: In den ersten beiden Versuchsjahren erreichte keine der Hirsesorten den Ertrag von Mais, unabhängig vom Ort und der Sortengruppe. Im dritten Versuchsjahr litt der Mais unter den nasskalten Witterungsverhältnissen im Mai und erreichte insgesamt sehr niedrige Erträge, die unter denen der Hirse lagen. Trockensubstanzgehalte von mindestens 28 %, wie sie für eine sichere Silierung erforderlich sind, wiesen über den Versuchszeitraum lediglich die mehrjährig geprüften Sorghum sudanense-Sorten auf. Von den ertragreicheren Futterhirsen erreichte keine Sorte die geforderten Werte über mehrere Jahre, obwohl die Herbstwitterung während der Versuchsführung eigentlich günstig war und beide Versuchsstandorte zu den wärmeren Lagen Thüringens gehören. Deshalb scheint es bei dem gegenwärtigen Sortenspektrum günstiger zu sein, zur Minimierung des Anbaurisikos Sudangras-Hybriden anzubauen, wenn denn eine Alternative zu Mais gesucht wird.

Versuchsnummer: 536 715

Anbauversuch Sorghumhirse

<u>Versuchsfrage:</u> Einfluss gestaffelter N-Gaben auf den Ertrag unterschiedlicher Hirsesorten

Tabelle 2.4.5/3: TM-Ertrag und TS-Gehalt von Hirsesorten in Abhängigkeit von der Höhe der N-Gabe VS Kirchengel 2011 bis 2013

		el 2011 bis 2013	<u> </u>				
Düngung	Sorte		TM-Ertrag			TS-Gehalt	
			(dt/ha)			(%)	
		2011	2012	2013	2011	2012	2013
ohne	KWS Zerberus	144,7	117,9	52,2	26,9	24,7	20,6
	Herkules	166,3	114,4	88,7	25,9	21,4	18,3
	KWS Freya	127,9	102,4	97,7	27,4	25,1	24,8
	Lussi	128,3	100,7	93,6	29,6	30,4	27,8
\bar{x}		141,8	108,8	83,0	27,4	25,4	22,9
100 kg/ha	KWS Zerberus	151,4	108,9	-	28,2	22,8	-
	Herkules	173,4	116,5	-	26,7	20,4	-
	KWS Freya	136,2	105,7	-	28,5	26,2	-
	Lussi	128,6	87,3	-	30,5	28,3	-
\bar{x}		147,4	104,6	-	28,5	24,4	-
150 kg/ha	KWS Zerberus	157,7	111,1	87,3	28,3	22,2	19,6
	Herkules	188,9	111,4	94,1	29,8	21,2	17,9
	KWS Freya	148,6	109,6	92,3	29,7	25,7	25,4
	Lussi	141,2	85,1	99,0	32,0	28,3	28,6
\bar{x}		159,1	104,3	93,2	30,0	24,4	22,9
200 kg/ha	KWS Zerberus	160,4	122,8	84,9	29,0	25,3	20,0
	Herkules	169,7	135,5	97,7	27,3	23,4	17,7
	KWS Freya	155,0	107,5	100,8	31,0	26,5	24,9
	Lussi	133,0	79,1	95,4	31,6	27,1	27,0
$ar{\mathcal{X}}$		154,5	111,2	94,7	29,7	25,6	22,4
250 kg/ha	KWS Zerberus	148,3	106,3	92,4	28,0	23,2	19,8
	Herkules	175,2	110,2	91,6	26,0	21,7	18,0
	KWS Freya	157,6	107,5	109,7	29,4	26,5	27,2
	Lussi	144,5	83,3	94,6	31,6	27,0	27,7
\bar{X}		156,4	101,8	97,1	28,8	24,6	23,2
300 kg/ha	KWS Zerberus	-	-	87,2	-	-	18,9
	Herkules	-	-	90,2	-	-	18,0
	KWS Freya	-	-	101,5	-	-	24,4
	Lussi	-	-	87,5	-	-	27,2
\bar{x}		-	-	91,6	-	-	22,1

<u>Fazit:</u> In allen Versuchsjahren hatte die Stickstoffdüngung nur einen relativ geringen Einfluss auf den Ertrag. Eine Steigerung der N-Düngung von 0 auf 150 kg/ha hatte im Mittel der Sorten maximal einen Mehrertrag von 15 dt TM/ha zur Folge, wobei die Erhöhung der N-Gabe über 150 kg/ha keine Ertragssteigerung bedingte. Eine N-Düngung im Bereich von 150 kg/ha sollte demzufolge ausreichend sein. Der TS-Gehalt wurde von der Stickstoffdüngung ebenfalls nicht beeinflusst und lag bei den Futterhirsen "KWS Zerberus" und "Herkules" meist unterhalb der für die Silerung erforderlichen Werte.

2.4.6 Durchwachsene Silphie

Anbauversuch Durchwachsene Silphie

<u>Versuchsfrage:</u> Einfluss des Erntetermins auf den Ertrag von Durchwachsener Silphie, Herkunft Nordamerika

Versuchsnummer: 639 760/01

Tabelle 2.4.6/1: Erntetermine von Durchwachsener Silphie (Herkunft Nordamerika)

VS Dornburg und VS Heßberg 2005 bis 2013

_					OIII IO GI	gana	V O 1 10	.0.0 0 . 9											
	PG			_		ornbur		_	_	_		_			leßber		_		
		2005	2006	2007	2008	2009	2010	2011	2012	2013	2005	2006	2007	2008	2009	2010	2011	2012	2013
Ī	1	25.08.	21.08.	04.09.	07.08.	27.08.	25.08.	29.08.	21.08.	21.08.	15.09.	07.09.	05.09.	27.08.	07.09.	20.09.	13.09.	30.08.	30.08.
																			17.09.
	3	13.09.	15.09.	24.09.	27.08.	18.09.	21.09.	23.09	12.09.	16.09.	11.10.	27.09.	01.10	08.10.	28.09.	12.10.	04.10.	28.09.	26.09.

Tabelle 2.4.6/2: Wuchshöhe (cm) von Durchwachsener Silphie (Herkunft Nordamerika) in Abhängigkeit vom Erntetermin, VS Dornburg und VS Heßberg 2005 bis 2013

PG				D	ornbu	rg							Н	leßber	g			
	2005	2006	2007	2008	2009	2010	2011	2012	2013	2005	2006	2007	2008	2009	2010	2011	2012	2013
1	247	293	231	274	280	323	260	256	295	177	276	266	198	286	227	230	327	241
2	255	280	262	287	301	297	282	286	299	177	275	262	170	287	226	218	291	241
3	259	281	275	290	326	292	279	312	299	180	272	266	177	279	225	224	298	235
GD t, 5 %	20,1	9,9	20,7	9,3	21,8	17,8	12,1	25,9	6,4	5,8	3,3	6,5	20,1	6,7	5,8	7,9	27,0	5,3

Tabelle 2.4.6/3 TS-Gehalt (%) von Durchwachsener Silphie (Herkunft Nordamerika) in Abhängigkeit vom Erntetermin VS Dornburg und VS Heßberg 2005 bis 2013

PG					ornbui									leßber				
	2005	2006	2007	2008	2009	2010	2011	2012	2013	2005	2006	2007	2008	2009	2010	2011	2012	2013
1	2005	2006	2007	2008	2009	2010	2011	26,3	20,4	22,8	23,6	24,0	24,4	27,1	22,6	23,0	22,8	24,9
2	25,0	25,4	26,8	24,6	26,8	26,4	24,6	27,0	24,6	24,9	27,2	24,4	25,6	28,4	21,6	25,1	23,7	22,2
3	30,9	24,7	26,2	27,4	22,8	24,5	25,0	27,9	27,9	31,5	27,4	24,8	25,4	34,3	26,0	28,2	25,9	24,0

Tabelle 2.4.6/4 TM-Ertrag von Durchwachsener Silphie (Herkunft Nordamerika) in Abhängigkeit vom Erntetermin VS Dornburg und VS Heßberg 2005 bis 2011

PG					ornbu									leßber				
	2005	2006	2007	2008	2009	2010	2011	2012	2013	2005	2006	2007	2008	2009	2010	2011	2012	2013
1	188,6	157,9	146,2	228,7	161,6	313,0	206,3	189,1	191,0	184,3	292,2	245,6	89,7	264,0	176,2	142,0	207,8	156,2
2	228,9	177,3	156,2	188,0	219,8	280,5	165,5	216,0	239,7	139,2	234,7	169,1	110,1	203,1	145,2	145,3	163,2	138,0
3	204,5	202,4	191,4	163,2	201,0	251,5	183,0	211,7	230,0	176,0	274,8	185,7	98,6	206,7	160,0	183,9	235,7	149,1
\bar{X}	207,3	179,2	164,6	193,3	194,1	281,7	184,9	205,6	220,2	166,5	267,2	200,1	99,5	224,6	160,4	157,1	202,2	147,8
GD t, 5 %	19,6	22,7	26,7	34,2	34,1	46,9	27,9	16,1	29,6	25,8	28,9	38,4	12,9	32,1	16,3	23,3	35,2	19,6

Tabelle 2.4.6/5: Asche- und Ligningehalt sowie ADF von Durchwachsener Silphie (Herkunft Nordamerika) in Abhängigkeit vom Erntetermin VS Dornburg und VS Heßberg 2010 bis 2012

_					minoarg														
	PG				_ D	ornbui	rg	_						H	leßber	g	_		
			Asche			ADF	_		Lignin			Asche			ADF	_		Lignin	_
		2010	2011	2012	2010	2011	2012	2010	2011	2012	2010	2011	2012	2010	2011	2012	2010	2011	2012
	1	9,0	10,1	9,8	47,5	42,8	41,8	8,1	6,8	6,9	11,0	10,7	7,3	38,3	46,5	46,7	5,6	7,9	8,4
Ī	2	9,3	9,7	10,0	48,1	46,3	44,6	7,9	8,2	7,2	9,1	13,0	8,4	43,6	41,0	46,1	7,3	6,7	7,6
	3	9,0	· i i i i i i i i - i i i i i i i i i i i i i i				46,2	8,0	9,7	7,7	10,7	10,7	9,1	44,7	50,6	45,4	7,3	9,2	8,4

Fazit: Nach bisher neunjähriger Nutzungszeit ist an keinem der Orte ein Ertragsrückgang festzustellen. Nach sehr hohen Erträgen 2009 in Heßberg und 2010 in Dornburg ging die Biomasseleistung in den Folgejahren wieder auf das Vorjahresniveau zurück, was jedoch der Jahreswitterung zuzuschreiben ist, da die Erträge in 2011 an beiden Orten und 2013 in Dornburg wieder stiegen. Insgesamt bewegten sich die Erträge in allen Jahren im Bereich des Silomaises. Bezüglich der Inhaltsstoffe stiegen Lignin- und ADF-Gehalt mit zunehmender Reife an. Das spricht, im Interesse hoher Methanausbeuten, für einen relativ frühen Erntetermin der Silphie spricht, zumal die Biomasseerträge keinen durchgehenden Ertragszuwachs vom ersten zum letzten Erntetermin aufwiesen.

Anbauversuch Durchwachsene Silphie

Versuchsnummer: 639 760/02

<u>Versuchsfrage:</u> Einfluss des Erntetermins auf den Ertrag von Durchwachsener Silphie, Herkunft Norddeutschland

Tabelle 2.4.6/6 Einfluss des Erntetermins auf Wuchshöhe, TS-Gehalt und TM-Ertrag von Durchwachsener Silphie (Herkunft Norddeutschland, 5. bis 7. Erntejahr)
VS Dornburg 2010 bis 2012

PG		rntetermi			/uchshöh	e	-	TS-Gehal	t		TM-Ertrac	1
					(cm)			(%)			(dt/ha)	,
	2010	2011	2012	2010	2011	2012	2010	2011	2012	2010	2011	2012
1	28.07.	28.07.	25.07.	225	235	226	21,7	20,7	22,4	172,3	149,3	167,7
2	09.08.	10.08.	06.08.	288	262	221	23,7	24,0	23,2	214,6	205,2	184,9
3	20.08.	17.08.	15.08.	273	259	268	24,8	25,2	27,4	219,5	201,6	197,1
4	02.09.	24.08.	21.08.	279	285	264	25,5	26,1	28,0	230,7	213,0	202,2
5	10.09.	06.09.	29.08.	266	295	251	24,7	28,5	29,5	216,0	224,6	185,2
6	17.09.	16.09.	07.09.	272	287	258	24,7	26,6	30,0	189,1	183,9	187,5
7	24.09.	23.09.	12.09.	278	299	269	27,0	31,0	31,0	193,8	185,2	179,8
8	30.09.	29.09.	18.09.	276	285	283	24,8	29,7	31,7	204,8	167,0	163,4
GD t, 5 %				20,3	25,1	23,5	1,8	3,7	3,4	27,0	34,2	27,9

Tabelle 2.4.6/7: Einfluss des Erntetermins auf Asche- und Ligningehalt sowie ADF von Durchwachsener Silphie (Herkunft Norddeutschland, 5. bis 7. Erntejahr)
VS Dornburg 2010 bis 2012

	1000	mbarg 2010	010 20 12						
PG		Aschegehalt	t		Ligningehalt			ADF	
		(% TM)			(% TM)			(% TM)	
	2010	2011	2012	2010	2011	2012	2010	2011	2012
1	10,5	9,7	10,5	5,8	7,3	7,5	41,6	43,5	46,9
2	10,5	9,6	11,0	6,8	7,0	7,4	46,2	42,7	45,6
3	10,3	10,6	9,2	8,0	7,4	6,8	47,8	42,5	46,3
4	9,6	11,5	9,3	7,1	7,4	7,5	46,0	42,1	46,5
5	9,6	9,4	9,3	8,5	7,1	7,4	48,6	42,8	46,0
6	9,8	10,5	9,0	7,1	6,6	7,7	46,5	42,7	51,4
7	9,6	9,1	9,0	7,0	8,0	7,6	45,2	49,3	50,5
8	9,9	n. b.	8,4	6,9	8,6	8,6	47,7	52,4	54,3

Tabelle 2.4.6/8: Einfluss des Erntetermins auf Biogas- und Methanausbeute (HBT) sowie den Methangehalt und - ertrag von Durchwachsener Silphie (Herkunft Norddeutschland, 5. bis 7. Erntejahr) VS Dornburg 2010 bis 2012

PG	Bio	gasausbe	ute	Me	thanausbe	eute	M	ethangeh	alt	M	ethanertra	ag
	(NI/kg oTS	5)	(NI/kg oTS	5)		(%)			(m³/ha)	
	2010	2011	2012	2010	2011	2012	2010	2011	2012	2010	2011	2012
1	468	525	498	275	299	293	58,8	57,0	58,9	4.745	4.466	4.913
2	475	506	452	276	293	270	58,2	57,9	59,7	5.934	6.020	4.987
3	445	508	483	259	293	284	58,2	57,6	58,8	5.681	5.903	5.605
4	385	480	462	257	282	274	59,6	58,8	59,2	5.934	6.007	5.540
5	441	482	455	255	284	269	57,9	59,0	59,2	5.517	6.338	4.991
6	414	479	407	244	281	243	58,9	58,6	59,8	4.620	5.162	4.561
7	414	451	427	246	270	256	59,5	59,9	60,0	4.775	4.998	4.602
8	393	440	413	232	259	246	59,0	58,9	59,7	4.747	4.334	4.030

<u>Fazit:</u> Da die bisherigen Ernteterminversuche keine klaren Zusammenhänge zwischen Erntetermin, Ertrag und/oder Inhaltsstoffen erkennen ließen, wurde ein 2005 in Dornburg angelegter Versuch mit einer norddeutschen Herkunft ab 2010 über eine deutlich längere Zeit und in kürzeren Frequenzen beerntet. Die Ernte begann Ende Juli bei ca. 20 % TS und endete Mitte bis Ende September. Die Pflanzenlänge und der TM-Ertrag erhöhten sich vom 1. zum 2. Bzw. 3. Erntetermin noch signifikant, danach blieben beide Werte auf gleichem Niveau und gingen ab Mitte September wieder zurück. Die Methanausbeuten im Erntegut blieben auch bis zur 4. bzw. 5. Ernte auf hohem Niveau, so dass die höchsten Methanerträge je Flächeneinheit von der letzten August- bis zur ersten Septemberdekade erreicht wurden. Dies spricht für einen relativ frühen Erntetermin der Silphie, zumal ab TS-Gehalten von ca. 25 % kaum noch Sickersaft bei der Silierung auftritt und diese somit eher siliert werden kann als Mais.

Herkunftsprüfung Durchwachsene Silphie

Versuchsnummer: 639 700

Versuchsfrage: Ertragsleistung unterschiedlicher Herkünfte der Durchwachsenen Silphie

Tabelle 2.4.6/9: Erntetermin unterschiedlicher Herkünfte der Durchwachsenen Silphie VS Dornburg, VS Gülzow, VS Bingen und VS Heßberg 2008 bis 2013

Standort	2008	2009	2010	2011	2012	2013
Dornburg	27.08.	23.09.	20.09.	15.09.	30.08.	28.08.
Gülzow	02.09.	08.09.	08.10.	15.09.	17.09.	-
Bingen	29.09.	03.09.	03.09.	21.09.	04.09.	-
Heßberg	29.09.	02.10.	11.10.	06.10.	04.10.	25.09.

