

Thüringer Landesanstalt für Landwirtschaft

Feldversuchsbericht 2004 und 2005

Ölfrüchte und Nachwachsende Rohstoffe

Besuchen Sie uns auch im Internet: www.tll.de/ainfo

Impressum

Herausgeber:

Thüringer Landesanstalt für Landwirtschaft

Naumburger Str. 98, 07743 Jena

Tel.: (03641)683-0, Fax: (03641) 683 390

Autoren:

Andrea Biertümpfel

Tosten Graf Armin Vetter Peter Wieser

Redaktionelle Bearbeitung:

Dipl. Ing. agr. Andrea Biertümpfel

- März 2006 -

- Nachdruck - auch auszugsweise – nur mit Quellenangabe gestattet -

Inhalt

		Seite
	Einleitung und Erläuterungen	3
1	Ölfrüchte	5
1.1	Winterraps	5
1.1.1	Parzellenversuche	5
1.1.2	Anbauvergleiche Praxisdemonstration Winterraps	15
1.2	Öllein	19
1.3	Sommerraps	22
1.4	Sonnenblumen	23
2	Nachwachsende Rohstoffe	24
2.1	Alternative Ölpflanzen	24
2.1.1	High-Oleic-Sonnenblume	24
2.1.2	Senf	25
2.1.3	Iberischer Drachenkopf	27
2.1.4	Saflor	28
2.1.5	Koriander	30
2.1.6	Schwarzkümmel	32
2.2	Heil-, Duft- und Gewürzpflanzen	36
2.2.1	Große Brennnessel (Fasernessel)	36
2.2.2	Kümmel	36
2.2.3	Fenchel	39
2.2.4	Dill	41
2.2.5	Anis	42
2.2.6	Echte Kamille	43
2.2.7	Zitronenmelisse	45
2.2.8	Pfefferminze	47
2.2.9	Thymian	50
2.2.10	Salbei	53
2.2.11	Moldawischer Drachenkopf	54
2.2.12	Zitronenthymian	56
2.2.13	Traubensilberkerze	56
2.3	Färberpflanzen	58
2.3.1	Färberknöterich	58
2.3.2	Färberwau	61
2.3.3	Färberhundskamille	61
2.3.4	Kanadische Goldrute	62
2.3.5	Waid	63
2.4	Faserpflanzen	66
2.4.1	Hanf-Parzellenversuche	66
2.4.2	Hanf-Praxisversuche	70

0.5	Energianflanzan	71
2.5	Energiepflanzen	71
2.5.1	Energiegetreide	71
2.5.2	Großgräser	72
2.5.3	Topinambur	76
2.5.4	Energieholz	79
2.5.5	Energiepflanzen zur Biogasgewinnung	84
2.6	Hopfen	89
2.0	1 topicii	09
2.7	Sonstige Versuche zu nachwachsenden Rohstoffen	92
2.7.1	Dauerdüngungsversuche mit Presskuchen und Asche	92

Einleitung und Erläuterungen

Der vorliegende Versuchsbericht gibt einen Überblick über die vom Thüringer Zentrum Nachwachsende Rohstoffe der TLL in Zusammenarbeit mit den Versuchsstationen des Landes Thüringen durchgeführten Feldversuche zu Ölpflanzen und nachwachsenden Rohstoffen. Er umfasst den Versuchszeitraum 2004 und 2005. In Ausnahmefällen, vor allem bei Dauerkulturen, werden auch Versuchsergebnisse vorangegangener Jahre vorgestellt.

Die Versuche konzentrieren sich auf Fruchtarten, die in Thüringen angebaut werden bzw. für die Chancen für einen zukünftigen Anbau bestehen. Des Weiteren sind Versuche dargestellt, die im Rahmen sogenannter "Drittmittelthemen" von Auftraggebern außerhalb Thüringens, wie der Europäischen Union, der Deutschen Bundesstiftung Umwelt und der Fachagentur Nachwachsende Rohstoffe e.V. finanziert werden.

Den Schwerpunkt bilden agrotechnische Versuche zur Steigerung der Effizienz der Produktion.

Entsprechend seiner Bedeutung für Thüringen als Food- und Non-Food-Pflanze liegt das Hauptaugenmerk beim Winterraps.

Die Versuche zu Öllein dienen vor allem der Qualitätssicherung für eine Speiseleinproduktion. Bei den alternativen Ölpflanzen, wie High-Oleic-Sonnenblume, Iberischer Drachenkopf, Senf, Schwarzkümmel und Saflor geht es in erster Linie darum, die Ertragshöhe und -sicherheit sowie wertgebende Inhaltsstoffe für die chemische Industrie näher zu untersuchen, um Absatzmärkte für die Thüringer Landwirtschaft zu erschließen. Koriander, Saflor und Schwarzkümmel sind Körnerfrüchte, für die im pharmazeutischen Bereich und in der Lebensmittelindustrie Bedarf besteht, die aber gleichzeitig dem Preisdruck der Importware ausgesetzt sind. Die Versuche sind dementsprechend auf eine Prüfung der Ertragssicherheit, der Qualität und auf die Entwicklung effizienter Produktionsverfahren ausgerichtet.

Heil-, Duft- und Gewürzpflanzen haben in Thüringen traditionell eine große Anbaubedeutung. Neben Untersuchungen zur Optimierung der Anbauverfahren etablierter Kulturen standen Versuche zur Eruierung neuer Arten im Mittelpunkt. Einen Schwerpunkt bildeten im Versuchszeitraum Untersuchungen zur Eignung verschiedener Kulturen für die Gewinnung ätherischer Öle. Diese Arbeiten erfolgten im Rahmen eines von der Fachagentur Nachwachsende Rohstoffe e. V. geförderten Projektes.

Die zu Färberpflanzen durchgeführten Versuche dienen vor allem der Erhaltung der in verschiedenen Drittmittelthemen ausgelesenen Herkünfte bzw. erzeugten Stämme mit höheren Farbstoffgehalten bzw. verbesserter Anbaueignung.

Eine ausgesprochene Industriepflanze ist der Hanf. Diesem kommt durch den Aufbau von Verarbeitungskapazitäten in Thüringen zunehmende Bedeutung zu. Es gilt hier, neu auf dem Markt erhältliche Sorten im Vergleich zu etablierten auf ihre Anbaueignung in Thüringen zu prüfen und das Anbauverfahren zu optimieren. Dabei standen, neben dem Ertrag, der Fasergehalt und die Faserqualität für eine technische Verwertung zur Diskussion.

Neben Holz ist aus forstwirtschaftlicher Nutzung für weitere Energiepflanzen, wie Energiegetreide und Weiden/Pappeln aus Kurzumtriebsplantagen in Zukunft eine Nachfrage zu erwarten. Die Suche nach für in Thüringen geeigneten Arten bzw. Sorten/Klonen und die Ermittlung von Parametern für eine umweltgerechte und effiziente Produktion war Veranlassung für die Durchführung entsprechender Versuche. In den letzten Jahren gewinnen, bedingt durch die Novellierung des Erneuerbare Energien Gesetz, pflanzliche Kofermente für den Einsatz in landwirtschaftlichen Biogasanlagen zunehmende Bedeutung. Erste Ergebnisse diesbezüglicher Anbauversuche im Rahmen verschiedener Drittmittelprojekte sind im vorliegenden Bericht enthalten.

Die Versuche zu Hopfen erfolgten nahezu ausschließlich auf Praxisflächen. In den letzten Jahren standen dabei die Unterstützung der Betriebe bei der Sortenumstellung, die Ermittlung des optimalen Ernte-

termins hinsichtlich Ertrag und Qualität sowie Untersuchung der Wirtschaftlichkeit der Bewässerung im Vordergrund.

Im Versuchsbericht sind die Ergebnisse von insgesamt über 150 Einzelversuchen in Tabellen dargestellt. Auf eine Interpretation der Ergebnisse wird weitestgehend verzichtet. Diese erfolgt für ausgewählte Versuche in Forschungsberichten sowie Veröffentlichungen in der einschlägigen Fachpresse.

Der Bericht steht in erster Linie für die Beratung zur Verfügung. Er soll jedoch gleichzeitig für interessierte Landwirte und Abnehmer als Information über in Thüringen anbauwürdige Pflanzen und deren erzielbare Ertragshöhe und Qualität dienen.

Folgende Versuche zum Problemkreis Ölpflanzen und nachwachsende Rohstoffe wurden weiterhin durchgeführt:

- Landessortenversuche Ölpflanzen (TLL, Ref. Pflanzenbau)
- Düngung Ölpflanzen (TLL, Ref. Ackerbau)
- Pflanzenschutz Ölpflanzen (TLL, Ref. Pflanzenschutz)
- Lückenindikation Arznei- und Gewürzpflanzen (TLL, Ref. Pflanzenschutz)
- Beregnung Arznei- und Gewürzpflanzen (TLL, Ref. Beregnung)
- Anbautechnik/Inkulturnahme Arznei- und Gewürzpflanzen (PHARMAPLANT GmbH Artern)

Die Ergebnisse dieser Versuche sind nicht Gegenstand des vorliegenden Berichtes.

Auszüge und Ergebnisse des Berichtes dürfen nur nach Abstimmung mit den Autoren weiterverwendet werden.

ı Ölfrüchte

1.1 Winterraps

1.1.1 Parzellenversuche

Anbauversuch Winterraps

Versuchsfrage: Einfluss der Saatstärke bei Einzelkornsaat auf den Kornertrag und die Qualität von

Versuchsnummer: 120 852

Winterraps

Tabelle 1.1.1/1: Einfluss der Saatstärke bei Einzelkornsaat auf den Kornertrag (dt/ha, 91 % TS) von Winterraps

VS Dornburg, Großenstein und Friemar 2002 bis 2004

Sorte	Saatstärke		Dornburg			Großenstein	l		Friemar	
	(Kö./m²)	2002	2003	2004	2002	2003	2004	2002	2003	2004
Capitol	30	35,7	36,6	58,2	39,3	31,1	57,9	64,3	49,3	55,2
	40	40,6	36,2	57,9	37,6	37,3	56,8	60,8	52,7	54,3
	50	33,1	36,5	55,8	39,2	36,4	58,0	62,6	54,7	55,2
	60	37,3	38,5	53,1	36,5	36,4	59,0	61,8	52,4	56,7
	70	37,8	40,1	54,5	36,4	37,5	60,0	58,6	54,3	54,3
Panther	30	43,4	44,2	64,4	47,9	42,9	74,2	63,0	56,6	55,8
	40	46,8	41,7	73,5	47,8	43,7	81,7	68,8	57,6	62,3
	50	44,7	43,2	62,5	47,9	43,0	73,3	62,7	59,9	61,9
	60	50,5	43,8	67,2	48,2	41,6	74,3	65,9	58,1	60,1
	70	45,6	43,7	64,6	47,0	43,6	70,6	62,5	58,1	55,0
GD t, 5 %		3,7	3,7	6,6	2,5	2,9	3,5	3,6	1,5	2,1

Tabelle 1.1.1/2: Einfluss der Saatstärke bei Einzelkornsaat auf den Ölgehalt (% TM) von Winterraps