Tabelle 2.4.6/10: TS-Gehalt (%) unterschiedlicher Herkünfte der Durchwachsenen Silphie VS Dornburg. VS Gülzow. Bingen und Heßberg 2008 bis 2013

		v	O DC	mou	19, v		2000,	Dirig	on an	uiic	POCIÓ	<i>j</i> 200	0 013	2010								
Herkunft			Dorn	burg					Gülzov	N			E	3inge:	n				Heß	berg		
	80	09	10	11	12	13	80	09	10	11	12	80	09	10	11	12	80	09	10	11	12	13
USA																						25,5
NDtl.																						26,4
Rohr-	28,2	30,3	26,3	26,9	26,4	20,9	26,6	31,9	23,5	25,0	29,1	33,3	31,8	23,7	24,6	29,1	21,8	24,9	22,9	24,8	24,5	13,0
bach			L	l				J		L]					L	l		L		
Russ-	26,6	29,6	27,4	25,7	25,6	22,1	25,8	33,7	23,9	26,3	29,9	32,5	30,6	24,5	27,2	31,6	-	-	-	-	-	-
land			L	l			L		<u> </u>	L]		<u> </u>			L	l		<u> </u>	L	
Berlin	28,0	29,4	26,1	26,9	27,1	21,4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
\bar{X}	27,9	29,5	26,6	26,1	26,6	21,7	25,8	33,2	24,5	26,0	30,5	33,6	31,6	24,1	25,9	30,7	22,5	26,4	24,0	26,6	24,7	25,0

Tabelle 2.4.6/11: Wuchshöhe (cm) unterschiedlicher Herkünfte der Durchwachsenen Silphie VS Dornburg VS Gülzow VS Bingen und VS Heßberg 2008 bis 2013

		\	13 DC	uam	ig, v	<u>s Gui</u>	ZOW,	VOD	ınger	i una	VOF	161206	erg zu	ט סטע	15 20	13						
Herkunft			Dorr	burg				Ċ	Gülzov	N			E	Binge	n				Heß	berg		
	80	09	10	11	12	13	80	09	10	11	12	80	09	10	11	12	80	09	10	11	12	13
USA	266	328	301	292	293	293	156	207	217	243	192	213	302	264	200	232	219	285	233	227	279	264
NDtl.	260	315	293	292	293	288	167	214	234	235	199	215	296	263	196	221	223	291	252	229	281	265
Rohr-	263	332	292	299	296	289	153	204	242	241	184	220	307	261	187	221	225	290	260	231	298	272
bach		ļ	L							L		<u> </u>										İ
Russ-	256	340	310	321	315	305	158	210	258	249	185	223	322	305	220	249	-	-	-	-	-	-
land			L	l						L												İ
Berlin	256	322	284	286	295	286	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
\bar{X}	260	327	296	298	298	292	159	209	238	242	190	218	307	273	201	231	222	289	248	229	286	267
GD t,5%	15,5	14,8	18,6	17,5	12,3	9,9	13,9	16,6	25,1	13,5	20,0	n. b.	17,5	20,7	22,4	n. b.	40,5	12,4	18,2	11,3	12,9	7,7

Tabelle 2.4.6/12: TM-Ertrag (dt/ha) unterschiedlicher Herkünfte der Durchwachsenen Silphie

		\ 	/S DC	ornbu	rg, v	S Gui	zow,	<u> </u>	inger	n una	V S F	161206	erg 20	ם שטע	IS 20	13						
Herkunft			Dorr	burg				C	Gülzov	N			E	Binge	า				Heß	berg		
	80	09	10	11	12	13	80	09	10	11	12	08	09	10	11	12	80	09	10	11	12	13
USA	198	222	262	161	160	202	83	114	133	137	114	162	126	177	91	116	121	213	126	157	130	133
NDtl.	210	216	234	193	196	182	125	163	172	176	129	170	144	171	95	114	134	247	131	157	157	145
Rohr-	204	254	274	190	162	199	104	121	156	168	131	167	131	171	88	131	133	183	136	163	197	168
bach	J		L				L	J		L]						l				l
Russ-	190	281	314	165	151	174	85	132	163	168	109	214	163	215	119	129	-	-	-	-	-	-
land	J		L				L	J		L]						l				l
Berlin	194	200	200	163	160	169	-	-	-	-	•	-	•	-	•	•	•	-	-	•	•	-
\bar{X}	199	234	257	174	166	185	99	132	156	162	121	178	141	183	97	122	129	214	131	159	161	149
GD t,5%	27,9	43,5	52,8	35,1	27,0	17,9	20,9	28,2	23,8	28,8	26,1	25,5	6,5	27,2	21,4	22,4	10,1	40,0	5,7	18,1	33,6	19,8

Tabelle 2.4.6/13: Aschegehalt (% TM) unterschiedlicher Herkünfte der Durchwachsenen Silphie VS Dornburg, VS Gülzow, VS Bingen und VS Heßberg 2010 bis 2012

	v	O Domba	19, 10 0	3120W, VC	Diligon	CISBOIG E	3 1 0 DIO 2	012				
Herkunft		20	10			20	11			20	12	
	Dorn-	Gülzow	Bingen	Heß-	Dorn-	Gülzow	Bingen	Heß-	Dorn-	Gülzow	Bingen	Heß-
	burg		,	berg	burg		_	berg	burg			berg
USA	9,8	8,4	10,3	10,3	11,8	9,6	-	10,1	11,5	9,2	10,5	7,3
NDtl.	10,1	9,3	9,8	9,6	11,5	9,4	-	9,2	10,6	9,1	9,8	8,4
Rohrbach	10,5	10,2	10,0	9,6	11,7	10,2	-	10,0	10,2	8,7	10,0	9,1
Russland	9,8	9,7	10,1	-	10,6	9,5	-	-	10,3	9,1	9,3	-
Berlin	9,1	-	-	-	11,4	-	-	-	11,6	-	-	-
\bar{X}	9,9	9,4	10,1	9,8	11,4	9,7	-	9,8	10,8	9,0	9,9	8,3

Tabelle 2.4.6/14: Ligningehalt (% TM) unterschiedlicher Herkünfte der Durchwachsenen Silphie VS Dornburg, VS Gülzow, VS Bingen und VS Heßberg 2010 bis 2012

Herkunft		20	10			20	11			20	12	
	Dorn-	Gülzow	Bingen	Heß-	Dorn-	Gülzow	Bingen	Heß-	Dorn-	Gülzow	Bingen	Heß-
	burg			berg	burg			berg	burg			berg
USA	8,1	7,4	5,3	7,6	7,2	8,3	7,9	8,7	9,8	8,4	7,5	8,4
NDtl.	9,2	5,6	5,4	7,7	7,9	7,2	8,3	8,4	7,8	8,0	7,4	7,6
Rohrbach	8,2	4,6	6,2	7,8	7,3	9,4	7,6	8,4	8,2	8,1	6,8	8,4
Russland	7,6	6,8	5,5	-	6,7	7,8	6,8	-	8,8	8,2	7,2	-
Berlin	8,2	-	-	-	7,9	-	-	-	8,2	-	-	-
\bar{X}	8,3	6,1	5,6	7,7	7,4	8,2	7,7	8,5	8,6	8,2	7,2	8,1

Tabelle 2.4.6/15: ADF (% TM) unterschiedlicher Herkünfte der Durchwachsenen Silphie VS Dornburg, VS Gülzow, VS Bingen und VS Heßberg 2010 bis 2012

	ve believing, ve builden, ve bringen and ve heldseng bete be bete											
Herkunft		20	10			20	11		2012			
	Dorn-	Gülzow	Bingen	Heß-	Dorn-	Gülzow	Bingen	Heß-	Dorn-	Gülzow	Bingen	Heß-
	burg			berg	burg			berg	burg			berg
USA	50,4	45,3	35,6	44,7	45,5	48,4	42,1	49,0	50,9	49,7	46,4	46,7
Nord-	51,7	38,3	33,4	43,2	47,8	45,5	41,9	48,7	49,9	45,6	46,3	46,1
deutschl.]	L		
Rohrbach	48,8	41,0	34,7	43,3	45,6	43,8	35,8	44,8	50,0	47,0	42,7	45,4
Russland	47,2	42,7	33,5	-	45,1	47,0	35,1	-	48,2	47,9	44,7	-
Berlin	48,9	-	-	-	49,5	-	-	-	48,6	-	-	-
\bar{X}	49,4	41,8	34,3	43,7	46,7	46,2	38,7	47,5	49,5	47,6	45,0	46,1

<u>Fazit:</u> Die Erträge der geprüften Herkünfte unterschieden sich relativ deutlich, wobei die Unterschiede zwischen den Standorten und Jahren größer waren als zwischen den Herkünften. Das höchste Ertragsniveau wies über die Jahre Dornburg mit ca. 200 dt TM/ha auf, gefolgt von Heßberg mit ca. 160 dt TM/ha. Aber auch an den schlechteren Standorten in Gülzow und Bingen erreichte die Silphie noch ansprechende Erträge von 135 bzw. 145 dt TM/ha. Dabei stach keine der Herkünfte besonders hervor. In Dornburg und Bingen schnitten die russische und die Rohrbacher Herkunft im Mittel der Jahre am besten ab, in Gülzow dagegen die Herkunft aus Norddeutschland. Auch bezüglich der Inhaltsstoffgehalte waren keine klaren Tendenzen erkennbar.

Herkunftsprüfung Durchwachsene Silphie

Versuchsnummer:

639 700

<u>Versuchsfrage:</u> Ertragsleistung unterschiedlicher Herkünfte der Durchwachsenen Silphie

Tabelle 2.4.6/16: Anwuchsrate, Wuchshöhe, Rosettendurchmesser und Blattzahl unterschiedlicher Herkünfte der Durchwachsenen Silphie, Bonitur am 25.09.2013, VS Dornburg 2013

Herkunft	Anwuchsrate	Wuchshöhe	Rosettendurchmesser	Blattzahl
	(%)	(cm)	(cm)	
USA 1	99	29	81	24
Norddeutschland	100	34	86	22
Benko	100	35	83	16
Russland	100	32	86	25
Nordeuropa	100	37	85	24
Ukraine 1	100	29	75	22
Ukraine 2	100	31	86	21
Brandenburg	99	30	81	26
USA 2	97	25	79	21
GD t, 5 %	1,7	6,0	7,4	4,4

<u>Fazit:</u> Nach der Pflanzung im Mai wuchsen alle Herkünfte, trotz Verschlämmungen und Erosionsereignissen durch die nachfolgenden Starkniederschläge, sehr gut an und entwickelten sich auch in der Folge zügig weiter. Der Bestandesschluss wurde Mitte August erreicht. Signifikante Unterschiede traten im Anpflanzjahr zwischen den Herkünften nicht auf.

Anbauversuch Durchwachsene Silphie

<u>Versuchsfrage:</u> Biomasseleistung und Anwuchsverhalten der Durchwachsenen Silphie bei Einzelkornsaat unter Deckfrucht

Versuchsnummer: 639 747

Versuchsnummer: 639 715

Tabelle 2.4.6/17: Wuchshöhe und TS-Gehalt von Durchwachsener Silphie bei Aussaat mit und ohne Deckfrucht (Sudangras "Lussi"), VS Dornburg 2009 bis 2012

Variante			shöhe m)		TS-Gehalt (%)					
	2009	2010 `	2011	2012	2009	2009 2010 2011 2012				
Ohne Deckfrucht	278	305	281	280	29,0	28,9	22,4	24,9		
Mit Deckfrucht	240	284	283	290	27,4	27,3	22,7	24,8		
GD t, 5 %	22,3	22,3	15,5	10,1						

Tabelle 2.4.6/18: TM-Ertrag von Durchwachsener Silphie bei Aussaat mit und ohne Deckfrucht (Sudangras ,Lussi') VS Dornburg 2009 bis 2012

Variante			rtrag ha)		Gesamt-TM-Ertrag inkl. Deckfrucht (dt/ha)
	2009	2010	2011	2008 bis 2012	
Ohne Deckfrucht	198,8	257,8	121,9	192,2	770,7
Mit Deckfrucht	111,7	225,6	132,7	163,8	723,8
GD t, 5 %	52,6	27,4	14,9	20,3	47,4

Fazit: Bei Aussaat unter Deckfrucht entsprachen die Pflanzenzahlen nahezu denen der Aussaat ohne Deckfrucht. Allerdings entwickelten sich die Pflanzen deutlich schwächer und erreichten bis Herbst 2008 keinen Bestandesschluss. Im Folgejahr entwickelte sich die Deckfruchtvariante wesentlich zögerlicher als die Blanksaat. Die Folgen waren ein hoher Unkrautdruck und niedrige Erträge. Auch in 2010 blieb die Biomasseleistung der Deckfruchtvariante signifikant hinter der Blanksaat. In 2011 wurde das gleiche Ertragsniveau erreicht, in 2012 blieb die Deckfruchtvariante wieder hinter der Blanksaat zurück und lag im Gesamtertrag nach viermaliger Ernte immer noch signifikant hinter dieser. Der vorgestellte Versuch zeigt, dass das der Anbau von Silphie unter Deckfrucht mit einem hohen Risiko verbunden und somit insgesamt nicht zu empfehlen ist.

Anbauversuch Durchwachsene Silphie

Versuchsfrage: Organische und mineralische Düngung der Durchwachsenen Silphie

Tabelle 2.4.6/19: Düngungsvarianten, ausgebrachte N-Mengen sowie N-Hinterlassenschaft bei Durchwachsener Silphie VS Dornburg 2009 bis 2012

PG	Variante	Ausgebrachte N-Düngung			N-gesamt				N _{min} nach Ernte,				
			(kg/ha)			(N _{mir}	(N _{min} + Düngung) (kg/ha)				0–60 cm, (kg/ha)		
		2009	2010	2011	2012	2009	2010	2011	2012	2009	2010	2011	2012
	N-Sollwert 160 kg/ha, mineralisch	104	104	140	121	160	160	160	150	20	20	33	16
2	50 m³ Gärrest/ha	89	100	110	82	105	116	130	111	36	31	16	16
3	N-Sollwert 160 kg/ha	89	100	110	82	160	160	160	150	28	26	16	16
	(50 m³ Gärrest/ha + min.)	+ 55	+ 44	+ 30	+ 39								

Tabelle 2.4.6/20: Einfluss der Düngung auf Wuchshöhe, TS-Gehalt und TM-Ertrag bei Durchwachsener Silphie VS Dornburg 2009 bis 2012

	, 0	Dombait	<i>j</i> 2000 bil	3 20 12									
PG		Wuch	shöhe		TS-Gehalt				Ertrag				
		(cm)				(%)				(dt TM/ha)			
	2009	2009 2010 2011 2012				2010	2011	2012	2009	2010	2011	2012	
1	314	310	292	272	23,7	24,6	27,5	26,0	171,3	190,0	187,9	199,7	
2	264	264 298 285 269				25,6	26,0	25,1	205,0	209,8	190,9	173,0	
3	314	303	295	267	28,1	23,8	25,8	25,1	225,3	157,5	177,2	181,0	
GD t, 5 %	29,3 9,9 9,4 12,4								34,4	33,3	22,0	27,1	

<u>Fazit:</u> Erstaunlicherweise erreichte die mineralisch auf den N-Sollwert von 160 kg N/ha gedüngte Variante 2009 die niedrigsten Biomasseerträge. Die besten Ergebnisse wurden bei kombinierter organisch-mineralischer Düngung erzielt, aber auch die ausschließlich mit Gärrest versorgte Variante, die insgesamt geringere N-Mengen erhielt, schnitt im ersten Versuchsjahr sehr gut ab. Im 2. Versuchsjahr lag die kombinierte Düngungsvariante signifikant unter

den beiden anderen Prüfgliedern, während 2011 und 2012 keine Unterschiede zwischen den Düngungsvarianten zu verzeichnen waren. Aufgrund der widersprüchlichen Ergebnisse müssen die Untersuchungen fortgesetzt werden. Dazu wurde 2013 ein neuer Versuch begonnen. Insgesamt ist aber bereits festzustellen, dass die Silphie eine Gärrestdüngung gut verträgt und verwertet.

Versuchsnummer: 639 715

Versuchsnummer: 639 840

Anbauversuch Durchwachsene Silphie

Versuchsfrage: Organische und mineralische Düngung der Durchwachsenen Silphie

Tabelle 2.4.6/21: Düngungsvarianten, ausgebrachte N-Mengen sowie N-Hinterlassenschaft bei Durchwachsener Silphie VS Dornburg 2013

PG	Variante	Ausgebrachte N-Düngung (kg/ha)	N-gesamt (N _{min} + Düngung) (kg/ha)	N _{min} nach Ernte, 0–60 cm, (kg/ha)
	N-Sollwert 150 kg/ha, mineralisch als KAS	134	150	20
	N-Sollwert 150 kg/ha, mineralisch als Alzon	134	150	20
	N-Sollwert 150 kg/ha (50 m³ Gärrest/ha + min.)	90 + 44	150	20
4	50 m3 Gärrest (März/April)	90	90	20
_	50 m³ Gärrest stabilisiert (März/April)	90	90	20
	25 m³ Gärrest (März/April) + 25 m³ Gärrest (April/Mai)	45 + 45	90	16

Tabelle 2.4.6/22: Einfluss der Düngung auf Wuchshöhe, TS-Gehalt und TM-Ertrag bei Durchwachsener Silphie VS Dornburg 2013

PG	Variante	Wuchshöhe	TS-Gehalt	Ertrag	Lager
		(cm)	(%)	(dt TM/ha)	(1 bis 9)
1	N-Sollwert 150 kg/ha, mineralisch als KAS	308	20,9	193,4	6
2	N-Sollwert 150 kg/ha, mineralisch als Alzon	304	21,0	178,5	7
3	N-Sollwert 150 kg/ha (50 m³ Gärrest/ha + min.)	303	21,5	206,0	8
4	50 m3 Gärrest (März/April)	299	20,3	211,2	8
5	50 m³ Gärrest stabilisiert (März/April)	292	22,4	205,8	8
6	25 m³ Gärrest (März/April) + 25 m³ Gärrest (April/Mai)	192	21,6	198,2	8
GD t, 5 %		8,8	1,2	23,3	

<u>Fazit:</u> Im 1. Versuchsjahr trat im gesamten Versuch starkes Lager auf, das die Ernte und Auswertung des Versuches erschwerte. Die Erträge der Varianten lagen relativ dicht beieinander, lediglich zwischen der mineralisch mit Alzon gedüngten und der frühen Gärrestdüngung waren signifikante Unterschiede feststellbar, wobei das organisch gedüngte Prüfglied dem mineralisch gedüngten überlegen war. Der Versuch wird fortgesetzt.