VS Dornburg, Großenstein und Friemar 2002 bis 2004

Sorte	Saatstärke	8,	Dornburg			Großenstein	1		Friemar	
	(Kö./m²)	2002	2003	2004	2002	2003	2004	2002	2003	2004
Capitol	30	44,7	46,1	48,2	44,3	43,9	47,5	46,7	45,3	48,6
	40	44,2	46,5	48,5	44,0	43,3	47,8	46,1	45,2	48,0
	50	44,2	46,9	48,2	44,3	43,3	47,2	46,5	44,9	47,9
	60	44,6	46,9	48,1	43,4	43,1	47,8	46,3	45,0	47,0
	70	44,0	46,7	48,3	43,6	43,3	47,6	47,0	44,9	47,7
Panther	30	43,5	44,5	47,1	43,9	41,1	47,1	45,6	44,3	48,1
	40	44,1	45,1	48,7	43,9	41,4	48,0	45,7	44,5	47,4
	50	43,8	45,3	47,2	44,1	40,5	48,0	46,6	44,2	46,8
	60	44,1	45,5	48,7	44,2	40,8	48,7	46,3	44,4	46,5
	70	44,4	45,8	47,0	44,0	40,3	47,4	47,2	44,5	45,8
GD t, 5 %		0,5	0,9	0,8	1,1	0,8	0,7	0,6	0,6	0,6

Tabelle 1.1.1/3: Einfluss der Saatstärke bei Einzelkornsaat auf den Ölertrag (dt/ha) von Winterraps VS Dornburg, Großenstein und Friemar 2002 bis 2004

Sorte	Saatstärke		Dornburg			Großenstein	ļ		Friemar	
	(Kö./m²)	2002	2003	2004	2002	2003	2004	2002	2003	2004
Capitol	30	14,5	15,3	25,5	15,9	12,4	25,0	27,3	20,3	24,4
	40	16,3	15,3	25,5	15,0	14,7	24,7	25,5	21,7	23,7
	50	13,3	15,6	24,4	15,8	14,4	24,9	26,5	22,3	24,1
	60	15,1	16,4	23,2	14,4	14,3	25,7	26,1	21,4	24,2
	70	15,1	17,0	24,0	14,4	14,8	26,0	25,1	22,2	23,6
Panther	30	17,2	17,9	27,6	19,1	16,1	31,8	26,1	22,8	24,4
	40	18,8	17,1	32,6	19,1	16,5	35,7	28,6	23,3	26,9
	50	17,8	17,8	26,8	19,2	15,9	32,0	26,6	24,1	26,3
	60	20,3	18,2	29,8	19,4	15,4	32,9	27,8	23,5	25,4
	70	18,4	18,2	27,6	18,8	16,0	30,4	26,8	23,5	22,9
GD t, 5 %		1,5	1,4	2,8	0,6	1,2	1,6	1,7	0,7	1,0

<u>Fazit:</u> Die Versuche zur Reduzierung der Saatstärke erbrachten in Abhängigkeit von Standort, Jahr und Sorte widersprüchliche Ergebnisse. Dies verdeutlicht, dass eine Reduzierung der Saatstärke generell nur bei optimalen Boden- und Witterungsbedingungen möglich ist. Saatstärken unter 40 Kö./m² sind bei ungünstigen Saatbettvoraussetzungen bzw. Auflaufbedingungen risikobehaftet

und unter Thüringer Standortbedingungen nicht zu empfehlen. Die Hybridsorte 'Panther' erwies sich in allen Jahren und an allen Standorten der Liniensorte 'Capitol' ertraglich überlegen.

Anbauversuch Hybridraps

Versuchsnummer: 120 713

Versuchsfrage: Ermittlung des N-Bedarfs und der entsprechenden N-Düngung bei Hybridraps

 Tabelle 1.1.1/4:
 Einfluss der N-Düngung auf den Kornertrag (dt/ha, 91 % TS) von Hybridraps, Sorte ,Maja'

VS Dornburg, VS Großenstein und VS Friemar 2002 bis 2005

N-Dün	gung (Frühjahr)			Dornburg	7	G	roßenste	in		Friemar	
1. Gabe	e 2. Gabe	3. Gabe	2002	2003	2002	2003	2004	2005	2003	2004	2005
SBA	SBA	0	37,2	39,4	38,9	40,5	67,2	61,5	54,3	75,6	66,8
SBA	SBA - 30 %	40 kg N/ha als AHL	37,7	41,9	38,6	37,3	65,6	62,0	53,8	75,9	67,0
SBA	SBA - 30 %	40 kg N/ha als AHL + 3 kg/ha Nutribor	37,3	40,9	38,6	38,9	66,3	60,0	54,7	76,9	68,3
SBA	SBA - 30 % + 3 kg/ha Nutribor	0	40,4	39,4	38,2	39,7	65,7	59,2	55,3	75,3	64,9
SBA	SBA - 30 % + 3 kg/ha Nutribor	40 kg N/ha als AHL	41,2	43,4	37,4	40,5	64,3	62,5	55,9	76,7	66,8
SBA	SBA + 3 kg/ha Nutribor	o	34,5	42,3	39,4	41,0	68,3	62,2	56,3	79,5	65,3
SBA		3 kg/ha Nutribor	33,3	39,2	38,3	40,4	66,7	63,3	55,7	76,8	68,7
GD t, 5	;%		4,8	2,8	2,8	2,2	3,0	4,0	2,7	5,5	4,7

Tabelle 1.1.1/5: Einfluss der N-Düngung auf den Ölgehalt (% TM) von Hybridraps, Sorte 'Maja' VS Dornburg. VS Großenstein und VS Friemar 2002 bis 2005

N-Dün	gung (Frühjahr)	ilbuig, vo dioisciisteiii		Dornburg			roßenste	in		Friemar	
I		3. Gabe		2003	2002	2003	i i	i e	2002	1	2005
i. Gabe	z. Gabe	3. Gabe	2002	2003	2002	2003	2004	2005	2003	2004	2005
SBA	SBA	o	44,1	45,9	45,4	43,4	48,8	47,5	45,9	48,6	50,7
SBA	SBA - 30 %	40 kg N/ha als AHL	43,9	46,0	45,2	43,0	49,1	47,6	45,5	48,4	50,0
SBA	_	40 kg N/ha als AHL	44,0	46,2	45,5	43,3	49,0	47,7	46,0	49,0	49,9
		+ 3 kg/ha Nutribor]		L			L		ll
SBA	SBA - 30 %	0	43,9	46,5	45,5	43,9	49,0	47,7	46,2	49,0	49,8
	+ 3 kg/ha Nutribor		L]		L			L		
SBA		40 kg N/ha als AHL	43,7	46,0	45,1	44,4	49,1	47,8	45,9	48,8	50,0
	+ 3 kg/ha Nutribor		L]		L			L	L	
SBA	SBA	0	43,9	46,2	45,1	43,1	49,0	47,9	45,5	48,6	50,4
	+ 3 kg/ha Nutribor]					L		
SBA	SBA	3 kg/ha Nutribor	44,1	46,1	45,2	43,0	49,0	47,8	45,6	48,7	48,5
GDt, 5	%	·	0,8	0,4	0,5	0,7	0,5	0,5	0,5	0,9	1,5

Tabelle 1.1.1/6: Einfluss der N-Düngung auf den Ölertrag (dt/ha) von Hybridraps, Sorte 'Maja' VS Dornburg, VS Großenstein und VS Friemar 2002 bis 2005

N-Dün	gung (Frühjahr)			Dornburg	5	G	roßenste	in		Friemar	
1. Gabe	2. Gabe	3. Gabe	2002	2003	2002	2003	2004	2005	2003	2004	2005
SBA	SBA	o	14,9	16,4	16,1	16,0	29,9	26,6	22,9	33,4	30,8
SBA	SBA - 30 %	40 kg N/ha als AHL	15,0	17,5	15,9	14,6	29,3	26,9	22,3	33,5	30,5
SBA	SBA - 30 %	40 kg N/ha als AHL + 3 kg/ha Nutribor	14,9	17,2	16,0	15,3	29,6	26,1	22,3	34,3	31,0
SBA	SBA - 30 % + 3 kg/ha Nutribor	0	16,1	16,7	15,8	15,9	29,3	25,7	23,0	33,6	39,4
SBA	SBA - 30 % + 3 kg/ha Nutribor	40 kg N/ha als AHL	16,4	18,2	15,3	16,4	28,7	27,2	23,3	34,1	30,4
SBA	SBA + 3 kg/ha Nutribor	0	13,8	17,8	16,3	16,1	30,5	27,1	23,4	35,2	30,0
SBA	SBA	3 kg/ha Nutribor	13,4	16,4	15,7	15,8	29,7	27,5	23,0	34,0	30,3
GDt, 5	%		2,0	1,2	1,2	1,0	1,5	1,7	1,3	2,9	2,3

Tabelle 1.1.1/7: Einfluss der N-Düngung auf den N-Gehalt (% TM) von Hybridraps, Sorte 'Maja' VS Dornburg, VS Großenstein und VS Friemar 2002 bis 2005

N-Düngı	ıng (Frühjahr)			Dornburg		Große	nstein		Friemar	
1. Gabe	2. Gabe	3. Gabe	2002	2003	2002	2003	2004	2003	2004	2005
SBA	SBA	o	4,02	3,50	3,86	3,98	3,20	3,75	3,15	4,00
SBA	SBA - 30 %	40 kg N/ha als AHL	4,06	3,52	3,89	3,93	3,16	3,79	3,18	3,98
SBA		40 kg N/ha als AHL + 3 kg/ha Nutribor	4,05	3,50	3,87	3,97	3,17	3,79	3,08	3,95
SBA	SBA – 30 % + 3 kg/ha Nutribor	o	4,01	3,45	3,77	3,94	3,16	3,74	3,07	3,89
SBA	SBA – 30 % + 3 kg/ha Nutribor	40 kg N/ha als AHL	4,10	3,57	3,84	4,09	3,16	3,73	3,08	3,96
SBA	SBA + 3 kg/ha Nutribor	o	4,09	3,58	3,87	3,95	3,18	3,79	3,16	4,05
SBA	SBA	3 kg/ha Nutribor	4,06	3,57	3,86	3,90	3,18	3,77	3,14	3,89
GDt, 5 %)		0,07	0,07	0,10	0,13	0,09	0,06	0,14	0,13

<u>Fazit:</u> Eine eindeutige Wirkung der Mehrnährstoffdüngung auf den Ertrag war an keinem Standort und Jahr festzustellen. Dies liegt möglicherweise an der guten Mikronährstoffversorgung der Standorte. Interessant ist, dass Variante 4, SBA – 30 %, im Vergleich zur vollständigen Düngung nach SBA keine Mindererträge brachte.

Anbauversuch Winterraps

Versuchsfrage:

Tabelle 1.1.1/8: Einfluss der Beizung (Fungizide) auf den Kornertrag (dt/ha, 91 % TS) von Winterraps in Abhängigkeit von der Saatzeit

Prüfung verschiedener Fungizidvarianten auf Wirksamkeit gegenüber Pilzkrankheiten

Versuchsnummer: 120 729 40

VS Dornburg 2004

Prüfglied	1. Saatzeit	t (normal)	2. Saatze	eit (spät)
	Kornertrag	Kornertrag	Kornertrag	Kornertrag
	(dt/ha, 91 % TS)	(rel., %)	(dt/ha, 91 % TS)	(rel., %)
Variante 1 (u. K.)	36,7	100	36,4	100
Variante 2	57,5	148	61,3	169
Variante 3	62,2	160	63,8	175
Variante 4	64,3	166	62,9	173
Variante 5	61,2	158	59,4	163

Tabelle 1.1.1/9: Einfluss der Fungizidbehandlung auf den Kornertrag (dt/ha, 91 % TS) von Winterraps in Abhängigkeit von der Saatzeit
VS Dornburg 2005

Prüfglied	1. Saatzeit	: (normal)	2. Saatze	eit (spät)
-	Kornertrag (dt/ha, 91 % TS)	Kornertrag (rel., %)	Kornertrag (dt/ha, 91 % TS)	Kornertrag (rel., %)
Variante 1 (u. K.)	45,2	100	51,0	100
Variante 2	45,4	112	49,2	96
Variante 3	51,0	112	51,5	100
Variante 4	48,6	107	53,7	105
Variante 5	46,6	103	51,8	100
Variante 6	43,3	96	47,2	92
Variante 7	45,6	100	49,0	96
Variante 8	44,2	98	50,8	99
Variante 9	44,0	97	52,1	102
Variante 10	45,9	102	51,6	100