Anbauversuch Durchwachsene Silphie

Versuchsfrage: Ermittlung der optimalen Pflanz- bzw. Saatzeit der Durchwachsenen Silphie

Tabelle 2.4.6/23: Einfluss des Pflanz- bzw. Saattermins auf Wuchshöhe, TS-Gehalt und TM-Ertrag von Durchwachsener Silphie im 1. bis 3. Ertragsjahr (Anlage 2009)

VS Dornburg 2010 bis 2012

Prüfglied	Pflanz- bzw.	Variante	Wuchshöhe			•	TM-Ertrag		TS-Gehalt			
	Saattermin		(cm)				(dt/ha)		(%)			
			2010	2011	2012	2010	2011	2012	2010	2011	2012	
1.1	Mitte Mai	Pflanzung	301	288	288	303,9	143,5	203,7	27,0	23,5	25,2	
1.2		Saat	283	277	291	194,5	178,8	187,3	24,6	25,8	25,3	
2.1	Mitte Juni	Pflanzung	281	289	288	286,4	185,9	194,1	24,5	28,0	25,9	
2.2		Saat	261	282	290	197,8	215,4	232,7	24,7	31,2	26,2	
3.1	Mitte Juli	Pflanzung	254	285	298	228,0	210,5	193,5	25,4	28,2	24,5	
3.2		Saat	231	284	287	124,6	175,3	204,7	25,6	25,1	25,0	
4.1	Mitte Aug.	Pflanzung	218	270	288	171,2	167,9	187,5	25,2	25,2	25,1	
4.2		Saat	105	265	261	76,2	178,4	256,9	24,2	26,4	26,5	
	GD t, 5 %		59,3	10,0	12,2	83,2	39,6	31,6				

Tabelle 2.4.6/24: Einfluss des Pflanz- bzw. Saattermins auf Asche-, Lignin- und ADF-Gehalt (% TM) von Durchwachsener Silphie (Anlage 2009), VS Dornburg 2010

Prüfglied	Pflanz- bzw. Saattermin	Variante	Aschegehalt	Ligningehalt	ADF-Gehalt
1.1	Mitte Mai	Pflanzung	9,7	7,6	48,9
1.2		Saat	11,2	7,3	47,3
2.1	Mitte Juni	Pflanzung	12,1	8,0	49,3
2.2		Saat	10,7	9,2	57,0
3.1	Mitte Juli	Pflanzung	11,3	6,7	43,0
3.2		Saat	10,7	6,9	43,5
4.1	Mitte Aug.	Pflanzung	10,3	6,7	44,0
4.2		Saat	11,6	5,9	39,4
GD t, 5 %			1,0	1,2	6,4

Fazit: Bis zum Pflanztermin Mitte Juni erreichten die Varianten im Anlagejahr noch einen Bestandesschluss. Bei späterer Pflanzung und bereits bei Direktsaat Mitte Juni gingen die Prüfglieder lückig in den Winter. Diese Entwicklungsunterschiede wurden im Folgejahr 2010 in hohem Maße ertragswirksam. Generell lagen alle Saatvarianten 2010 signifikant unter dem zum gleichen Termin gepflanzten Prüfglied. Die Erträge der späten Varianten (Saat ab Mitte Juli, Pflanzung Mitte August) waren insgesamt deutlich niedriger. Insbesondere die Pflanzen der letzten Saat schossten nur zum Teil und konnten den Bestand auch im 2. Anbaujahr nicht decken. Im 2. und 3. Erntejahr verwuchsen sich die Unterschiede weitgehend und alle Varianten bewegten sich in ertraglicher Hinsicht auf einem Level. Bei der Betrachtung der biogasrelevanten Inhaltsstoffe fällt auf, dass bei annähernd gleichbleibenden Aschegehalten die Lignin- und ADF-Werte der späteren Varianten niedriger ausfielen. Diese Tendenz geht nicht mit dem Absinken der TS-Gehalte einher, die sich, mit Ausnahme des Prüfgliedes 1.1, zwischen 24,2 und 25,6 % bewegten.

Anbauversuch Durchwachsene Silphie

Versuchsnummer: 639 840

Versuchsfrage: Ermittlung der optimalen Pflanz- bzw. Saatzeit der Durchwachsenen Silphie

Tabelle 2.4.6/25: Einfluss des Pflanz- bzw. Saattermins auf Wuchshöhe, TS-Gehalt und TM-Ertrag von Durchwachsener Silphie im 1. und 2. Ertragsjahr (Anlage 2010)

VS Dornburg 2011 und 2012, VS Großenstein 2011

Prüf-	Pflanz- bzw.	Variante		Vuchshöh			TS-Geha	lt		TM-Ertrag	g	
glied	Saattermin		(cm)				(%)			(dt/ha)	(dt/ha)	
			Dornburg Großen-		Dorn	burg	Großen-	Dornburg		Großen-		
				_	stein		_	stein		_	stein	
			2011	2012	2011	2011	2012	2011	2011	2012	2011	
1.1	Mitte Mai	Pflanzung	284	286	193,8	29,5	25,9	32,6	165,5	228,0	118,4	
1.2		Saat	272	300	187,8	26,0	24,7	30,3	154,7	259,8	96,9	
2.1	Mitte Juni	Pflanzung	272	294	198,8	32,2	26,4	37,9	177,4	249,9	139,9	
2.2		Saat	261	295	184,5	29,8	22,7	33,0	131,3	214,6	96,1	
3.1	Mitte Juli	Pflanzung	254	291	192,0	28,3	24,5	36,0	139,0	257,0	125,7	
3.2		Saat	208	284	175,5	26,9	25,2	37,4	151,8	272,6	112,8	
	GD t, 5 %		27,4	9,5	9,6				29,9	41,1	20,0	

Tabelle 2.4.6/26: Einfluss des Pflanz- bzw. Saattermins auf Asche-, Lignin- und ADF-Gehalt (% TM) von Durchwachsener Silphie im 1. und 2. Ertragsjahr (Anlage 2010)

VS Dornburg 2011 und 2012, VS Großenstein 2011

Prüf- glied	Pflanz- bzw. Saattermin	Variante	Aschegehalt			L	igningeh	alt		ADF-Gehalt			
					Großen- stein	Dornburg		Großen- stein	Dornburg		Großen- stein		
			2011	2012	2011	2011	2012	2011	2011	2012	2011		
1.1	Mitte Mai	Pflanzung	11,6	11,9	11,0	9,2	7,7	7,2	45,8	45,2	48,8		
1.2		Saat	11,8	12,0	11,8	9,6	6,8	7,9	46,5	43,3	51,6		
2.1	Mitte Juni	Pflanzung	12,5	13,3	10,3	8,6	8,0	8,5	45,5	47,1	54,1		
2.2		Saat	13,1	12,7	11,9	6,9	9,8	7,9	43,2	45,2	50,5		
3.1	Mitte Juli	Pflanzung	12,3	11,5	9,6	8,1	8,3	9,2	45,5	46,1	52,7		
3.2		Saat	13,6	10,6	10,3	6,8	7,8	8,4	41,2	46,4	52,2		

<u>Fazit:</u> Im Gegensatz zum vorherigen Versuch erreichten hier nur die im Mai angelegten Varianten den Bestandesschluss. Bereits ab Mitte Juni blieben insbesondere die gesäten Varianten deutlich zurück, was an den trockenen Witterungsbedingungen von Anfang Juni bis Mitte Juli 2010 lag. Bezüglich der Erträge im 1. Ertragsjahr bestätigte sich die Überlegenheit der Pflanzvarianten, wenngleich die Unterschiede weniger deutlich ausfielen als 2010 und die höheren Erträge der späteren Saatvarianten sicher auch aus den höheren Pflanzenzahlen resultieren. Im 2. Erntejahr lagen alle Varianten in ertraglicher Hinsicht auf einem Niveau.

Im Interesse einer sicheren Bestandesetablierung und der Realisierung hoher Erträge bereits im 1. Erntejahr sollte die Pflanzung nicht später als Mitte Juli und die Saat bis Mitte/Ende Juni erfolgen.

Versuchsnummer:

639 859

Anbauversuch Durchwachsene Silphie

Versuchsfrage: Anbau von Silphie nach Winterzwischenfrüchten

Tabelle 2.4.6/27: Pflanzenzahlen und Feldaufgangsrate von Durchwachsener Silphie bei Anbau nach Winterzwischenfrucht, VS Dornburg 2012

Prüfglied	Winterzwischen-	Ablageabstand	Aussaattermin	Pflanzen/Parz.	Feldaufgangsrate								
	frucht	(cm)			(%)								
Pflanzung	Ohne	50 x 50 cm	14.05.	53	-								
1.1	Ohne	8	14.05.	39	11,6								
1.2		16	14.05.	29	17,2								
2.1	WiTriticale-	8	29.05.	48	14,3								
2.2	Ganzpflanze	16	29.05	23	13,6								
3.1	Futterroggen	8	14.05.	25	7,5								
3.2		16	14.05.	14	8,3								
4.1	Landsberger	8	14.05.	13	3,9								
4.2	Gemenge	16	14.05.	13	7,7								

Tabelle 2.4.6/28: Bestandeshöhe, Wuchshöhe, Blattzahl und Deckungsgrad von Durchwachsener Silphie bei Anbau nach Winterzwischenfrucht (Bonitur am 27.09.), VS Dornburg 2012

Prüfglied	Winterzwi-	Ablageabstand	Bestandeshöhe	Wuchshöhe	Blattzahl	Deckungsgrad
	schenfrucht	(cm)	(cm)	(cm)		(%)
Pflanzung	Ohne	50 x 50 cm	33	48	19	100
1.1	Ohne	8	23	40	9	50
1.2		16	19	37	8	40
2.1	WiTriticale-	8	21	36	7	55
2.2	Ganzpflanze	16	22	35	7	30
3.1	Futterroggen	8	20	32	7	15
3.2		16	20	31	8	10
4.1	Landsberger	8	15	15	2	0
4.2	Gemenge	16	17	17	2	0

<u>Fazit:</u> Insgesamt deuten die Ergebnisse darauf hin, dass ein Anbau von Durchwachsener Silphie nach Getreide-Winterzwischenfrüchten generell möglich ist. Allerdings sollten der Umbruch und die Saatbettbereitung sehr sorgfältig erfolgen, um der Pflanze gute Voraussetzungen für den Aufgang zu bieten. Wichtig ist auch das Vorhandensein von genügend Feuchtigkeit

für die Keimung. Ein Anbau nach Futtergemengen mit hohen Gras- oder Leguminosenanteilen, wie z. B. Landsberger Gemenge, ist wegen der größeren Wurzelmasse und dem zu befürchtenden Durchwuchs dagegen nicht zu empfehlen. Generell erhöht sich bei einem Anbau nach Winterzwischenfrüchten das Anlagerisiko deutlich und ist in Hinblick auf die hohen Anlagekosten und die angestrebte lange Nutzungsdauer im Vorfeld gründlich abzuwägen.

Anbauversuch Durchwachsene Silphie

Versuchsnummer: 639 800

Versuchsfrage: Vergleich des Anbaus von Silphie durch Saat und Pflanzung

Tabelle 2.4.6/28: Bestandesdichte, Anwuchs- bzw. Feldaufgangsrate, Wuchshöhe, Rosettendurchmesser und Blattzahl von Silphie bei Einzelkornsaat und Pflanzung, Bonitur am 25.09.2013, VS Dornburg 2013

Variante	Bestandesdichte	Anwuchs- bzw.	Wuchshöhe	Rosettendurchmesser	Blattzahl
	(Pfl./m²)	Feldaufgangsrate (%)	(cm)	(cm)	
Pflanzung	4	100	25,6	75,4	18,8
Saat	14	78	26,6	62,4	9,0
GD t, 5 %			2,4	8,1	5,4

<u>Fazit:</u> Der Versuch wurde Anfang Juni 2013 angelegt. Die Pflanzvariante wuchs vollständig an und auch die gesäten Prüfglieder zeigten hohe Feldaufgangsraten. Der Versuch erreichte einheitlich zum 30.08.2013 den Bestandesschluss. Die Saatvarianten glichen die geringere Pflanzengröße und Blattzahl durch die höheren Bestandesdichten wieder aus.

Herbizidversuch Durchwachsene Silphie (Lückenind.) Versuchsnummer: 639 752

<u>Versuchsfrage:</u> Wirkung und Verträglichkeit von Herbiziden (Lückenindikation) in Durchwachsener Silphie, Bestandesetablierung durch Pflanzung

Tabelle 2.2.6/29: Wirkung und	d Verträgli	ichkeit v	∕on Herl	oiziden in S	Silphie (F							
Aussaat (Pflanzung) / Auflauf			21.05.2	2012		'	√orfrucht	/ Bodenb	. Raps, \	Ninter-		
Bodenart / Ackerzahl	toniger S	Schluff /	61				N-min / N	-Düngung	68 / - k	68 / - kg/ha		
Versuchsglieder												
Anwendungsform	SP	RITZEN		SPRITZ	ZEN							
Datum, Zeitpunkt	18.06	5.2012/N	IS	28.06.201	12/NS							
BBCH (von/Haupt/bis)	12	2/13/14		14/16/	18							
Temperatur, Wind	19	,8°C / 0		22,6°C	/ 1							
Blattfeuchte / Bodenfeuchte	trocke	en, trock	en	feucht, fe	eucht							
1 Kontrolle												
2 Lentagran WP	1,0	kg/ha		1,0 kg/h	na							
3 Stomp Aqua	4,0	l/ha										
4 Stomp Aqua	3.0	l/ha										
Lentagran WP				1,0 kg/h	na							
5 Gardo Gold	4,0	l/ha		1,0 119,1								
Ergebnisse	.,0	1,110				l .			l			
				18.06.2012)							
Zielorganismus ¹⁾	NNNNN	TTTT	POLCO		CHEAL	SOI NI	HERBA				Т	
Symptom	DG	DG	DG	DG	DG	DG	DG					
1 Kontrolle	15,0	5,0	1.0	1.0	0,5	0,5	2,0				+	
1 Rondone	10,0	0,0	1,0	28.06.2012	,	0,0	2,0					_
Zielorganismus ²⁾	NNNNN	TTTT	POLCO		SOLNI	ты ар	HERBA	NNNNN	NNNNN	ININININI	\neg	
Symptom	DG	DG	WIRK	WIRK	WIRK	WIRK	WIRK	PHYTO	AH	WD		
1 Kontrolle	25,0	15,0	2,0	2,0	2,0	1,0	8,0	111110	A11	VVD	+	—
2 Lentagran WP	25,0	13,0	40	80	95	95	20	0	0	0	+	
3 Stomp Aqua			0	80	0	80	80	40	40	0	+	
3 Storip Aqua			0	90	0	80	80	0	0	0	+	
4 Stomp Aqua; Lentagran WP				100	100			20		20	+	
5 Gardo Gold			100			100	90	20	0	20		
7:-13)	LAINININI	TTTT	DOI 00	10.07.2012		001 111	LIEDDA	I A IA IA IA IA I	A 18 18 18 18 1	TATATATATAT		
Zielorganismus ³⁾	NNNNN	TTTT	POLCO	_	CHEAL		HERBA					
Symptom	DG	DG	WIRK	WIRK	WIRK	WIRK	WIRK	PHYTO	AH	WD	+	
1 Kontrolle	30,0	55,0	7,5	11,3	7,5	11,3	17,5	_	_		_	
2 Lentagran WP			40	40	95	100	80	0	0	0		
3 Stomp Aqua			90	80	95	95	90	0	0	0	\bot	
4 Stomp Aqua; Lentagran WP			90	80	100	100	90	0	0	0	4	
5 Gardo Gold			100	100	100	100	100	25	5	20		
				20.07.2012								
Zielorganismus ³⁾	NNNNN	TTTT	POLCO		CHEAL		HERBA	NNNNN				
Symptom	DG	DG	WIRK	WIRK	WIRK	WIRK	WIRK	PHYTO				
1 Kontrolle	40,0	85,0	25,0	10,0	10,0	25,0	15,0					
2 Lentagran WP			40	40	100	100	80	0			\perp	
3 Stomp Aqua			80	95	100	100	95	0				
4 Stomp Aqua; Lentagran WP			80	80	100	100	80	0				
5 Gardo Gold			100	99	100	100	95	0			$oxed{oxed}$	
				08.08.2012)							
Zielorganismus ³⁾	NNNNN	TTTT	POLCO	POLLA	CHEAL	SOLNI	HERBA	NNNNN	NNNNN			
Symptom	DG	DG	WIRK	WIRK	WIRK	WIRK	WIRK	PHYTO	WD			
1 Kontrolle	86,3	95,0	25,0	20,0	20,0	25,0	5,0				T	
2 Lentagran WP			40	20	80	95	60	0	0		T	
3 Stomp Aqua			80	80	100	100	80	0	0		\top	
4 Stomp Aqua; Lentagran WP			60	100	100	100	100	0	0		\top	
5 Gardo Gold			100	95	100	100	100	10	10		\top	
								.				

<u>Fazit:</u> Die Fläche wies, trotz vorheriger Behandlung mit Roundup, massiven Distelbesatz auf, so dass am 07.06. und am 11.06. Disteln gezogen wurden. Trotzdem entwickelte sich weiterhin ein starker Besatz, der nicht mit in die Bonituren einbezogen einging zumal eine Wirkung der eingesetzten Herbizide auf die Distel nicht erkennbar war. Mit Ausnahme von Variante 2 (Lentagran WP solo) zeigten die Mittel gute Wirkungen. Besonders Stomp Aqua wies gute Ergebnisse auf. Allerdings konnten vor allem der Ampferblättrige Knöterich, aber auch der Windenknöterich nur begrenzt bekämpft werden. In diesen Varianten traten keine phytotoxischen Schäden auf. Das Prüfglied mit der besten Wirkung war Variante 5, Gardo Gold. Hier wurden alle Unkräuter sehr gut bekämpft. Die aufgetretenen phytotoxischen Schäden (Wuchsdepression um ca. 20 % sowie leichte Blattchlorosen) hatten sich nach ca. sechs Wochen verwachsen. Am 03.08. wurde abschließend eine Maschinenhacke durchgeführt, die noch einige der großen Unkräuter in der Reihe beseitigen konnte.