Fazit: Im Jahr 2004 war ein sehr starker Befallsdruck mit insektiziden und fungiziden Schaderregern zu verzeichnen. Dies führte zu einer deutlichen Ertragssteigerung der behandelten Varianten im Vergleich zur unbehandelten Kontrolle. Im Folgejahr traten deutlich weniger Schaderreger auf. Insbesondere im Herbst nach der Aussaat waren nur relativ wenige tierische Schaderreger (Erdfloh, Kohlfliege) festzustellen. Der Befall verteilte sich gleichmäßig über alle Varianten. Dadurch erbrachte die Saatgutbeizung im Jahr nur bei den Varianten 2 und 3 der ersten Saatzeit einen wesentlichen Ertragsanstieg.

Anbauversuch Winterraps

Versuchsnummer: 120 861

Versuchsfrage: Einfluss der Erntevariante auf den Kornertrag und die Qualität von Winterraps

 Tabelle 1.1.1/10:
 Einfluss der Erntevariante auf den Kornertrag von Winterraps

VS Haufeld 2003 bis 2005

Sorte	Erntevariante		Kornertrag (dt/ha, 91 % TS)	
		2003	2004	2005
Express	Scheiteln, früh	41,2	50,8	50,5
	Scheiteln, spät	46,0	59,9	48,3
	Seitenmesser	38,8	62,8	54,0
Maja (2003)	Scheiteln, früh	54,1	43,1	43,0
Laser (2004 und 2005)	Scheiteln, spät	50,4	45,4	39,3
	Seitenmesser	45,8	49,2	44,6
GD t, 5 %		6,4	3,2	2,4

<u>Fazit:</u> Ein eindeutiger Einfluss des Scheiteltermins auf den Ertrag konnte im ersten Versuchsjahr nicht festgestellt werden. Die gescheitelten Varianten waren jedoch den mit Seitenmesser geernteten in allen Fällen ertraglich überlegen. Ab dem 2. Versuchsjahr erreichten die Varianten mit Seitenmesser höhere bzw. gleich hohe Erträge wie die Scheitelvarianten. Auch die Erträge zwischen den einzelnen Scheitelterminen zeigten keine eindeutige Tendenz, so dass eine abschließende Aussage zur optimalen Erntevariante auf Basis der Versuchsergebnisse nicht möglich ist.

Anbauversuch Winterraps

Versuchsnummer: 120 760

Versuchsfrage: Einfluss des Erntetermins auf den Kornertrag und die Qualität von Winterraps

Tabelle 1.1.1/11: Einfluss des Erntetermins auf Kornertrag, TKG, Ölgehalt und Ölertrag von Winterraps Sorte 'Oase' VS Friemar 2004 und 2005

Ernte		ertrag 91 % TS)	TKG) (g, 91 % TS)		_	ehalt TM)		rtrag /ha)
	2004	2005	2004	2005	2004 2005		2004	2005
BBCH 83	24,4	27,9	4,64	4,75	49,9	48,4	11,1	12,3
BBCH 85	38,0	35,5	5,12	4,99	50,0	48,6	17,3	15,7
BBCH 87	52,2	51,1	5,38	4,99	50,2	48,5	23,8	22,6
BBCH 89	61,3	59,1	5,25	4,84	50,4	49,0	28,1	26,3
GD t, 5 %	3,3	3,6	0,26	0,32	0,7	0,6	1,6	1,7

Fazit: In beiden Versuchsjahren stiegen die Erträge vom ersten bis zum letzten Erntetermin signifikant an. Dies ist jedoch nur teilweise auf einen Anstieg des Tausendkorngewichtes zurückzuführen. Eine mögliche Ursache könnte in einem schlechten Ausdrusch der noch relativ grünen Schoten zu suchen sein. Proportional zum Ertrag erhöhten sich auch tendenziell die Ölgehalte der Varianten, so dass zum letzten Erntetermin auch der mit Abstand höchste Ölertrag je Flächeneinheit zu verzeichnen war. Eine Ernte vor der Vollreife des Korns (BBCH 89) scheint bei Winterraps nicht sinnvoll.

Anbauversuch Winterraps

Versuchsnummer: 120 715

<u>Versuchsfrage:</u> Einfluss der N-Düngung auf den Kornertrag und die Qualität von Winterraps

Einfluss der N-Düngung auf den Kornertrag (dt/ha, 91 % TS) von Hybridraps VS Burkersdorf, VS Dornburg, VS Kirchengel und VS Heßberg 2004 und 2005

N	I-Düngung (kg/ha)	Burke	rsdorf	Dorr	burg	Kirch	engel	Heß	berg
Herbst	Frühjahr	2004	2005	2004	2005	2004	2005	2004	2005
0	100/100/0	61,7	42,6	53,2	51,5	60,7	51,9	42,5	36,7
0	100/60/40	62,9	45,3	52,7	50,3	59,6	53,5	43,6	36,4
40	80/80/40	63,2	46,3	58,4	50,8	59,0	53,3	42,5	37,2
40	80/60/40	64,5	42,3	51,2	51,9	60,3	52,0	43,3	36,5
40	60/60/60	65,0	46,5	53,8	50,7	60,8	52,1	43,9	37,6
40	100/40/20	67,0	47,0	47,2	48,9	61,9	53,2	42,9	36,0
40	80/40/40	64,4	44,8	52,3	50,3	61,3	53,1	41,8	36,5
40	60/40/40	-	44,4		48,5	-	51,7	-	36,5
	GD t, 5 %	7,4	7,7	6,3	3,6	3,5	2,3	3,8	3,8

Tabelle 1.1.1/13: Einfluss der N-Düngung auf den Ölgehalt (% TM) von Hybridraps

VS Burkersdorf, VS Dornburg, VS Kirchengel und VS Heßberg 2004 und 2005

N	-Düngung (kg/ha)	Burkersdorf		Dorn	ıburg	Kirch	engel	Heß	berg
Herbst	Frühjahr	2004	2005	2004	2005	2004	2005	2004	2005
0	100/100/0	47,8	45,0	49,2	48,6	49,6	47,7	44,5	47,8
0	100/60/40	47,9	45,6	49,4	48,8	50,5	47,6	44,0	47,6
40	80/80/40	47,8	45,4	49,1	48,7	49,9	48,0	44,5	47,6
40	80/60/40	47,6	45,7	49,6	49,3	50,3	47,9	44,1	48,2
40	60/60/60	48,0	45,9	49,5	49,4	49,8	47,7	43,5	48,2
40	100/40/20	47,0	45,8	49,6	49,8	51,6	48,2	44,3	48,2
40	80/40/40	48,0	46,4	49,7	49,5	51,0	48,1	45,0	48,1
40	60/40/40	-	46,7	-	50,8	-	48,2	•	48,6
	GD t, 5 %	0,9	1,0	0,8	1,0	-	0,4	0,7	0,5

Tabelle 1.1.1/14: Einfluss der N-Düngung auf den Ölertrag (dt/ha) von Hybridraps VS Burkersdorf, VS Dornburg, VS Kirchengel und VS Heßberg 2004 und 2005

N	I-Düngung (kg/ha)	Burke	rsdorf	Dorn	burg	Kirch	engel	Heß	berg
Herbst	Frühjahr	2004	2005	2004	2005	2004	2005	2004	2005
0	100/100/0	26,8	17,5	23,8	22,8	27,4	22,5	17,2	16,0
0	100/60/40	27,4	18,8	23,7	22,3	27,4	23,2	17,5	15,7
40	80/80/40	27,5	19,1	26,1	22,5	26,8	23,3	17,2	16,1
40	80/60/40	27,9	17,6	23,1	23,3	27,6	22,7	17,4	16,0
40	60/60/60	28,4	19,4	24,2	22,8	27,5	22,6	17,4	16,5
40	100/40/20	29,2	19,6	21,3	22,2	29,1	23,3	17,3	15,8
40	80/40/40	28,3	18,9	23,6	22,7	28,5	23,3	17,1	16,0
40	60/40/40	-	18,9	-	22,4	-	22,6	-	16,2
	GD t, 5 %	3,1	3,6	3,0	1,6	-	1,0	1,5	1,7

Einfluss der N-Düngung auf den N-Gehalt (% TM) von Hybridraps Tabelle 1.1.1/15:

N-I	Düngung (kg/ha)	Burke	rsdorf	Dorr	nburg	Kirch	engel	Heß	berg
Herbst	Frühjahr	2004	2005	2004	2005	2004	2005	2004	2005
0	100/100/0	3,47	4,13	3,22	3,42	3,15	3,68	3,80	3,56
0	100/60/40	3,42	4,09	3,21	3,39	3,05	3,68	3,85	3,59
40	80/80/40	3,45	4,07	3,23	3,41	3,13	3,60	3,81	3,62
40	80/60/40	3,50	4,03	3,14	3,33	3,06	3,62	3,84	3,45
40	60/60/60	3,41	3,97	3,20	3,31	3,09	3,64	3,91	3,49
40	100/40/20	3,48	3,97	3,13	3,23	2,86	3,57	3,81	3,47
40	80/40/40	3,42	3,90	3,20	3,27	2,94	3,59	3,68	3,47
40	60/40/40	-	3,82	-	3,07	-	3,58	-	3,39
	GD t, 5 %	0,17	0,20	0,10	0,10	-	0,06	0,10	0,06

Tabelle 1.1.1/16: Einfluss der N-Düngung auf die N-Hinterlassenschaft (kg/ha) von Hybridraps VS Burkersdorf, VS Dornburg, VS Kirchengel und VS Heßberg 2004 und 2005

	Variante		rsdorf	Dorr	iburg	Kirch	engel	Heß	berg
N	-Düngung (kg/ha)								
Herbst	Frühjahr	2004	2005	2004	2005	2004	2005	2004	2005
0	100/100/0	39	59	39	28	36	51	95	32
0	100/60/40	39	59	51	32	39	59	103	35
40	80/80/40	43	43	39	43	44	70	91	35
40	80/60/40	39	67	39	24	32	39	103	32
40	60/60/60	43	39	44	28	28	43	132	32
40	100/40/20	36	35	39	28	32	94	99	24
40	80/40/40	39	35	38	24	32	39	76	24
40	60/40/40	-	35	-	24	-	47	-	24

Fazit: Hinsichtlich der Erträge der einzelnen Varianten, Orte und Versuchsjahre ist kein eindeutiger Einfluss der N-Düngung zu erkennen. Es ist allerdings ersichtlich, dass eine Herbstdüngung von 40 N kg/ha keinen Vorteil gegenüber der ausschließlichen Frühjahrsdüngung bringt. Auch hinsichtlich der Ölgehalte und -erträge sind nach den zwei Versuchsjahren keine Tendenzen abzuleiten. Gleiches gilt für die N-Gehalte im Korn. Es war jedoch festzustellen, dass mit steigender Frühjahrs-N-Düngung die N-Hinterlassenschaft im Boden nach der Ernte ansteigt. Der Versuch wird weitergeführt.