Herbizidversuch Durchwachsene Silphie (Lückenind.) Versuchsnummer: 639 752

<u>Versuchsfrage:</u> Wirkung und Verträglichkeit von Herbiziden (Lückenindikation) in Durchwachsener Silphie, Bestandesetablierung durch Saat

Tabelle 2.2.6/30: Wirkung und Verträglichkeit von Herbiziden in Durchwachsener Silphie (Saat), VS Dornburg 2012

Tabelle 2.2.6/30: Wirku Aussaat /Auflauf			keit von H I 2 / 06.06.		in Durchy	vachsene	r Silphie (Sa	aat), VS Do ucht / Bode		12 aps, Winte	r				
Bodenart / Ackerzahl		toniger S		2012				min / N-Dür		aps, winte 3 / - kg/ha	[-				
Versuchsglieder		torngor O	ornan / O I					1 / IV Dai	iguing oc	7 Ngma					
Anwendungsform		SPRI	ΓZEN	SPRIT	ZEN	SPR	ITZEN	SPRITZ	EN						
Datum, Zeitpunkt		24.05.2		04.06.20			2012/NA	28.06.201							
BBCH (von/Haupt/bis)		1/1		7/7			12/12	11/13/1							
Temperatur, Wind Blattfeuchte / Bodenfeuchte	hto	20,1° trocken/		14,4°0 trocken/		- , -	°C / 0 /trocken	22,6°C feucht, fe							
1 Kontrolle	ile	trocker/	liocken	HOCKEH	Teuchi	HOCKEI	liocken	reucht, re	ucni						
2 Butisan		1,5	l/ha												
Boxer		.,0	,,,,,			3,0	l/ha								
3 Basta				3,0	/ha										
Boxer						3,0	l/ha								
4 Basta				3,0	/ha										
Lentagran WP						1,0	l/ha	1,0 l/h	na						
5 Basta				3,0	/ha	2.0	1/1								
Stomp Aqua 6 Basta		3,0	l/ha			3,0	I/ha								
Basagran		3,0	1/11a			1,0	l/ha								
7 Butisan						1,0	l/ha								
Tomigan 180						0,5	l/ha								
Lentagran WP						1,0	l/ha								
8 Gardo Gold						,		4,0 l/h	na						
Ergebnisse															
	I				8.06.2012			1							
Zielorganismus ¹⁾	NNNNN		BRANA	CHEAL	POLCO			THLAR	HERBA						
Symptom 1 Kontrolle	DG	DG	DG	DG	DG	DG	DG 1.0	DG	DG 4.0						
i Kontrolle	5,0	10,0	1,0	1,0	1,0 8.06.2012	1,0	1,0	1,0	4,0	L					
Zielorganismus ²⁾	NNNNN	TTTTT	CHEAL	POLCO	POLLA	SOLN	I THLAR	HERBA	NNNNN	NNNNN					
Symptom	DG	DG	WIRK	WIRK	WIRK	WIRK		WIRK	PHYTO	AH					
1 Kontrolle	10,0	13,0	1,0	1,0	1,0	1,0	1,0	8,0							
2 Butisan; Boxer			100	90	90	100	100	80	40	40					
3 Basta; Boxer			95	40	40	100	95	80	50	50					
4 Basta; Lentagran			70	40	80	100	99	80	30	30					
5 Basta; Stomp A.			80	40	40	60	100	80	25	25					
6 Basta; Basagran			90	80	80	90	100	80	40	40					
7 Butisan + Tomigan 180 + Lentagran			100	100	80	90	100	95	50	50					
100 + Lentagran	<u> </u>		100		0.07.2012		100	90	30	30					
Zielorganismus ³⁾	NNNNN	TTTTT	CHEAL	POLCO	POLLA	SOLN	I HERBA	NNNNN	NNNNN	NNNNN	NNNNN				
Symptom	DG	DG	WIRK	WIRK	WIRK	WIRK		PHYTO	AD	AH	WD				
1 Kontrolle	10,0	30,0	1,0	5,0	10,0	10,0	4,0								
2 Butisan; Boxer			100	95	95	100	99	50	5	30	15				
3 Basta; Boxer			80	20	0	100	80	35	5	10	20				
4 Basta; Lentagran			90	40	40	100	80	10	5	5	0				
5 Basta; Stomp A.			99	40	40	80	80	0	0	0	0				
6 Basta; Basagran 7 Butisan + Tomigan			90	60	60	90	60	60	60	0	0				
180 + Lentagran			100	100	100	100	95	100	60	20	20				
8 Gardo Gold		+	100	100	100	100	95	100	90	10	0				
5 50100 5010	1	1	100		0.07.2012		1 33	100	_ 55	, ,,					
Zielorganismus ³⁾	NNNNN	TTTTT	CHEAL	POLCO	POLLA	SOLN		NNNNN	NNNNN	NNNNN	NNNNN				
Symptom	DG	DG	WIRK	WIRK	WIRK	WIRK	WIRK	PHYTO	AD	AH	WD				
1 Kontrolle	15,0	55,0	5,0	5,0	15,0	20,0	10,0								
2 Butisan; Boxer		1	100	95	95	100	80	30	15	0	15				
3 Basta; Boxer	-	1	30	0	0	60	60	30	20	0	10				
4 Basta; Lentagran		-	100	0	0	100	60	10	5	0	5				
5 Basta; Stomp A.	-	+	100 100	80 40	80 40	100 100	60 60	70	30	0 20	0 20				
6 Basta; Basagran 7 Butisan + Tomigan		+	100	40	40	100	00	70	30	20	20				
	1		100	100	100	100	100	100	70	0	30				
I TOU + LUILAUIAII			100	100	100	100	100	100	100	0	0				
180 + Lentagran 8 Gardo Gold			08.08.2012												
8 Gardo Gold															
8 Gardo Gold Zielorganismus ³⁾	NNNNN		CHEAL	POLCO	POLLA	SOLN		NNNNN	NNNNN	NNNNN					
8 Gardo Gold Zielorganismus ³⁾ Symptom	DG	DG	CHEAL WIRK	POLCO WIRK	POLLA WIRK	SOLN WIRK	WIRK	NNNNN PHYTO	NNNNN AD	NNNN WH					
8 Gardo Gold Zielorganismus ³⁾ Symptom 1 Kontrolle			CHEAL WIRK 5,0	POLCO WIRK 5,0	POLLA WIRK 20,0	SOLN WIRK 30,0	WIRK 20,0	PHYTO	AD	WH					
8 Gardo Gold Zielorganismus ³⁾ Symptom 1 Kontrolle 2 Butisan; Boxer	DG	DG	CHEAL WIRK 5,0 100	POLCO WIRK 5,0 95	POLLA WIRK 20,0 95	SOLN WIRK 30,0 100	WIRK 20,0 80	PHYTO 25	10	WH 15					
8 Gardo Gold Zielorganismus ³⁾ Symptom 1 Kontrolle 2 Butisan; Boxer 3 Basta; Boxer	DG	DG	CHEAL WIRK 5,0 100 30	POLCO WIRK 5,0 95 0	POLLA WIRK 20,0 95 0	SOLN WIRK 30,0 100	WIRK 20,0 80 60	25 15	10 5	15 10					
8 Gardo Gold Zielorganismus ³⁾ Symptom 1 Kontrolle 2 Butisan; Boxer 3 Basta; Boxer 4 Basta; Lentagran	DG	DG	CHEAL WIRK 5,0 100 30 80	POLCO WIRK 5,0 95 0	POLLA WIRK 20,0 95 0	SOLN WIRK 30,0 100 10 100	WIRK 20,0 80 60 60	25 15 10	10 5 5	15 10 5					
8 Gardo Gold Zielorganismus ³⁾ Symptom 1 Kontrolle 2 Butisan; Boxer 3 Basta; Boxer 4 Basta; Lentagran 5 Basta; Stomp A.	DG	DG	CHEAL WIRK 5,0 100 30 80	POLCO WIRK 5,0 95 0 0	POLLA WIRK 20,0 95 0 0	SOLN WIRK 30,0 100 10 100	WIRK 20,0 80 60 60	25 15 10 0	10 5 5 0	15 10 5 0					
8 Gardo Gold Zielorganismus ³⁾ Symptom 1 Kontrolle 2 Butisan; Boxer 3 Basta; Boxer 4 Basta; Lentagran 5 Basta; Stomp A. 6 Basta; Basagran	DG	DG	CHEAL WIRK 5,0 100 30 80	POLCO WIRK 5,0 95 0	POLLA WIRK 20,0 95 0	SOLN WIRK 30,0 100 10 100	WIRK 20,0 80 60 60	25 15 10	10 5 5	15 10 5					
8 Gardo Gold Zielorganismus ³⁾ Symptom 1 Kontrolle 2 Butisan; Boxer 3 Basta; Boxer 4 Basta; Lentagran 5 Basta; Stomp A.	DG	DG	CHEAL WIRK 5,0 100 30 80 80 80	POLCO WIRK 5,0 95 0 0 60 20	POLLA WIRK 20,0 95 0 0 80 20	SOLN WIRK 30,0 100 100 100 80	80 80 60 60 60 60	25 15 10 0	10 5 5 0 20	WH 15 10 5 0 20					
8 Gardo Gold Zielorganismus ³⁾ Symptom 1 Kontrolle 2 Butisan; Boxer 3 Basta; Boxer 4 Basta; Lentagran 5 Basta; Stomp A. 6 Basta; Basagran 7 Butisan + Tomigan	DG	DG	CHEAL WIRK 5,0 100 30 80 80	POLCO WIRK 5,0 95 0 0 60	POLLA WIRK 20,0 95 0 0 80 20	SOLN WIRK 30,0 100 10 100 100 80	2 WIRK 20,0 80 60 60 60	25 15 10 0 40	10 5 5 0 20	WH 15 10 5 0 20					

Fazit: Der Bestand entwickelte sich aufgrund der vorherrschenden Trockenheit erst zögerlich, lief aber dann ab dem 10.06. gleichmäßig und dicht auf. Allerdings trat auch hier ein massiver Besatz mit Ackerkratzdisteln auf, die am 07.06. und nochmals am 11.06. gezogen wurden. Analog zur Vorgehensweise in dem gepflanzten Versuch ist dieser Befall im weiteren Versuchsverlauf ignoriert worden. Die beste Wirkung mit tolerierbarer Phytotox (Ausdünnung) zeigte das Prüfglied 2 (SF Butisan + Boxer). Ebenfalls gute Ergebnisse erreichten die Varianten mit Basta im VA, kombiniert mit Lentagran WP bzw. Stomp Aqua. Hier war nur geringe Phytotoxizität festzustellen. Allerdings konnten vor allem der Ampferblättrige Knöterich, aber auch der Windenknöterich nur eingeschränkt bekämpft werden. Die Varianten 7 und 8 führten zu einem Totalausfall. Das war insbesondere bei Gardo Gold bedauerlich, da diese Variante im gepflanzten Bestand sehr gute Ergebnisse gezeigt hatte. Hier ist in zukünftigen Versuchen eine deutlich spätere Applikation vorgesehen. Am 03.08. wurde abschließend eine Maschinenhacke durchgeführt, die noch einige der großen Unkräuter zwischen den Reihen beseitigen konnte.

Herbizidversuch Durchwachsene Silphie (Lückenind.) Versuchsnummer: 639 752

<u>Versuchsfrage:</u> Wirkung und Verträglichkeit von Herbiziden (Lückenindikation) in Durchwachsener Silphie, Bestandesetablierung durch Saat

Tabelle 2.2.6/31: Wirkung und Verträglichkeit von Herbiziden in Durchwachsener Silphie (Saat), VS Großenstein 2012

Tabelle 2.2.6/31: Wirkung und				in Durch							
Aussaat (Pflanzung) / Auflauf	10.05.2012	2 / 11.06	2012			ucht / Boo					<u>en</u>
Bodenart / Ackerzahl Versuchsglieder	Lehm / 58				N-	min / N-D	ungung][134	/ - Kg/l	ıa	
Anwendungsform	SPRITZEN	1 1	SPRITZEN	SDD	ITZEN						
Datum, Zeitpunkt	16.05.20		22.06.2012/i		07.2012/NA						
BBCH (von/Haupt/bis)	3/3/3		11/12/14		12/13/15						
Temperatur	7,9°0		20,4°C		14,9°C						
Wind	1,2m/s		1,9m/s W	'	3m/s SW						
Blattfeuchte /Bodenfeuchte	trocken/tr	ocken	trocken/trock	en tro	ken/trocken						
1 Kontrolle										$oxed{oxed}$	
2 Butisan	1,5 l/h	na	0.0.1//								
Boxer	2.0.1/b		3,0 l/ha								
3 Basta Boxer	3,0 l/h	ia	3,0 l/ha							├ ──	
4 Basta	3,0 l/h	12	3,0 i/iia					1		+	
Lentagran WP	0,0 1/1	iu	1,0 kg/ha	1	,0 kg/ha					+	
5 Basta	3,0 l/h	na	.,og,		, o . t.g, . t.c.						
Stomp Aqua	-,		3,0 l/ha								-
6 Basta	3,0 l/h	na									
Basagran			1,0 l/ha								
7 Butisan			1,0 l/ha								
Tomigan 180			0,5 l/ha					<u> </u>		+	
Lentagran WP			1,0 kg/ha		0 1/ha	1		-		+-	
8 Gardo Gold Ergebnisse				4	,0 l/ha	1		1			
Ligosinioso			16.05.2	2012							
Zielorganismus	NNNNN		10.00.2] . <u> </u>						T	
Symptom	DG	<u></u>					1	L		1	
1 Kontrolle	0,0										
			12.06.2								
Zielorganismus	NNNNN	NNNN		NNNNN							
Symptom	DG	PHYTO	D AD	AH	VAE					—	
1 Kontrolle 2 Butisan; Boxer	4,0	0	0	0	0		+			\vdash	-
3 Basta; Boxer		0	0	0	0					_	
4 Basta; Lentagran WP	+	0	0	0	0					+	
5 Basta; Stomp Aqua		0	0	0	0					+	
6 Basta; Basagran		0	0	0	0						
			11.07.2	2012	•						
Zielorganismus	NNNNN	NNNN		NNNN							
Symptom	DG	PHYT(D AD	AH	VAE						
1 Kontrolle	10,0		_								
2 Butisan; Boxer		5	5	0	0		-			+	
3 Basta; Boxer 4 Basta; Lentagran WP	_	4 0	0	4 0	0		+			\vdash	-
5 Basta; Stomp Aqua		0	0	0	0					+	
6 Basta; Basagran		3	0	3	0					 	
7 Butisan + Tomigan 180 +											
Lentagran WP		18	0	18	0						
			26.07.2								
Zielorganismus	NNNNN	NNNN		NNNNN							
Symptom	DG	PHYTO	D AD	AH	VAE		1			+	
1 Kontrolle 2 Butisan; Boxer	12,0			0	0		+		-	+-	1
3 Basta; Boxer		5 0	5	0	0				1	+-	-
4 Basta; Lentagran WP	+	20	0	20	0		+			+-	
5 Basta; Stomp Aqua		0	0	0	0		+			 	
6 Basta; Basagran		5	0	5	0		1	1			
7 Butisan + Tomigan 180 +							1				
Lentagran WP		3	0	3	0					$oxed{oxed}$	
8 Gardo Gold		61	0	55	6						
				2010							
Ziolorgoniamus	NINININI	NINININ	08.08.2		I NIKIKIKIKI			1	l		1
Zielorganismus Symptom	NNNNN DG	NNNNI PHYT(NNNNN AH	I NNNNN VAE						
1 Kontrolle	15,0	FITT	J AD	АП	VAE		+		<u> </u>	+-	
2 Butisan; Boxer	10,0	5	5	0	0		+			 	
3 Basta; Boxer		1	0	1	0		+		<u> </u>	 	<u> </u>
4 Basta; Lentagran WP		8	0	8	0		+		1	+	<u> </u>
5 Basta; Stomp Aqua		0	0	0	0						
6 Basta; Basagran		3	0	3	0		1				
7 Butisan + Tomigan 180 +											
Lentagran WP		0	0	0	0					↓	ļ
8 Gardo Gold		48	0	35	13					<u> </u>	

Fazit: Der Auflauf der Silphiepflanzen verlief in Großenstein recht zügig. Leider musste mit dem Aufgang festgestellt werden, dass durch einen technischen Defekt an der Drillmaschine Parzellen sowohl vollständig, teilweise oder gar nicht gesät waren. Deshalb wurde 20 Tage nach der ersten Saat eine Nachsaat auf allen Parzellen durchgeführt. Begründet durch die zweimalige Saat waren auf vielen Versuchsparzellen Pflanzen mit unterschiedlichen Entwicklungsstadien vorhanden. Im Verlauf der weiteren Prüfung stellte sich jedoch heraus, dass durch unterschiedliche Entwicklungsstadien keine differenzierte Mittelverträglichkeit verursacht wurde, was für die Wertung der Verträglichkeit der Mittel zu einer zusätzlichen Aussage führte. Die Angabe der Entwicklungsstadien zu den Behandlungen beschreiben immer mit der niedrigen Angabe die Pflanzen der zweiten und mit der höheren Angabe die Pflanzen der ersten Saat. Im Versuch trat eine breite und intensive Verunkrautung mit Kamille, Weißem Gänsefuß und Ampferblättrigem Knöterich auf. Die Anwendung von Basta im Vorauflauf (PG 3 bis 6) reduzierte den zeitig aufgelaufenen Gänsefuß deutlich, später aufgelaufene Unkräuter wurden nicht bekämpft. Mit der Applikation von Butisan im Vorauflauf (PG 2) erfolgte eine sehr gute Bekämpfung der Kamille. Durch die Nachsaat kam es zu einer deutlichen zeitlichen Verzögerung der ersten NA-Behandlungen. Die Unkräuter waren bereits sehr groß und weit entwickelt (Rosetten- bis zum Knospenstadium). Da nur noch eine sehr eingeschränkte Mittelwirkung zu erwarten war, wurden die Unkräuter geschröpft. Auf eine Einschätzung der Mittelwirkung ist demzufolge verzichtet worden. Die VA-Behandlung mit Butisan vertrug die Silphie sehr gut, mit der NA-Behandlung mit Boxer setzte eine leichte und tolerierbare Ausdünnung ein. Basta im VA (PG 3 bis 6) war ebenfalls sehr verträglich. Sowohl Boxer (PG 3) als auch Basagran (PG 6) bewirkten im NA eine leichte und tolerierbare Aufhellung, die bis Versuchsende fast völlig verwachsen war. Ebenfalls als sehr verträgliche NA-Behandlung zeigte sich Stomp Aqua (PG 5). Die durch Lentagran WP (PG 4) hervorgerufene Aufhellung schwächte bis zur Endbonitur zwar etwas ab, war aber immer noch sichtbar. Die Tankmischung Butisan + Tomigan 180 + Lentagran WP in Variante 7 führte zunächst zu einer deutlichen Aufhellung, die sich aber immer mehr abschwächte und sich bis zur Endbonitur völlig verwachsen hatte. Starke, nicht tolerierbare Nekrosen und Aufhellungen verursachte Gardo Gold (PG 8) als späte NA-Behandlung. Diese Variante wurde sehr spät, am 20. Juli, in BBCH 13 bis 16 der Durchwachsenen Silphie, nochmals getestet. Ähnlich wie der frühere Einsatz führte auch diese Applikation zu 50 bis 60 % Aufhellungen. Da das Mittel eine sehr gute Wirkung aufweist, sollte die späte Anwendung unbedingt weiter geprüft werden.

Herbizidversuch Durchwachsene Silphie (Lückenind.) Versuchsnummer: 639 752

<u>Versuchsfrage:</u> Wirkung und Verträglichkeit von Herbiziden (Lückenindikation) in Durchwachsener Silphie, Bestandesetablierung durch Saat

 Tabelle 2.2.6/32:
 Wirkung und Verträglichkeit von Herbiziden in Durchwachsener Silphie (Saat), VS Dornburg 2013

Tabelle 2.2.6/32: Wirkung und Ve						ner Silpn	ie (Saat),	VS Dorn	burg 201	3		
Versuchskennung	2013, LV				3_Dorn						English d	
Richtlinie	AK Lück			muse		\			T-201 1 -	100 at a m	Freiland	
Aussaat / Auflauf	07.06.20							odenbea.			-	
Bodenart / Ackerzahl	toniger S	schluff / s	55			N	-min / N-	Düngung	41 N (kg	/ha)		
Versuchsglieder					•							FX
Anwendungsform	SPRIT		SPRI			TZEN	_	TZEN				
Datum, Zeitpunkt	12.06.20		27.06.2			013/NA		2013/NA				
BBCH (von/Haupt/bis)	0/0			3/13		5/16		5/18				
Temperatur, Wind	19,6°C	,		C / 1m		C / 1m	,	C / 1m				
Blattfeuchte / Bodenfeuchte	trocken,	trocken	feucht,	trocken	feucht,	trocken	feucht,	trocken				
1 Kontrolle												
2 Stomp Aqua	3,5	l/ha										
2 Boxer			3,0	l/ha								
3 Stomp Aqua	3,5	l/ha										
3 Gardo Gold							4,0	l/ha				
4 Stomp Aqua	3,5	l/ha										
4 Lentagran WP			1,0	l/ha	1,0	l/ha						
5 Butisan	2,0	l/ha										
5 Boxer			3,0	l/ha								
6 Butisan	1,5	l/ha										
6 Stomp Aqua			3.5	l/ha								
7 Butisan	2.0	l/ha	2,0								†	
7 Lentagran WP	,_		1 0	l/ha	1 0	l/ha					†	
8 Stomp Aqua				l/ha	.,0							
8 Gardo Gold			0,0	,, na			4 ∩	l/ha				
3. Ergebnisse	<u> </u>		ı		<u> </u>		-+,0	711U	<u> </u>		<u> </u>	
C. Ligobinoso				12.06.2	2013							
Zielorganismus	NNNNN	TTTTT		12.00.2								
Symptom	DG	TTTTT										l
1 Kontrolle	0.0	0,0									 	
1 Kontrolle	0,0	0,0		26.06.2	2012							
Zielergeniemus		TTTT	DDONIN			TULAD	LIEDDA			ı		
Zielorganismus	NNNNN	TTTTT	BRSNN	POLCO	POLLA	THLAR	HERBA	NNNNN				l
Symptom	DG	DG	WIRK	WIRK	WIRK	WIRK	WIRK	PHYTO				
1 Kontrolle	15,0	8,0	2,0	1,0	1,0	1,0	3,0	_				
2 Stomp Aqua; Boxer	\vdash		20	80	80	80	40	0			\vdash	
3 Stomp Aqua; Gardo Gold			20	80	30	80	40	0				-
4 Stomp Aqua; 2 x Lentagran WP			20	80	80	80	40	0			\vdash	
5 Butisan; Boxer			0	20	20	60	20	0				<u> </u>
6 Butisan; Stomp Aqua			0	20	20	60	20	0				
7 Butisan; 2 x Lentagran WP			0	20	20	60	20	0				1
				09.07.2	2013							
Zielorganismus	NNNNN	TTTTT	BRSNN	FUMOF	POLLA	POLCO	HERBA	THLAR	NNNNN	NNNNN	NNNNN	l
Symptom	DG	DG	WIRK	WIRK	WIRK	WIRK	WIRK	WIRK	PHYTO	VAE	WD	1
1 Kontrolle	20,0	66,5	23,8	10,5	9,5	8,3	8,8	5,8				
2 Stomp Aqua; Boxer			87	20	93	99	94	100	0	0	0	
3 Stomp Aqua; Gardo Gold			78	20	100	73	78	100	1	0	1	
4 Stomp Aqua; 2 x Lentagran WP			68	20	100	68	83	99	24	16	8	
5 Butisan; Boxer			0	20	20	25	50	20	8	8	0	<u> </u>
6 Butisan; Stomp Aqua			0	20	20	25	50	20	8	8	0	<u> </u>
7 Butisan; 2 x Lentagran WP			0	20	20	25	40	20	10	0	10	
8 Stomp Aqua; Gardo Gold			0	0	0	0	0	0	0	0	0	
3. Ergebnisse			. <u> </u>		. <u> </u>		<u> </u>	<u> </u>		<u> </u>		
J				26.07.2	2013							
Zielorganismus	NNNNN	TTTTT	FUMOF	BRSNN	POLCO	POLLA	HERBA	THLAR	NNNNN	NNNNN	NNNNN	
Symptom	DG	DG	WIRK	WIRK	WIRK	WIRK	WIRK	WIRK	PHYTO	VAE	WD	l
1 Kontrolle	25,0	95,8	30,0	18,8	15,0	15,0	8,8	8,3		V/\L		
2 Stomp Aqua; Boxer	20,0	55,0	0	31	96	96	90	100	0	0	0	
3 Stomp Aqua; Gardo Gold	\vdash		5	10	96	96	100	100	0	0	0	
4 Stomp Aqua, 2 x Lentagran WP	\vdash		5	25	86	86	80	100	24	16	8	
5 Butisan; Boxer	\vdash		0					5	0		0	
	 	-		5	10	10	20			0		
6 Butisan; Stomp Aqua	\vdash		20	0	0	0	50	20	0	0	0	
7 Butisan; 2 x Lentagran WP	$\vdash \vdash \vdash$		20	0	25	20	40	20	25	10	15	
8 Stomp Aqua; Gardo Gold			0	0	0	0	0	0	0	0	0	
			I	08.08.2			r	T		l		
Zielorganismus	NNNNN	TTTTT	FUMOF	BRSNN	POLCO	POLLA	THLAR	HERBA	NNNNN	NNNNN	NNNNN	I
Symptom	DG	DG	WIRK	WIRK	WIRK	WIRK	WIRK	WIRK	PHYTO	VAE	WD	
1 Kontrolle	25,0	99,5	35,0	18,8	15,0	15,0	8,3	7,5			\sqcup	
2 Stomp Aqua; Boxer			0	0	93	100	99	85	0	0	0	
3 Stomp Aqua; Gardo Gold			20	20	50	100	100	60	0	0	0	
4 Stomp Aqua; 2 x Lentagran WP			0	5	60	86	100	80	16	8	8	
5 Butisan; Boxer			0	0	5	0	0	20	0	0	0	
6 Butisan; Stomp Aqua			0	0	0	0	0	20	0	0	0	
7 Butisan; 2 x Lentagran WP			20	0	60	60	40	20	10	0	10	
8 Stomp Aqua; Gardo Gold			0	20	20	60	20	20	0	0	0	
		ı	_ ~							_ ~		

Fazit: Der Versuch wurde am 07.06. gedrillt. Der Bestand lief zügig um den 16.06. auf und entwickelte sich gut. Die Unkrautverteilung war gleichmäßig. Hauptunkräuter waren Ausfallraps, Knötericharten, Erdrauch, Hirtentäschel und stellenweise Distel. Als HERBA entwickelten sich Sonnenwendwolfsmilch, Bingelkraut, Weißer Gänsefuß und Schwarzer Nachtschatten. Da die Silphie bereits aufgelaufen war, konnte die Applikation von Basta kurz vor dem Durchstoßen der Kultur nicht rechtzeitig in PG 8 platziert werden und entfiel somit. Die beste Wirkung im Vorauflauf zeigten alle Stomp Aqua-Varianten (PG 3, 4, 6 und 8). Der Einsatz von Butisan (PG 5 und 6) führte zu leichten Aufgangsverzögerungen und einer geringfügigen Wuchsdepression. Bei der 1. Nachauflauf-Behandlung sorgte Boxer in PG 2 für eine stabile Unkrautfreiheit, in PG 5 konnte es die großen Unkräuter nicht mehr unterdrücken. Die Varianten mit Lentagran (PG 4 und 7) führten zu Schädigungen, die sich mit der 2. Nachauflauf-Behandlung verstärkten. Außerdem war dessen Wirkung gegen die Unkräuter sehr unbefriedigend. Die 3. Nachauflauf-Behandlung mit Gardo Gold (PG 3 und 8) wirkte nicht mehr gut, da die Unkräuter teilweile sehr groß waren. Eine Maschinenhacke zu diesem Zeitpunkt erwies sich als gute Alternative. Die mit Abstand beste Variante war die Kombination von Stomp Aqua und Boxer (PG 2), deren gute Wirkung lässt sich durch die leichte Bodenfeuchte zur Applikation erklären. Allerdings haben alle Mittel gegen das Problemunkraut Erdrauch versagt. In wieweit dieses jedoch relevant für die Entwicklung der Silphie im zweiten Standjahr ist, wäre noch zu prüfen.

Herbizidversuch Durchwachsene Silphie (Lückenind.) Versuchsnummer: 639 752

<u>Versuchsfrage:</u> Wirkung und Verträglichkeit von Herbiziden (Lückenindikation) in Durchwachsener Silphie, Bestandesetablierung durch Saat

Tabelle 2.2.6/33: Wirkung und Verträglichkeit von Herbiziden in Durchwachsener Silphie (Saat), VS Großenstein 2013

Tabelle 2.2.6/33: Wirkung und Ver	träglichk	eit von H	lerbizider	n in Durcl	nwachse							
Aussaat / Auflauf			.06.2013					odenbea.				
Bodenart / Ackerzahl	Lehm /	58				N	I-min / N-	Düngung	73 / 60 N	l (kg/ha)		
2. Versuchsglieder												FX
Anwendungsform		TZEN		TZEN		TZEN		TZEN				
Datum, Zeitpunkt		2013/VA		2013/VA		2013/NA		013/NA				
BBCH (von/Haupt/bis)		1/1		7/7		1/11	-	6/18				
Temperatur, Wind				1,1m / sO		/ 0m / -		,3m / sN				
Blattfeuchte / Bodenfeuchte	trocker	, feucht	trocken	ı, feucht	trocken	,trocken	trocken,	trocken				
1 Kontrolle												
2 Stomp Aqua	3,5	l/ha										
2 Boxer					3,0	l/ha						
3 Stomp Aqua	3.5	l/ha										
3 Gardo Gold	<u> </u>						4.0	l/ha				
4 Stomp Aqua	3.5	l/ha					-,-	,,,,,,				
4 Lentagran WP	0,0	iiiu			1.0	l/ha	1.0	l/ha				
5 Butisan	2.0	l/ha			1,0	1/11 a	1,0	1/11 a				
5 Boxer	2,0	i/IIa			3.0	l/ha						
6 Butisan	1 E	l/ha			3,0	i/IIa						
	1,5	ı/na			0.5	1/1						
6 Stomp Aqua					3,5	l/ha						
7 Butisan	2,0	l/ha										
7 Lentagran WP					1,0	l/ha	1,0	l/ha				
8 Basta			3,0	l/ha								
8 Stomp Aqua					3,5	l/ha						
8 Gardo Gold							4.0	l/ha				
9 Alliance	1				0.06	kg/ha	.,0					
9 Boxer	1		t			l/ha	†					
10 Goltix Titan	1		 			l/ha	2.0	l/ha				
	1		1		2,0	ı/IId	∠,0	1/11d				
3. Ergebnisse				10.00	0040							
·	1				.2013	r = .	T =:	T		1		1
Zielorganismus	NNNNN		MATSS	LAMSS	THLAR	POLCO	CHEAL	NNNNN	NNNNN			
Symptom	DG	DG	WIRK	WIRK	DG	WIRK	WIRK	PHYTO	WH			
1 Kontrolle	5,0	18,0	6,8	5,5	2,3	2,0	1,5					
2 Stomp Aqua; Boxer			99	100	94	81	100	0	0			
3 Stomp Aqua; Gardo Gold			99	100	95	79	100	0	0			
4 Stomp Aqua; 2 x Lentagran WP			99	100	97	80	100	0	0			
5 Butisan; Boxer			100	100	100	95	100	15	15			
6 Butisan; Stomp Aqua	1		100	100	99	97	100	10	10			
	-											
7 Butisan; 2 x Lentagran WP			100	100	99	98	100	15	15			
8 Basta; Stomp Aqua; Gardo Gold			28	0	53	0	53	0	0			
				03.07				•	•			
Zielorganismus	NNNNN	TTTTT	MATSS	LAMSS	POLCO	THLAR	CHEAL	NNNNN	NNNNN	NNNNN	NNNNN	
Symptom	DG	DG	WIRK	WIRK	WIRK	WIRK	WIRK	PHYTO	AH	VAE	WH	
1 Kontrolle	6,0	32,8	16,3	7,0	3,8	3,5	2,3					
2 Stomp Aqua; Boxer			98	100	98	97	100	1	0	1	0	
3 Stomp Aqua; Gardo Gold			96	100	93	94	100	0	0	0	0	
4 Stomp Aqua; 2 x Lentagran WP			98	100	93	99	100	4	0	4	0	
5 Butisan; Boxer			98	100	99	100	99	31	0	3	28	
6 Butisan; Stomp Aqua			100	100	98	100	100	10	0	0	10	
7 Butisan; 2 x Lentagran WP				100	97		99		0	0		
	1	 	100			96		19			19	
8 Basta; Stomp Aqua; Gardo Gold	1	1	76	53	28	81	60	0	0	0	0	!
9 Alliance + Boxer	1	-	97	93	0	97	97	90	70	20	0	<u> </u>
10 Goltix Titan; Goltix Titan	1		0	0	20	0	0	5	5	0	0	<u> </u>
3. Ergebnisse												
				24.07	.2013							
Zielorganismus	NNNNN	TTTTT	MATSS	LAMSS	POLCO	THLAR	CHEAL	NNNNN	NNNNN	NNNNN		
Symptom	DG	DG	WIRK	WIRK	WIRK	WIRK	WIRK	PHYTO	AH	WH		
1 Kontrolle	12,0	67,8	50,0	6,5	4,5	3,8	3,0					
2 Stomp Aqua; Boxer	, ·	, · · ·	96	100	98	90	100	0	0	0		
3 Stomp Aqua; Gardo Gold	 	<u> </u>	96	100	95	94	100	0	0	0		1
4 Stomp Aqua; 2 x Lentagran WP	1	 	99	100	94	94	100	0	0	0		1
	1	 	99	100	95	99	98	16	0	16		
5 Butisan; Boxer	1	1										!
6 Butisan; Stomp Aqua	 		100	100	99	100	100	3	0	3		ļ
7 Butisan; 2 x Lentagran WP			100	100	90	94	98	14	0	14		ļ
8 Basta; Stomp Aqua; Gardo Gold	<u> </u>	<u></u>	76	85	55	89	40	0	0	0		Щ.
9 Alliance + Boxer		L	100	95	0	100	100	100	100	0		L^{--}
		1	0	0	10	0	0	0	0	0		
10 Goltix Titan; Goltix Titan						•	•	•				•
		1	L.	20.08	.2013							
10 Goltix Titan; Goltix Titan	NNNNN	TTTTT	MATSS	20.08		NNNNN	NNNNN	NNNNN	NNNNN			
10 Goltix Titan; Goltix Titan Zielorganismus	NNNNN		MATSS	POLCO	CHEAL	NNNNN	NNNNN	NNNNN VAF	NNNNN WH			
10 Goltix Titan; Goltix Titan Zielorganismus Symptom	DG	DG	WIRK	POLCO WIRK	CHEAL WIRK	NNNNN PHYTO	NNNN AH	NNNN VAE	NNNN WH			
10 Goltix Titan; Goltix Titan Zielorganismus Symptom 1 Kontrolle			WIRK 63,8	POLCO WIRK 4,5	CHEAL WIRK 4,3	PHYTO	AH	VAE	WH			
10 Goltix Titan; Goltix Titan Zielorganismus Symptom 1 Kontrolle 3 Stomp Aqua; Gardo Gold	DG	DG	WIRK 63,8 96	POLCO WIRK 4,5 97	CHEAL WIRK 4,3 100	PHYTO 26	10	VAE 16	WH 0			
10 Goltix Titan; Goltix Titan Zielorganismus Symptom 1 Kontrolle 3 Stomp Aqua; Gardo Gold 4 Stomp Aqua; 2 x Lentagran WP	DG	DG	WIRK 63,8 96 99	POLCO WIRK 4,5 97	CHEAL WIRK 4,3 100 100	26 2	10 2	16 0	0 0			
10 Goltix Titan; Goltix Titan Zielorganismus Symptom 1 Kontrolle 3 Stomp Aqua; Gardo Gold 4 Stomp Aqua; 2 x Lentagran WP 7 Butisan; 2 x Lentagran WP	DG	DG	WIRK 63,8 96 99 100	POLCO WIRK 4,5 97 95 94	CHEAL WIRK 4,3 100 100 98	26 2 16	10 2 3	16 0	0 0 14			
10 Goltix Titan; Goltix Titan Zielorganismus Symptom 1 Kontrolle 3 Stomp Aqua; Gardo Gold 4 Stomp Aqua; 2 x Lentagran WP	DG	DG	WIRK 63,8 96 99	POLCO WIRK 4,5 97	CHEAL WIRK 4,3 100 100	26 2	10 2	16 0	0 0			