Versuchsnummer:

Versuchsnummer:

120 713

Anbauversuch Winterraps

Einfluss der Mikronährstoffdüngung auf den Kornertrag von Winterraps Versuchsfrage:

Tabelle 1.1.1/17: Einfluss der Mikronährstoffdüngung auf Kornertrag und TKG von Hybridraps VS Dornburg und VS Haufeld 2004 und 2005

Mehrnährstoffdün		Taureta 2004 una 2005		Kornertra		TH	(G
	I =	1 =		t/ha, 91 %			g)
Herbst	Frühjahr 1	Frühjahr 2	Dorn	burg	Haufeld	Dorr	burg
			2004	2005	2005	2004	2005
0	0	О	56,2	49,7	49,8	4,97	4,15
3 kg/ha Nutribor	0	0	52,3	50,9	50,2	5,00	4,26
0	3 kg/ha Nutribor + Fungizid	0	50,6	50,4	48,9	5,20	4,21
О	0	3 kg/ha Nutribor + 1 kg/ha Solubor	51,8	48,9	49,4	5,17	4,26
3 kg/ha Nutribor	3 kg/ha Nutribor + Fungizid	0	52,6	49,2	49,4	5,22	4,26
3 kg/ha Nutribor	0	3 kg/ha Nutribor + 1 kg/ha Solubor	53,0	49,8	48,4	5,32	4,20
0	3 kg/ha Nutribor + Fungizid	3 kg/ha Nutribor + 1 kg/ha Solubor	53,4	49,9	50,7	5,14	4,15
3 kg/ha Nutribor	3 kg/ha Nutribor + Fungizid	3 kg/ha Nutribor + 1 kg/ha Solubor	54,5	51,7	48,3	5,03	4,15
GD t, 5 %			5,1	3,1	2,6	0,18	0,21

Im Ergebnis des bisher zweijährigen Versuches ist festzustellen, dass die Zugabe von Mikro-Fazit: nährstoffdüngern als Ergänzung zur N-Düngung nach SBA keinen Einfluss auf den Ertrag hatte. Die Ursache hierfür ist möglicherweise in der ausreichenden Versorgung der Standorte mit Mikronährstoffen zu sehen.

Anbauversuch Winterraps

120 729 30 40

Einfluss von Beizung, Fungizideinsatz und Anwendungstermin auf Kornertrag und Versuchsfrage: Qualität von Winterraps

Tabelle 1.1.1/18: Einfluss von Beizung, Fungizideinsatz und Anwendungstermin auf Kornertrag und Qualität von Hybridraps VS Dornburg 2004 und 2005

D :	V3 Domburg 2004 u		1/		ä	1 1.	äl	
Beizung	Fungizid	Zeitpunkt	Korne			ehalt		rtrag
	(l/ha)		(dt/ha, 9	1 % TS)	(%	ΓM)	(dt,	/ha)
			2004	2005	2004	2005	2004	2005
Konventionell	Ohne	BBCH 14	48,9	43,7	48,9	42,1	21,8	18,4
	Prosaro (0,7)		47,1	41,5	48,2	42,4	20,6	17,6
	Caramba (1,25)		51,1	43,5	48,3	42,0	22,5	18,3
	Folicur (1,0)		44,4	42,3	48,4	42,3	19,5	17,9
	Ohne	BBCH 16	51,9	41,6	48,6	42,0	23,0	17,5
	Prosaro (0,7)		46,6	44,1	48,8	42,3	20,7	18,7
	Caramba (1,25)		49,3	41,3	48,8	42,0	21,9	17,3
	Folicur (1,0)		51,0	43,2	48,4	42,2	22,5	18,2
CBS/DMM	Ohne	BBCH 14	51,4	42,0	49,4	46,4	23,1	17,7
	Prosaro (0,7)		50,7	40,3	48,7	46,3	22,5	17,0
	Caramba (1,25)		50,7	42,7	49,4	46,1	22,8	17,9
	Folicur (1,0)		50,1	40,9	48,8	46,0	22,2	17,2
	Ohne	BBCH 16	50,4	41,7	48,5	46,0	22,2	17,5
	Prosaro (0,7)		51,9	43,7	49,2	46,2	23,2	18,4
	Caramba (1,25)		51,4	40,6	48,6	46,2	23,2	17,1
	Folicur (1,0)		47,5	41,1	48,8	46,4	21,1	17,4
GD t, 5 %			4,8	2,9	0,7	0,5	2,2	1,3

Tabelle 1.1.1/19: Einfluss von Beizung, Fungizideinsatz und Anwendungstermin auf die Wurzelausbildung von Hybridraps VS Dornburg 2004 und 2005

Beizung	Fungizid	Zeitpunkt		Wurzellä	nge 2004	-		Wurzellä	nge 2005	
	(l/ha)		He	rbst	Frül	njahr		rbst		njahr
			(cm)	(%)	(cm)	(%)	(cm)	(%)	(cm)	(%)
Konventionell	Ohne	BBCH 14	16,0	100	18,4	100	14,4	100	20,0	100
	Prosaro (0,7)]	17,3	108	18,1	98	14,8	103	16,9	84
	Caramba (1,25)]	16,7	104	18,2	99	15,6	108	18,2	91
	Folicur (1,0)		18,3	114	18,6	101	16,0	111	18,7	94
	Ohne	BBCH 16	16,0	100	18,4	100	14,5	100	17,4	100
	Prosaro (0,7)]	16,4	102	18,2	99	15,0	103	17,6	101
	Caramba (1,25)		15,8	99	18,6	101	16,0	110	19,1	110
	Folicur (1,0)]	15,9	99	19,8	108	16,1	111	20,0	115
CBS/DMM	Ohne	BBCH 14	16,5	100	19,3	100	16,0	100	18,2	100
	Prosaro (0,7)]	16,9	102	20,0	104	15,4	96	18,6	102
	Caramba (1,25)]	17,2	104	19,5	101	13,7	86	20,7	114
	Folicur (1,0)		16,9	102	19,5	101	13,9	87	17,7	97
	Ohne	BBCH 16	16,5	100	19,3	100	12,3	100	19,2	100
	Prosaro (0,7)]	16,4	99	18,2	94	14,5	118	17,7	92
	Caramba (1,25)]	17,0	103	21,5	111	14,2	115	17,6	92
	Folicur (1,0)		15,3	93	19,5	101	14,2	115	19,6	102
GD t, 5 %			1,6		3,0		2,5		2,4	