Fazit: Die Mehrzahl der Versuchsvarianten führte dazu, dass der extreme Unkrautdruck vermieden wurde. Die Silphiepflanzen entwickelten sich im Ansaatjahr zu kräftigen Einzelpflanzen. Damit wurden gute Voraussetzungen für die Bestandesetablierung im Ansaatjahr und für die folgenden Nutzungsjahre geschaffen. Mit dem Aufgang wurde eine Auflaufverzögerung in den PG 5 bis 7 festgestellt, die durch die VA-Behandlung mit Butisan entstand. Die später auflaufenden Pflanzen waren nicht geschädigt und im späteren Versuchsverlauf führten diese Varianten zu vielversprechenden Ergebnissen. Bis auf Windenknöterich und einzelne Kamillepflanzen wurde in PG 2 der Bestand sauber gehalten, die verbliebenen Unkräuter entwickelten sich mit zunehmender Zeit aber noch zu kräftigen Einzelpflanzen. Phytotoxizität hatte keine Bedeutung. Trotz der verbliebenen Unkräuter konnte sich die Silphie im Ansaatjahr kräftig entwickeln. Überwiegend gute bis sehr gute Wirkung gegen die aufgetretenen Unkräuter zeigte auch PG 3. Das Vorauflauf-Mittel Stomp Agua verursachte keine Schäden, durch die Nachauflauf-Behandlung mit Gardo Gold wurden allerdings erhebliche Aufhellungen und Blattnekrosen bei jüngeren Pflanzen (BBCH 14) verursacht. Größere Pflanzen (ab BBCH 16) vertrugen das Mittel besser. Mit fortschreitender Zeit verwuchsen sich die Schädigungen. Ebenfalls gute bis sehr gute Wirkungen bei unbedeutender Pflanzenschädigung konnte mit PG 4 erreicht werden. Nur geringe Wirkungen wurden durch die Vorauflauf-Behandlung in PG 8 erreicht. Der Bekämpfungserfolg könnte gesteigert werden, indem die Behandlung noch etwas herausgezögert würde. Auch mit den NA-Behandlungen mit Gardo Gold konnten die bereits großen Unkräuter nur noch unzureichend bekämpft werden. Außerdem verursachte die Behandlung mit Gardo Gold erhebliche Aufhellungen und Blattnekrosen bei den jungen Pflanzen. Das aus dem Ackerbau stammende Filon-Pack in PG 9 zeigte außer beim Windenknöterich eine sehr gute Unkrautwirkung, allerdings verursachte die Tankmischung beim Einsatz zu diesen Entwicklungsstadium der Kultur extreme Aufhellungen, die sich aber wieder verwachsen haben. Hier wäre ein späterer Einsatzzeitpunkt zu prüfen. Die Anwendungen in PG 10 konnten kaum Wirkungen erzielen, während die aufgetretene Phytotoxizität unbedeutend war.

2.4.7 Ungarisches Riesenweizengras (Szarvasi)

Anbauversuch Szarvasigras

Versuchsfrage: Ertragsleistung von Szarvasigras in Abhängigkeit von der Saatstärke

Tabelle 2.4.7/1: Einfluss der Saatstärke auf die Bestandesdichte und die Wuchshöhe zur Ernte von Szarvasigras (Aussaat Sept. 2011) im 1. und 2. Standjahr, VS Dornburg 2012 und 2013

Versuchsnummer: 513 751

Saatstärke	Bestandesdichte		Wuchshöhe (cm)						
(kg/ha)	(Pfl./m²)	20	12	2013					
		1. Schnitt	Schnitt	1. Schnitt	2. Schnitt				
17	68	70	146	176	113				
22	80	72	142	179	113				
GD t, 5 %		2,5	3,5	9,3	4,7				

Tabelle 2.4.7/2: TS-Gehalt (%) zur Ernte in Abhängigkeit von der Saatstärke bei Szarvasigras (Aussaat Sept. 2011) im 1. und 2. Standjahr, VS Dornburg 2012 und 2013

Saatstärke	20	12	2013			
(kg/ha)	1. Schnitt	2. Schnitt	1. Schnitt	2. Schnitt		
17	27,5	43,1	27,1	30,9		
22	28,5	42,2	27,2	33,2		
GD t, 5 %	0,7	1,0	1,4	2,0		

Tabelle 2.4.7/3: Ertrag (dt TM/ha) in Abhängigkeit von der Saatstärke bei Szarvasigras (Aussaat Sept. 2011) im 1. und 2. Standjahr, VS Dornburg 2012 und 2013

Saatstärke		2012		2013			
(kg/ha)	1. Schnitt	Schnitt	Gesamt	 Schnitt 	Schnitt	Gesamt	
17	37,3	62,6	99,9	124,1	25,0	149,2	
22	45,9	66,5	112,4	122,7	25,9	148,6	
GD t, 5 %	8,1	6,5	11,8	19,5	2,9	22,0	

Tabelle 2.4.7/4: Methanausbeute (NI/kg oTS) in Abhängigkeit von der Saatstärke bei Szarvasigras (Bestimmung im HBT) im 1. und 2. Standjahr, VS Dornburg 2012 und 2013

Saatstärke 2013 2012 (kg/ha) 1. Schnitt 2. Schnitt 1. Schnitt 2. Schnitt 348 294 17 332 301 345 294 332 298 22

Tabelle 2.4.7/5: Methanertrag (m³/ha) in Abhängigkeit von der Saatstärke bei Szarvasigras (Aussaat Sept. 2011) im 1. und 2. Standjahr, VS Dornburg 2012 und 2013

Saatstärke	•	2012		2013			
(kg/ha)	1. Schnitt	Schnitt	Gesamt	1. Schnitt	Schnitt	Gesamt	
17	1.299	2.935	4.235	4.122	754	4.875	
22	1.581	3.302	4.883	4.073	772	4.845	

Fazit: Nach mittleren Erträgen im 1. Standjahr war in 2013 ein deutlicher Ertragszuwachs zu verzeichnen, der maßgeblich durch den 1. Schnitt bedingt wurde. Der 2012 bei der geringeren Saatstärke zu verzeichnende Minderertrag verwuchs sich in 2013 vollständig. Interessant waren die hohen Methanausbeuten, die bei termingerechter Ernte und entsprechendem TS-Gehalt auf Maisniveau lagen.

Anbauversuch Szarvasigras

<u>Versuchsfrage:</u> Einfluss der Saatzeit auf die Bestandesetablierung und den Ertrag von Szarvasigras

Versuchsnummer: 513 752

Versuchsnummer:

500 800

Tabelle 2.4.7/6: Bestandesdichte und Ertrag bzw. Mängel nach Aufgang und vor Winter in Abhängigkeit von der Saatzeit bei Szarvasigras, VS Dornburg und VA Oberweißbach 2013

Caatzon boi Czan acigrac, To zonnoarg and Tr. Coornelloaden zono								
Saatzeit	Dor	nburg	Oberweißbach					
Dornburg/Oberweißbach	Bestandesdichte	Ertrag	Mängel nach Aufgang	Mängel vor Winter				
_	(Pfl./m²)	(dt TM/ha)	-	_				
06.05./25.04.	305	15,4	3	4				
06.06./30.05.	205	-	6	6				
27.06./27.06.	246	-	6	6				
24.07./10.07.	353	-	6	6				
27.08./21.08.	364	-	4	4				

Fazit: In 2013 wurde ein neuer Versuch zur Bestimmung der optimalen Saatzeit von Szarvasigras in Dornburg und Oberweißbach angelegt. Bei gestaffelten Saatzeiten von Ende April bis Ende August erreichte nur die früheste Saatzeit in Dornburg einen geringen Ertrag. In Oberweißbach war hier vor Winter eine geschlossene Grasnarbe zu verzeichnen. Alle anderen Prüfglieder blieben über die gesamte Vegetationszeit relativ schwach entwickelt und gingen nicht in die generative Phase über.

2.4.8 Blühmischungen

Anbauversuch Blühmischungen (einjährig)

<u>Versuchsfrage:</u> Biomasseertragsleistung unterschiedlicher einjähriger Blühmischungen unter Thüringer Standortverhältnissen

Tabelle 2.4.8/1: TM-Ertrag und TS-Gehalt unterschiedlicher einjähriger Blühmischungen VS Dornburg 2013

Mischung	Anzahl Mischungspartner	Ertrag	TS-Gehalt
		(dt TM/ha)	(%)
Multikulti	8	37,1	40,4
BY 1	11	38,8	25,4
TH-Biogas E	8	27,5	34,1

<u>Fazit:</u> Der bisher einjährig durchgeführte Versuch erreichte in 2013 nur sehr geringe Erträge, die einen wirtschaftlichen Anbau zur Biogasnutzung kaum möglich erscheinen lassen. Insge-

samt litt der Versuch unter den ungünstigen Witterungsverhältnissen des Frühjahrs 2013 und insbesondere bei PG 1 erfolgte die Ernte zu spät. Der Versuch wird weitergeführt.

Anbauversuch Blühmischungen (mehrjährig)

Versuchsnummer: 500 800

Versuchsnummer: 500 784 92

<u>Versuchsfrage:</u> Biomasseertragsleistung unterschiedlicher mehrjähriger Blühmischungen unter Thüringer Standortverhältnissen

Tabelle 2.4.8/2: TM-Ertrag und TS-Gehalt unterschiedlicher mehrjähriger Blühmischungen im 1. Standjahr VS Dornburg 2013

Mischung	Anzahl Mischungspartner	Ertrag (dt TM/ha)	TS-Gehalt (%)
KULAP-Mischung B 5	10	39,0	32,7
BY 2	24	32,0	27,5

<u>Fazit:</u> Auch die mehrjährigen Blühmischungen erreichten im 1. Standjahr 2013 nur sehr geringe Erträge. Entscheidend ist nun, welche der ausdauernden Mischungspartner sich etablieren konnten, überwintern und ab dem nächsten Jahr den Biomasseertrag bestimmen. Der Versuch wird weitergeführt.

2.4.9 Energiepflanzen zur Biogasgewinnung

Anbauversuch Energiepflanzen

Versuchsfrage: Entwicklung und Optimierung von standortangepassten Anbausystemen für

Energiepflanzen im Fruchtfolgeregime bei unterschiedlicher Intensität der Bo-

denbearbeitung – 2. Rotation

Tabelle 2.4.9/1: Ertrag und TS-Gehalt von Energiepflanzen in unterschiedlichen Fruchtfolgen bei konventioneller und minimaler Bodenbearbeitung (Anlagejahr 2009), VS Dornburg 2009 bis 2012

FF/FF-Glied Fruchtart TS-Gehalt Ernte-TM-Ertrag jahr (dt/ha) konventionell minimal konventionell minimal 2009 136,0 Wintergerste (GPS) 136,0

2009	12	Sorghum (SZF)	77,5	76,3	24,8	31,6
2010	13	Mais (HF)	146,6	140,6	23,8	22,2
2011	14	Wintertriticale (GPS)	172,9	167,6	42,2	43,3
2011	15	Phacelia (SZF/GD)	22,4	20,2	21,1	21,9
2012	16	Winterweizen (Korn)	76,4	71,1	89,9	89,4
Σ			631,8	611,8	[
2009	21	Sorghum (HF)	130,0	118,8	28,9	27,6
2010	22	Grünschnittroggen (WZF)	20,4	30,6	20,9	20,2
2010	23	Mais (ZF)	58,5	61,7	21,1	20,4
2011	24	Wintertriticale (Korn)	88,2	83,4	86,9	86,9
2012	25	Winterweizen (Korn)	67,6	79,2	89,5	89,5
Σ			364,7	373,7	[
2009	31	Mais (HF)	182,1	174,6	30,2	29,5
2010	32	Grünschnittroggen (WZF)	20,5	43,1	20,5	19,2
2010	33	Sorghum (ZF)	43,2	41,4	13,4	12,8
2011	34	Wintertriticale (GPS)	171,7	164,8	41,7	42,3
2011	35	Einj. Weidelgras	36,8	36,8	30,7	29,4
2012	36	Winterweizen (Korn)	73,4	64,8	89,4	89,5
Σ			527,7	525,5		
2009	41	Hafersortenmischung (GPS)	155,7*	170,8*	32,4	31,5
2010	42	Wintertriticale (GPS)	113,9	150,1	35,7	33,9
2011	42	Winterraps (Korn)	31,1	35,2	94,3	95,8
2012	43	Winterweizen (Korn)	83,6	82,8	89,4	89,8
$\stackrel{\scriptscriptstyle{2012}}{\varSigma}$		- William Weizell (Rolli)	384,3	438,9		00,0
2009	51	Sommergeste (GPS)	123,0	191,9*	35,8	37,9
2009	52	Untersaat Luzernegras	14,3	25,8	23,4	27,0
2010	53	Luzernegras (1. Jahr)	202,6	211,8	22,0	21,3
2011	54	Luzernegras (2. Jahr)	200,2	216,0	21,6	22,7
2012	55	Winterweizen (Korn)	79,4	71,6	89,7	89,3
Σ		··	619,5	717,1		00,0
2009	61	Hafer (GPS)	138,9	113,7	29,9	32,0
2010	62	Artenmischung (WT, WW)	92,1	121,9	31,5	32,6
2011	63	Winterraps (Korn)	30,0	32,5	94,0	94,9
2012	64	Winterweizen (Korn)	82,6	80,1	89,5	90,3
Σ			343,6	348,2	-	
2009	71	Mais (HF)	167,3	162,3	29,0	30,0
2010	72	Mais (HF)	141,3	123,3	23,4	21,5
2011	73	Mais (HF)	200,0	142,8	32,8	35,8
2012	74	Winterweizen (Korn)	79,0	71,0	88,9	89,9
Σ			587,6	499,4		
2009	81	Topinamburkraut	124,3	k. A.	29,0	k. A.
2010	82	Topinamburkraut	192,9	k. A.	29,3	k. A.
2011	83	Topinamburkraut/-knolle	159,8 /16,3	k. A.	30,7/23,1	k. A.
2012	84	Winterweizen (Korn)	77,4	k. A.	88,9	k. A.
Σ			570,7	k.A.	} -	
		Werte nicht plausibel	310,1	n.a.		

Bei der konventionellen Bodenbearbeitung wurden Fruchtfolgerträge zwischen 343,6 und 631,8 dt TM/ha erzielt. Den höchsten Ertrag erreichte die Fruchtfolge 1 Wintergerste (GPS), Sorghum (SZF), Mais (HF), Wintertriticale (GPS), Phacelia (SZF/GD), Winterweizen (Korn), dicht gefolgt von Fruchtfolge 1 - einer Kombination aus Sommergeste (GPS), Untersaat Luzernegras, Luzernegras (1. Jahr), Luzernegras (2. Jahr), Winterweizen (Korn). Mit der Minimalbodenbearbeitungsvariante wurden Erträge zwischen 348,2 und 717,1 dt TM/ha realisiert. Den höchsten Ertrag erzielte hier die Fruchtfolge 5, wobei der Sommergerstenertrag nicht plausibel erklärt werden kann. Auch die Fruchtfolgen 1 und 3 erreichten hohe Erträge. Ein eindeutiger Einfluss der Bodenbearbeitung auf den Ertrag kann jedoch nicht abgeleitet werden. Es ist davon auszugehen, dass sich die Effekte von Bodenbearbeitung und Fruchtfolge überlagern.

Versuchsnummer: 500 784

Versuchsnummer: 500 784 92

Versuchsfrage: Entwicklung und Optimierung von standortangepassten Anbausystemen für Energiepflanzen im Fruchtfolgeregime bei Bodenbearbeitung mit Pflug

Tabelle 2.4.9/2: Ertrag und TS-Gehalt von Energiepflanzen in unterschiedlichen Fruchtfolgen bei konventioneller Bodenbearbeitung (Anlageiahr 2010). VS Dornburg 2010 bis 2013

		ng (Anlagejahr 2010), VS Dornburg 20 [.]		
Erntejahr	FF/FF-Glied	Fruchtart	TM-Ertrag	TS-Gehalt
			(dt/ha)	(%)
2010	11	Wintergerste	131,3	34,6
2011	12	Sorghum (SZF)	40,6	18,1
2011	13	Mais (HF)	219,4	32,4
2012	14	Wintertriticale (GPS)	142,2	32,8
2012	15	Phazelia	22,3	27,5
2013	16	Winterweizen (Korn)	62,7	85,3
		Σ	618,5	
2010	21	Sorghum (HF)	96,8	14,6
2011	22	Grünschnittroggen	54,1	21,7
2011	23	Mais (ZF)	101,4	23,6
2012	24	Wintertriticale (Korn)	107,0	89,9
2013	25	Winterweizen (Korn)	65,7	85,6
· - : *	-	2	425,0	
2010	31	Mais (HF)	137,6	23,1
2011	32	Grünschnittroggen	48,9	21,8
2011	33	Sorghum (ZF)	18,4	14,9
2012	34	Wintertriticale (GPS)	159,0	31,1
2012	35	Einj. Weidelgras	37,1	28,7
2012	36	Winterweizen (Korn)	55,2	85,4
2013	30	\[\sqrt{\text{Kolli)}} \]	456,2	00,4
2010	41	Hafersortenmischung	136,7	29,9
2010	41 42	Wintertriticale (GPS)	206,7	29,9 39,7
2012	43	Winterraps (Korn)	32,6	90,7
2013	44	Winterweizen (Korn)	70,8	85,4
0040	F4	Σ	446,8	00.4
2010	51	Sommergerste	117,0	38,4
2010	52	US Luzernegras	22,3	27,6
2011	53	Luzernegras	209,6	22,2
2012	54	Luzernegras	141,8	20,1
2013	55	Winterweizen (Korn)	68,9	85,4
		Σ	559,6	
2010	61	Hafer	132,5	31,8
2011	62	Artenmischung (WG, WT, WW)	189,8	41,8
2012	63	Winterraps (Korn)	29,4	90,4
2013	64	Winterweizen (Korn)	72,0	83,9
		Σ	423,7	
2010	71	Mais (HF)	141,2	23,3
2011	72	Mais (HF)	216,0	33,9
2012	73	Mais (HF)	200,3	30,8
2013	74	Winterweizen (Korn)	65,0	84,6
		Σ	622,5	
2013	84	Winterweizen (Korn)	58,5	84,4
	(Neuanlage)			

Bei der zeitversetzten Anlage des Fruchtfolgeversuches erreichte wiederum die Fruchfolge 1, gleichauf mit der Fruchtfolge 7 (Mais in Selbstfolge), den höchsten Ertrag. Die Erträge lagen auf etwa dem gleichen Niveau wie bei dem 2009 angelegten Versuch. Recht gut schnitt auch wieder die Fruchtfolge 5 ab.

Anbauversuch Energiepflanzen

Versuchsfrage: Entwicklung und Optimierung von standortangepassten Anbausystemen für Energiepflanzen im Fruchtfolgeregime bei unterschiedlicher Intensität der Bodenbearbeitung – 3. Rotation

Tabelle 2.4.9/3: Ertrag und TS-Gehalt von Energiepflanzen in unterschiedlichen Fruchtfolgen bei konventioneller und

minimaler Bodenbearbeitung (Anlagejahr 2013), VS Dornburg 2013

Erntejahr	FF/FF-Glied	Fruchtart	TM-Ertrag TS-Gehalt				
Lintojani	I I // I Olica	Tuoman		ha)	(%)		
			konventionell	minimal	konventionell	minimal	
2013	11	Wintergerste (GPS)	109,3	98,0	33,5	33,7	
2013	12	Sorghum (SZF)	99,3	82,4	28,1	26,8	
Σ			208,6	180,4			
2013	21	Sorghum (HF)	84,4	58,0	33,3	31,7	
Σ			84,4	58,0			
2013	31	Mais (HF)	156,1	125,2	36,8	36,8	
$oldsymbol{arSigma}$			156,1	125,2			
2013	41	Luzerne-Rotklee-Gras (HF)	168,5	138,6	19,4	19,6	
$oldsymbol{\Sigma}$			168,5	138,6			
2013	51	Wintertriticale / Winteracker-					
		bohne (HF)	148,0	125,3	33,5	34,1	
2013	52	Welsches Weidelgras (WZF)	12,6	9,2	22,6	22,3	
$oldsymbol{arSigma}$			160,6	134,5			
2013	61	Mais (HF) 25 % N-reduziert	133,9	153,1	35,4	38,7	
$oldsymbol{\Sigma}$			133,9	153,1			
2013	71	Mais (HF)	154,6	130,2	35,0	37,1	
$oldsymbol{\Sigma}$			154,6	130,2			
2013	81	Landsberger Gemenge	79,7	69,2	17,5	16,6	
	82	Welsches Weidelgras	41,7	31,7	31,4	32,5	
		(US Rotklee)					
$oldsymbol{\Sigma}$			121,4	100,9			

Fazit: Die 3. Rotation begann erst 2013, so dass zum gegenwärtigen Zeitpunkt noch keine Aussagen zur Ertragsfähigkeit der Fruchtfolgen möglich sind. Am ertragreichsten war die Kombination aus Wintergerste (GPS) und Sorghum als Sommerzwischenfrucht bei beiden Bodenbearbeitungsvarianten. Insgesamt schnitten die Varianten mit konventioneller Bodenbearbeitung, mit Ausnahme Mais (HF) mit reduzierter N-Düngung, besser ab als die Minimalbodenbearbeitung.

Anbauversuch Energiepflanzen

Versuchsfrage: Entwicklung und Optimierung von standortangepassten Anbausystemen für Energiepflanzen im Fruchtfolgeregime bei Bodenbearbeitung mit Pflug

Versuchsnummer:

500 784

Tabelle 2.4.9/4: Ertrag und TS-Gehalt von Energiepflanzen in unterschiedlichen Fruchtfolgen bei konventioneller Bodenbearbeitung (Anlagejahr 2012) VS Dornburg 2012 bis 2013

Erntejahr	FF/FF-Glied	Fruchtart	TM-Ertrag	TS-Gehalt
			(dt/ha)	(%)
2013	14	Wintertriticale (GPS)	159,4	33,7
2013	15	Phazelia (Gründüngung)	38,5	15,0
		Σ	197,9	
2013	24	Wintertriticale (Korn)	81,1	85,6
		Σ	81,1	
2013	34	Wintertriticale (GPS)	161,2	33,8
2013	35	Einj. Weidelgras	4,7	18,5
		Σ	165,9	
2013	73	Mais (HF)	148,7	36,7
		Σ	148,7	

Bei der zeitversetzten Anlage ausgewählter Fruchtfolgen in 2012 schnitt 2013 Wintertriticale besser ab als der Mais, was maßgeblich an den ungünstigen Witterungsbedingungen des Frühjahrs 2013 gelegen haben sollte. Aussagen zu den Fruchtfolgen sind gegenwärtig noch nicht möglich.

Versuchsnummer: 500 784

Versuchsnummer: 500 750/01

<u>Versuchsfrage:</u> Entwicklung und Optimierung von standortangepassten Anbausystemen für Energie-

pflanzen im Fruchtfolgeregime bei Bodenbearbeitung mit Pflug

Tabelle 2.4.9/5: Ertrag und TS-Gehalt von Energiepflanzen in unterschiedlichen Fruchtfolgen bei konventioneller Bodenbearbeitung (Anlagejahr 2012)

VS Dornburg 2013

Erntejahr	FF/FF-Glied	Fruchtart	TM-Ertrag	TS-Gehalt
			(dt/ha)	(%)
2013	13	Mais (HF)	156,4	36,2
		Σ	156,4	
2013	22	Winterroggen (WZF)	34,3	19,2
	23	Mais (ZF)	70,8	26,8
		Σ	105,1	
2013	32	Winterroggen (WZF)	50,1	17,8
2013	33	Sorghum (ZF)	84,2	29,6
		Σ	134,3	

<u>Fazit:</u> Der Hauptfruchtmais erreichte, trotz niedriger Ertragshöhe, bei der zeitversetzten Anlage ausgewählter Fruchtfolgen 2013 höhere Erträge als Mais bzw. Hirse in Zweitfruchtstellung nach Futterroggen. Aussagen zu den Fruchtfolgen sind auch hier noch nicht möglich.

Anbauversuch Energiepflanzen

<u>Versuchsfrage:</u> Düngung einer Fruchtfolge mit Gärresten im Vergleich zur mineralischen Düngung (1. Rotation)

Tabelle 2.4.9/6: Trockenmasseertrag (dt/ha) unterschiedlicher Fruchtarten in Abhängigkeit von der Düngung,

VS Dornburg 2009 bis 2012

Fruchtart	Jahr		Düngungsvariante	
		100 % mineralisch	50 % mineralisch	100 % Gärrest
			+ 50 % Gärrest	
Anlage 1				
Mais	2009	176,3	177,4	172,8
Futterroggen	2010	46,2	59,1	47,3
Sorghumhirse	2010	91,1	83,0	78,4
Wintertriticale GP		189,3	193,4	194,5
Einj. Weidelgras	2011	29,4	21,2	26,0
Winterweizen Korn	2012	90,2	83,9	89,4
Σ		622,5	618,0	608,4
Anlage 2				
Winterweizen Korn	2009	69,2	66,8	59,0
Mais	2010	147,4	145,3	142,4
Futterroggen	2011	42,0	27,4	31,0
Sorghumhirse	2011	40,3	37,3	43,4
Wintertriticale GP	2012	188,9	187,4	195,4
Einj. Weidelgras	2012	15,11	17,9	20,3
Σ		502,9	482,1	491,5

Fazit: Im 2009 angelegten Versuch wurde eine Fruchtfolge (Mais – Futterroggen + Sorghum – Wintertriticale + Einjähriges Weidelgras – Winterweizen) mit Gärresten im Vergleich zur mineralischen N-Gabe gedüngt. Dazu wurde die Fruchtfolge versetzt (Anlage 1, Anlage 2) mit Winterweizen bzw. Mais begonnen. Sowohl in den einzelnen Versuchsjahren als auch in der Summe unterschieden sich die Erträge der Fruchtarten bei unterschiedlichem Düngungsregime kaum voneinander. Das Ertragsniveau der Anlage 1 lag etwas über dem der Anlage 2, was durch Jahreseinflüsse zu erklären ist. Nach den bisherigen Ergebnissen scheint es durchaus möglich zu sein, eine Fruchtfolge ohne Ertragsverluste vollständig mit Gärresten zu versorgen. Der Versuch wurde ab 2013 in eine 2. Rotation überführt.

<u>Versuchsfrage:</u> Düngung einer Fruchtfolge mit Gärresten im Vergleich zur mineralischen Düngung (2. Rotation)

Versuchsnummer: 500 750/01

Versuchsnummer: 500 750/02

Tabelle 2.4.9/7: Trockenmasseertrag (dt/ha) unterschiedlicher Fruchtarten in Abhängigkeit von der Düngung, VS Dornburg 2013

Fruchtart	Jahr		Düngungsvariante	
		100 % mineralisch	50 % mineralisch + 50 % Gärrest	100 % Gärrest
Anlage 1				
Senf Mais	2012	9,7	11,7	16,8
Mais	2013	116,7	136,2	123,2
Σ		126,4	147,9	140,0
Anlage 2				
Winterweizen Korn	2013	76,2	70,8	69,8
Senf	2013	6,4	12,4	15,5
$oldsymbol{arSigma}$		82,6	83,2	85,3

<u>Fazit:</u> Bei der 2. Rotation erreichte beim Mais die kombinierte Düngung, gefolgt von der alleinigen Gärrestdüngung den höchsten Ertrag. Die zeitversetzte Anlage, beginnend mit Winterweizen wies keine Unterschiede auf. Aussagen zur Wirkung der Düngevarianten auf den kumulierten Ertrag der Fruchtfolge sind aufgrund der kurzen Laufzeit noch nicht möglich.

Anbauversuch Energiepflanzen

<u>Versuchsfrage:</u> Düngung unterschiedlicher Fruchtarten mit Gärresten im Vergleich zur mineralischen Düngung

Tabelle 2.4.9/8: Trockenmasseertrag (dt/ha) von Mais und Nachfrucht Winterweizen in Abhängigkeit von der Düngung, VS Dornburg 2009 bis 2012

Düngung		Mais ,Atletico'				Winterweizen			
	2009	2010	2011	2012	2010	2011	2012		
Ohne N-Düngung	149,3	122,5	182,6	164,1	86,8	85,3	73,6		
100 % mineralisch (KAS)	181,5	142,8	184,8	196,0	90,8	93,5	81,1		
50 % organisch (Gärrest)	173,2	128,3	193,9	203,1	91,1	84,7	76,7		
75 % organisch (Gärrest)	171,9	121,7	194,7	188,0	94,0	90,6	80,8		
100 % organisch (Gärrest)	168,2	144,3	218,2	211,7	96,2	68,6	84,9		
125 % organisch (Gärrest)	185,9	141,6	238,4	200,7	93,2	92,3	84,8		
200 % organisch (Gärrest)	178,3	144,2	216,3	195,2	92,8	91,8	89,9		

Tabelle 2.4.9/9: Trockenmasseertrag (dt/ha) von Wintertriticale (Ganzpflanze) und Nachfrucht Winterweizen in Abhängigkeit von der Düngung. VS Dornburg 2009 bis 2012

Abiliangighter von der Bangang, ve Bernbarg 2000 ble 2012								
Düngung	Win	tertriticale ,Ben	etto'	Winterweizen				
	2009	2010	2011	2010	2011	2012		
100 % mineralisch (KAS)	133,7	169,6	188,6	64,6	98,4	81,9		
75 % organisch (Gärrest)	126,8	139,1	175,8	63,9	93,2	77,9		
100 % organisch (Gärrest)	127,5	166,1	184,5	62,7	97,1	83,5		
125 % organisch (Gärrest)	137,0	175,8	183,8	61,9	99,6	85,1		
20 % (Herbst) + 80 %	123,3	172,0	185,8	62,0	98,4	84,6		
(Frühjahr) organisch (Gärrest)								

<u>Fazit:</u> Bei der Fruchtart Mais erreichte in allen Versuchsjahren die organische Gärrest-Düngung ab 100 % - 125 % N die besten Ergebnisse. Eine Erhöhung der Gärrestdüngung auf 200 % N brachte hier keine Ertragssteigerung. Im Wintertriticale konnte dieser Trend auch festgestellt werden, ein Splitting der Düngung in eine Herbst und Frühjahrsgabe hatte nicht den erwünschten Mehrertrag zur Folge. Beiden Fruchtarten folgte Winterweizen. Hier wurde die Nachwirkung der Gärrestdüngung geprüft, wobei die Ergebnisse widersprüchlich waren.

Versuchsnummer: 500 750/02

Versuchsnummer: 500 783

<u>Versuchsfrage:</u> Düngewirkung von Gärresten bei verschiedenen Ausbringungsvarianten in den

Haupt- und Folgefrüchten (Großer Gärrestversuch EVA III)

Doppelanlage: Wintertriticale – Raps Senf – Mais/Sorghum - Futterroggen

Tabelle 2.4.9/10: Ganzpflanzenertrag von Wintertriticale "Tulus" in Abhängigkeit von der Düngung, VS Dornburg 2013

Düngung	TM-Ertrag
	(dt/ha)
Ungedüngte Kontrolle	115,4
Mineralisch nach SBA	183,1
Gärrest org. Herbst + org./min. Frühjahr nach SBA	162,8
org./min. Frühjahr nach SBA	174,8
Mineralisch nach SBA	169,0
Gärrest Herbst + org./min. Frühjahr nach SBA	161,1
org./min. Frühjahr nach SBA	167,0

Tabelle 2.4.9/11: Trockenmasseertrag (dt/ha) von Mais und Sorghum in Abhängigkeit von der Düngung und der Vorfruchtwirkung der Sommerzwischenfrucht Senf, VS Dornburg 2013

Düngung	Mais
Keine Vorfrucht – mineralisch nach SBA	164,6
VF Senf – Gärrest vor Saat nach SBA	165,2
VF Senf – Gärrest in den Bestand nach SBA	134,0
VF Senf – 0-Variante	86,1
VF Senf – mineralisch nach SBA	165,1
VF Senf – Gärrest vor Saat nach SBA	130,4
VF Senf – Gärrest in den Bestand nach SBA	132,6
Düngung	Sorghum
VF Senf – mineralisch nach SBA	112,8
VF Senf – Gärrest vor Saat nach SBA	116,8
VF Senf – Gärrest in den Bestand nach SBA	112,4

<u>Fazit:</u> Im 2013 begonnenen Versuch wird die Wirkung unterschiedlicher mineralischer und organischer Düngungsvarianten auf Wintertriticale und die Nachfrucht Winterraps bzw. Mais oder Sorghum mit und ohne Vorfrucht Senf sowie die Nachfrucht Winterfutterroggen geprüft. Aussagen sind gegenwärtig noch nicht möglich.

Anbauversuch Energiepflanzen

<u>Versuchsfrage:</u> Biomasseleistung von Mais nach Wintergerste und Wintertriticale in Abhängigkeit vom Erntetermin

Tabelle 2.4.9/12: Erntetermin und TS-Gehalt bei Kombination von Ganzpflanzengetreide und Mais VS Dornburg 2010 bis 2013

Variante	Erntete	ermin Ga	anzpflG	etreide	TS-G		nzpflGe	treide	TS-Gehalt Mais (%)					
						(%	6)			(%	6)			
	2010	2011	2012	2013	2010	2011	2012	2013	2010	2011	2012	2013		
Wintergerste + Mais S 280	17.05.	10.05.	16.05.	13.06.	17,2	23,9	20,8	26,3	20,8	31,5	23,8	22,0		
Wintergerste + Mais S 240	07.06.	27.05.	23.05.	19.06.	26,1	29,6	31,2	30,8	13,8	29,6	25,7	21,1		
Wintergerste + Mais S 220	15.06.	14.06.	08.06.	27.06.	30,2	42,7	32,9	35,1	12,5	23,2	25,7	21,8		
Wintergerste + Hafer	15.06.	14.06.	08.06.	-	30,2	42,7	32,9	-	15,2	60,2	27,9	-		
Wintertriticale + Mais S 240	07.06.	27.05.	23.05.	19.06.	21,0	25,8	27,4	27,4	12,8	29,2	22,7	20,6		
Wintertriticale + Mais S 220	15.06.	14.06.	08.06.	27.06.	26,2	34,8	26,4	29,4	12,4	23,0	18,3	21,4		
Wintertriticale + Mais S 190	28.06.	27.06.	25.06.	05.07.	31,4	41,3	36,8	33,7	13,2	16,3	30,2	33,6		

Tabelle 2.4.9/13: Trockenmasseerträge bei Kombination von Ganzpflanzengetreide und Mais VS Dornburg 2010 bis 2013

Variante	TM-Ertra			getreide		TM-Ertr	ag Mais		(Gesamt-T	ΓM-Ertra	g
		(dt/	ha)			(dt/	ha)	_		(dt/	ha)	
	2010	2011	2012	2013	2010	2011	2012	2013	2010	2011	2012	2013
Wintergerste + Mais S 280	63,5	43,3	112,5	105,6	78,5	248,5	169,7	87,2	142,0	291,9	282,2	192,8
Wintergerste + Mais S 240	166,4	81,0	116,4	120,1	84,8	195,9	161,8	105,0	251,2	277,0	278,2	225,1
Wintergerste + Mais S 220	150,3	128,2	130,6	116,8	69,4	125,0	149,5	55,7	219,6	253,3	280,1	172,5
Wintergerste + Hafer*	146,4	122,5	130,6	-	22,2	31,2	136,7	-	168,6	153,7	267,3	-
Wintertriticale + Mais S 240	97,2	83,1	127,3	144,3	77,7	202,9	161,8	105,8	174,8	286,0	289,1	250,1
Wintertriticale + Mais S 220	162,1	125,9	147,6	158,5	64,9	126,7	124,6	52,3	226,9	252,6	274,3	210,8
Wintertriticale + Mais S 190	204,8	122,9	155,2	152,0	60,4	31,9	100,3	-	265,2	154,9	255,5	152,0
Hauptfruchtmais S 280**	-	-	-	-	178,0	291,1	271,0	198,6	178,0	291,9	178,0	198,6

^{*} Hafer im Jahr 2012 durch Sorghum spec. ersetzt, 2013 weggefallen

Fazit: Bei Betrachtung der Ergebnisse wird ersichtlich, dass Varianten der Kombination aus Wintergetreide-GPS und Silomais in drei von vier Jahren Mehrerträge >20 % gegenüber dem Hauptfruchtmais erzielen konnten. Im Jahr 2011, in dem absolut günstige Bedingungen für den Maisanbau herrschten, erreichte die beschriebene Kombination zumindest ein dem Hauptfruchtmais ähnliches Ertragsniveau. Interessant ist, dass im Jahr 2010, welches ebenfalls nur niedrige Zweitfruchtmaiserträge zuließ, diese durch vergleichsweise hohe Ganzpflanzengetreideerträge ausgeglichen wurden. In diesem Jahr stellte die späte Ernte Ende Juni die ertragreichste Option dar, da das Ganzpflanzengetreide den Hauptertragspartner stellte. In den meisten Fällen stellte eine Ernte des GPS-Getreides bei einem TS-Gehalt der Wintergerste von 25 % (± 5 %) bzw. bei Wintertriticale von 28 % TS (± 3 %) die ertragreichste Variante dar. Um eine erfolgreiche Silierung der Biogassubstrate zu gewährleisten, ist sowohl bei GPS- als auch bei Silomaisernte ein Blick auf die zur Ernte gemessenen Trockensubstanzgehalte notwendig. Diese erreichten beim Silomais im Jahr 2010 und sowie bei späteren Schnitten 2011 und bei frühen Schnitten 2012 und 2013 nicht die erforderlichen 28 %. Dies ist unter Umständen mit dem Auftreten von Sickersäften im Silo sowie mit erhöhten Gärverlusten und somit geringeren Gasausbeuten des Substrates verbunden.

^{**} Hauptfruchtmais im Jahr 2010 mit Werten aus dem EVA-Versuch, seit 2011 als Prüfglied im Versuch integriert

2.5 Hopfen

Sortenversuch Versuchsnummer: 550 800

Versuchsfrage: Prüfung der für den Marktwert relevantesten Sorten auf Ertrag und Qualität

Tabelle 2.5/1: Ertrag und Alphasäuregehalt des Hopfensortimentes Agrargenossenschaft Großromstedt 2011 und 2012

Sorte	Ertr (dt/l	ag		säuren lftr.)
	2011	2012	2011	2012
Aromahopfen				
Perle	19,9	33,9	9,2	10,1
Hallertauer Tradition	15,6	17,4	4,8	5,9
Smaragd	25,8	19,9	6,5	7,8
Opal	28,7	18,0	7,2	7,2
Saphir	32,9	21,2	3,2	3,8
Saazer	11,3	13,3	4,1	4,8
Bitterhopfen		· 		
Hallertauer Magnum	19,2	33,7	14,2	15,0
Herkules	36,2	44,2	15,8	15,3
Northern Brewer	30,9	30,4	9,4	8,4
Nugget	30,5	19,6	11,6	9,8
Hallertauer Merkur	24,0	21,0	13,5	12,0
Zeus	41,0	25,4	11,6	10,8
Zuchtstämme				
2000/109/728 / Polaris	32,9	19,4	19,5	18,7
2003/067/002	23,0	22,4	12,7	11,6
2003/067/005	21,0	16,0	14,1	12,4
2003/067/020	22,5	10,0	5,5	6,8
2003/067/044	12,6	13,5	5,8	6,8
2003/067/062	15,1	17,6	10,6	12,6

<u>Fazit:</u> Das 2010 neu angelegte Hopfensortiment mit Aroma- und Bitterhopfen sowie sechs Zuchtstämmen der LfL wurde 2011 erstmals geerntet. Der Zuchtstamm 2000/109/728 erzielte die höchsten Alphasäurengehalte und erhielt 2012 unter dem Namen Polaris die Zulassung. Als ertragreichste Sorte bestätigt sich Herkules. Aufgrund der unausgeglichenen Bestände nach dem späten Wintereinbruch Ende März 2013 musste auf eine Ertragsermittlung verzichtet werden.

Erntezeitpunkte Versuchsnummer: keine

<u>Versuchsfrage:</u> Ermittlung des optimalen Erntezeitpunktes der wichtigsten Sorten und Zuchtstämme des Anbaugebietes Elbe/Saale

Tabelle 2.5/2: Entwicklung des Gehaltes an Alphasäure (% lftr.) von drei für dir Praxis bedeutsamen Sorten, Agrargenossenschaft Großromstedt 2012

Sorte/Stamm	07.09.	11.09.	19.09.
Hallertauer Magnum	10,3	15,0	14,8
Herkules	12,5	15,3	15,6
Polaris	14,6	18,7	18,7

<u>Fazit:</u> Bei allen Sorten war Anfang September 2012 noch ein Zuwachs an Alphasäuren zu verzeichnen. Um hohe Gehalte zu erzielen, wird eine Ernte ab der 2. Septemberdekade empfohlen.

2.6 Sonstige Versuche zu nachwachsenden Rohstoffen

2.6.1 Dauerdüngungsversuch mit Presskuchen und Asche Versuchsnummer: 999 770

<u>Versuchsfrage:</u> Verwertung von Ölpresskuchen und Asche als Düngemittel

Düngungsvarianten:

Variante	N-Düngung	P-/K-Düngung
1	N mineralisch, optimal	jährlich mineralisch auf Entzug
2	N mineralisch - 50 %	jährlich mineralisch auf Entzug
3	Presskuchen-Kopfdüngung, N = Var. 1	jährlich mineralisch auf Entzug
4	Presskuchen-Kopfdüngung, N = Var. 2	jährlich mineralisch auf Entzug
5	Presskuchen-Kopfdüngung, N = Var. 1 + 50 %	jährlich mineralisch auf Entzug
6	Presskuchen-Einarbeitung (MDÄ zu Var. 1)	jährlich mineralisch auf Entzug
7	Aschedüngung, Einarbeitung zur Aussaat	P/K Asche nach Entzug
8	Aschedüngung, Kopfdüngung	P/K Asche nach Entzug

Tabelle 2.6.1/1: Einfluss der Düngung mit Presskuchen und Asche auf den absoluten Kornertrag (dt/ha, bezogen auf die Basisfeuchte der jeweiligen Kultur) verschiedener Feldfrüchte einer Fruchtfolge VS Dornburg 1996 bis 2013

Var.	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006		2008	2009	2010	2011	2012	2013
	GS ¹⁾	GW ²⁾	RAW ³⁾	WW⁴	GS	EF ⁵⁾	WW	RW ⁶⁾	RAW	WW	GS	M′)	WW	GS	RAW	WW	TIW8)	M
)														
11	55,6	77,6	40,3	92,7	53,0	58,4	73,4	77,9	64,5	106,1	78,7	199,7	103,7	69,8	52,1	95,1	46,9	162,8
22	50,5	61,3	33,3	81,5	45,5	56,4	73,3	64,5	63,6	93,7	63,2	183,4	78,0	54,7	44,4	74,4	37,4	152,4
3	49,7	51,7	36,1	90,5	51,0	55,5	79,7	58,0	61,4	103,5	62,0	183,6	95,5	69,9	49,3	86,8	46,6	152,5
4	47,3	46,0	32,6	77,4	46,0	55,3	72,5	53,6	61,2	98,3	56,6	179,1	72,6	55,0	43,7	70,3	46,9	142,5
5	53,3	65,5	40,8	99,1	61,3	60,0	76,1	68,6	59,6	105,0	74,1	163,6	108,6	75,1	50,1	103,5	58,7	172,6
6	51,4	56,3	37,6	92,5	57,6	59,9	77,7	57,9	56,8	105,4	65,8	177,6	101,3	67,3	52,7	90,8	50,3	152,1
7	56,8	80,4	43,5	94,1	68,5	61,8	74,2	82,5	60,2	108,6	80,4	184,3	109,6	70,6	48,8	98,4	76,1	173,4
8	48,5	83,2	42,4	94,3	68,4	60,4	70,2	82,9	62,3	106,5	83,1	187,5	109,2	72,7	49,6	97,0	76,2	174,4
GD t, 5%	8,1	5,7	4,6	3,5	4,6	4,2	4,4	3,2	2,6	3,4	4,4	23,0	4,4	1,8	2,4	5,6	3,8	12,3

¹⁾ Sommergerste, 2) Wintergerste, 3) Winterraps, 4) Winterweizen, 5) Körnerfuttererbse, 6) Winterroggen, 7) Silomais, 8) Wintertriticale, * TM-Ertrag in dt/ha

Tabelle 2.6.1/2: Einfluss der Düngung mit Presskuchen und Asche auf den relativen Kornertrag (relativ zu Variante 1) verschiedener Feldfrüchte einer Fruchtfolge VS Dornburg 1996 bis 2013

				<u> </u>														
Var.	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
	GS	GW	RAW	WW	GS	EF	WW	RW	RAW	WW	GS	M	WW	GS	RAW	WW	TIW ⁸⁾	M
1	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
2	91	79	83	88	86	97	100	83	99	88	80	92	75	78	85	78	80	94
3	89	67	90	98	96	95	109	74	95	98	79	92	92	100	95	91	100	94
4	85	59	81	83	87	95	99	69	95	93	72	90	70	79	84	74	101	88
5	96	84	101	107	116	103	104	88	92	99	94	82	105	108	96	109	126	106
6	92	73	93	100	109	102	106	74	88	99	84	89	98	96	101	96	108	93
7	102	104	108	102	129	106	101	106	93	102	102	92	106	101	94	103	164	107
8	87	107	105	102	129	103	96	106	97	100	106	94	105	104	95	102	163	107

Tabelle 2.6.1/3: Einfluss der Düngung mit Presskuchen und Asche auf den absoluten Strohertrag (dt TM/ha) verschiedener Feldfrüchte einer Fruchtfolge
VS Dornburg 1996 bis 2013

				9														
Var.	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
	GS	GW	RAW	WW	GS	EF	WW	RW	RAW	WW	GS	M	WW	GS	RAW	WW	TIW ⁸⁾	M
1	41,2	37,3	32,2	91,5	35,4	50,6	74,5	58,8	n. b.	64,0	47,6	n. b.	53,7	52,7	n. b.	44,9	24,9	n. b.
2	39,3	30,7	25,0	78,4	30,7	50,9	74,5	49,9	n. b.	60,3	33,2	n. b.	41,1	36,1	n. b.	30,9	21,3	n. b.
3	36,0	30,1	31,7	81,5	35,1	45,1	78,9	49,9	n. b.	71,7	33,9	n. b.	48,8	45,8	n. b.	36,0	35,4	n. b.
4	33,0	24,8	23,9	65,1	32,5	78,6	71,4	44,8	n. b.	72,9	29,4	n. b.	35,3	33,2	n. b.	30,9	34,7	n. b.
5	37,1	39,6	31,2	84,0	36,0	54,0	76,6	58,6	n. b.	71,1	39,9	n. b.	51,3	55,2	n. b.	43,8	37,4	n. b.
6	36,2	33,3	25,8	85,7	35,9	45,0	74,1	44,5	n. b.	71,3	38,1	n. b.	53,1	48,4	n. b.	41,0	37,3	n. b.
7	42,5	50,9	38,1	90,8	44,6	48,8	80,7	62,3	n. b.	77,3	43,2	n. b.	66,1	55,1	n. b.	47,7	42,2	n. b.
8	39,9	50,8	30,0	94,1	41,1	53,9	77,8	65,1	n. b.	73,1	46,3	n. b.	64,7	58,3	n. b.	45,4	40,1	n. b.
GD t, 5%	5,5	5,0	5,1	6,9	3,2	17,2	6,5	5,6	-	8,1	9,4	-	-	10,5	-	7,4	6,9	-

Tabelle 2.6.1/4: Einfluss der Düngung mit Presskuchen und Asche auf den relativen Strohertrag (relativ zu Variante 1) verschiedener Feldfrüchte einer Fruchtfolge

VS Dornburg 1996 bis 2013

Var.	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
	GS	GW	RAW	WW	GS	EF	WW	RW	RAW	WW	GS	M	WW	GS	RAW	WW	TIW ⁸⁾	M
1	100	100	100	100	100	100	100	100	n. b.	100	100	n. b.	100	100	n. b.	100	100	n. b.
2	95	82	78	86	87	100	100	85	n. b.	94	70	n. b.	76	69	n. b.	69	78	n. b.
3	87	81	98	89	99	89	106	85	n. b.	112	71	n. b.	91	87	n. b.	80	93	n. b.
4	80	66	74	71	92	155	96	76	n. b.	114	62	n. b.	66	63	n. b.	69	99	n. b.
5	90	106	97	92	102	107	103	99	n. b.	111	84	n. b.	95	105	n. b.	98	121	n. b.
6	88	89	80	94	101	89	99	76	n. b.	111	80	n. b.	99	92	n. b.	91	110	n. b.
7	103	136	118	99	126	96	108	106	n. b.	121	91	n. b.	123	105	n. b.	106	161	n. b.
8	97	136	93	103	116	106	104	111	n. b.	114	97	n. b.	120	111	n. b.	110	160	n. b.

Tabelle 2.6.1/5: Einfluss der Düngung mit Presskuchen und Asche auf das absolute Korn:Stroh-Verhältnis (1 zu...) verschiedener Feldfrüchte in einer Fruchtfolge

VS Dornburg 1996 bis 2013

Var.	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
	GS	GW	RAW	WW	GS	EF	WW	RW	RAW	WW	GS	М	WW	GS	RAW	WW	TIW ⁸⁾	М
11_	0,86	0,56	0,82	1,15	0,78	1,04	1,18	0,87	n.b.	0,71	0,71	n. b.	0,62	0,84	n. b.	0,56	0,62	n. b.
2	0,90	0,58	0,83	1,12	0,78	1,01	1,18	0,87	n. b.	0,77	0,64	n. b.	0,65	0,76	n. b.	0,50	0,70	n. b.
3	0,84	0,68	0,96	1,05	0,80	0,91	1,16	0,98	n. b.	0,82	0,65	n. b.	0,62	0,72	n. b.	0,50	0,97	n. b.
4	0,81	0,63	0,81	0,98	0,82	1,74	1,16	0,96	n. b.	0,89	0,63	n. b.	0,59	0,68	n. b.	0,53	0,90	n. b.
5	0,81	0,70	0,84	0,98	0,68	1,01	1,16	0,97	n. b.	0,80	0,63	n. b.	0,56	0,82	n. b.	0,51	0,79	n. b.
6	0,82	0,69	0,75	1,08	0,73	0,84	1,10	0,91	n. b.	0,79	0,65	n. b.	0,61	0,80	n. b.	0,54	0,86	n. b.
7	0,87	0,74	0,96	1,12	0,76	0,90	1,26	0,86	n. b.	0,83	0,63	n. b.	0,70	0,87	n. b.	0,57	0,67	n. b.
8	0,96	0,71	0,78	1,16	0,70	1,00	1,29	0,90	n. b.	0,79	0,66	n. b.	0,71	0,88	n. b.	0,61	0,64	n. b.
GD t, 5%	0,11	0,06	0,16	0,10	0,08	0,30	0,18	0,07		0,09	0,14		0,06	0,18		0,08	0,12	

Tabelle 2.6.1/6: Einfluss der Düngung mit Presskuchen und Asche auf das relative Korn:Stroh-Verhältnis (relativ zu Variante 1) verschiedener Feldfrüchte in einer Fruchtfolge

VS Dornburg 1996 bis 2013

Var.	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
	GS	GW	RAW	WW	GS	EF	WW	RW	RAW	WW	GS	M	WW	GS	RAW	WW	TIW ⁸⁾	M
11_	100	100	100	100	100	100	100	100	n. b.	100	100	n. b.	100	100	n. b.	100	100_	n. b.
2	105	104	101	97	100	97	100	103	n. b.	108	90	n. b.	102	90	n. b.	89	112	n. b.
3	98	121	117	91	102	88	98	101	n. b.	115	92	n. b.	98	86	n. b.	89	155	n. b.
4	94	112	99	85	105	167	98	110	n. b.	125	89	n. b.	93	81	n. b.	95	144	n. b.
5	94	125	102	85	97	97	98	112	n. b.	113	89	n. b.	92	98	n. b.	91	126	n. b.
6	95	123	91	94	94	81	93	101	n. b.	111	92	n. b.	102	95	n. b.	96,4	139	n. b.
7	101	132	117	97	97	86	107	100	n. b.	117	89	n. b.	116	104	n. b.	102	108	n. b.
8	112	127	95	101	90	96	109	103	n. b.	111	93	n. b.	115	105	n. b.	109	103	n. b.

<u>Fazit:</u> Die Varianten 7 und 8 (Aschedüngung) erreichten ab dem 2. Versuchsjahr, außer 2004, 2010 (Winterraps) und 2007 (Silomais), einen Mehrertrag zur Kontroll-Variante 1. Der Einfluss der Presskuchendüngung scheint in starkem Maße von der Jahreswitterung und der jeweiligen Kultur abzuhängen. Der Versuch wird weitergeführt.