Tabelle 1.1.1/20: Einfluss von Beizung, Fungizideinsatz und Anwendungstermin auf den Wurzelhalsdurchmesser von Raps VS Dornburg 2004 und 2005

Beizung	Fungizid	Zeitpunkt	Wurze	elhalsdur	chmesser	r 2004	Wurze	elhalsdur	chmesser	2005
	(l/ha)		He	rbst	Früł	njahr [.]	Hei	rbst	Früh	njahr [*]
			(mm)	(%)	(mm)	(%)	(mm)	(%)	(mm)	(%)
Konventionell	Ohne	BBCH 14	6,9	100	9,2	100	10,5	100	17,2	100
	Prosaro (0,7)		7,6	110	7,8	85	10,4	99	10,8	63
	Caramba (1,25)		6,7	97	8,4	91	10,4	99	13,5	78
	Folicur (1,0)		6,8	99	8,5	92	12,3	117	11,8	69
	Ohne	BBCH 16	6,9	100	9,2	100	13,7	100	13,5	100
	Prosaro (0,7)		6,0	87	7,6	83	10,2	74	11,5	85
	Caramba (1,25)		6,4	93	8,4	91	12,9	94	12,5	93
	Folicur (1,0)		6,3	91	8,3	90	10,7	78	10,8	80
CBS/DMM	Ohne	BBCH 14	8,2	100	9,6	100	9,6	100	17,1	100
	Prosaro (0,7)		6,1	74	9,3	97	10,0	104	12,7	74
	Caramba (1,25)		6,7	82	8,8	92	12,4	129	13,6	79
	Folicur (1,0)		7,5	91	11,2	117	11,7	122	14,2	83
	Ohne	BBCH 16	8,2	100	9,6	100	10,4	100	12,8	100
	Prosaro (0,7)		6,8	83	8,5	88	11,5	110	14,6	114
	Caramba (1,25)		6,2	76	9,6	100	9,6	92	11,6	91
	Folicur (1,0)		5,1	62	8,0	83	10,2	98	11,9	93
GD t, 5 %			1,6		2,9		2,7		3,6	

Tabelle 1.1.1/21: Einfluss von Beizung, Fungizideinsatz und Anwendungstermin auf die Wuchshöhe von Hybridraps VS Dornburg 2004 und 2005

Beizung	Fungizid	Zeitpunkt		Wuchsh	5he 2004	,		Wuchsh	öhe 2005	
	(l/ha)		He	rbst	Früł	njahr	He	rbst	Frük	njahr
			(cm)	(%)	(cm)	(%)	(cm)	(%)	(cm)	(%)
Konventionell	Ohne	BBCH 14	21,6	100	19,4	100	24,9	100	42,5	100
	Prosaro (0,7)		17,4	80	14,0	72	19,8	79	35,8	84
	Caramba (1,25)		16,1	74	16,9	87	18,2	73	36,8	87
	Folicur (1,0)		17,1	79	19,8	86	18,7	75	38,2	90
	Ohne	BBCH 16	21,6	100	19,4	100	25,2	100	37,0	100
	Prosaro (0,7)		20,0	92	16,6	86	19,9	79	36,8	99
	Caramba (1,25)		20,2	94	17,0	88	24,1	96	40,0	108
	Folicur (1,0)		19,6	91	17,0	88	21,9	87	38,2	103
CBS/DMM	Ohne	BBCH 14	22,3	100	18,8	100	22,3	100	40,5	100
	Prosaro (0,7)		20,6	92	19,7	105	22,0	99	38,2	94
	Caramba (1,25)		18,1	81	13,9	74	18,8	84	40,2	99
	Folicur (1,0)		19,2	86	16,1	86	18,6	83	36,2	89
	Ohne	BBCH 16	22,3	100	18,8	100	22,6	100	39,8	100
	Prosaro (0,7)		22,1	99	20,0	106	23,8	105	38,8	97
	Caramba (1,25)		22,0	99	20,2	107	19,0	84	35,5	89
	Folicur (1,0)		21,4	96	20,0	106	21,8	96	39,2	98
GD t, 5 %			3,5	_	3,5		3,1	_	4,0	

Eine Fungizidbehandlung im Herbst führte in beiden Versuchsjahren zu einer deutlichen Stauchung des Bestandes, die noch bis ins Frühjahr vorhielt. Gleichzeitig wurde in den meisten Fällen die Wurzellänge der Pflanzen höher. Eine positive Wirkung auf den Wurzelhalsdurchmesser, als Anhaltspunkt für das Überwinterungsvermögen der Bestände, war nicht zu verzeichnen. Die Anwendung sollte zwischen BBCH 14 und 16 erfolgen. Welcher Applikationstermin eine bessere Wirkung bedingt, hängt in starkem Maße von der Jahreswitterung ab. Eine eindeutige Ertragsbeeinflussung durch den Fungizideinsatz war nicht erkennbar.

Anbauversuch Winterraps

Versuchsnummer: 120 715 T

Versuchsfrage: Einfluss des N-Düngungstermins auf Kornertrag und Qualität von Winterraps

Tabelle 1.1.1/22: Einfluss des N-Düngungstermins auf den Kornertrag von Hybridraps VS Dornburg. VS Kirchengel und VS Friemar 2005

	vs Kirchengei und vs Frie Jung auf SBA-Grundlage	erriai 2005		Kornertrag	
IN-Dulig	ung aur JDA-Grundlage		14	dt/ha, 91 % TS)	
1. N-Gabe	2. N. Gabe	3. N-Gabe	Dornburg	Kirchengel	Friemar
Vergleichsvariante:			46,6	50,4	63,7
100 kg N/ha als KAS	80 kg N/ha als KAS	-			
Ende 02/Anf. 03	BBCH 33/34				
100 kg N/ha als Alzon	40 kg N/ha als KAS	40 kg N/ha als AHL	46,7	52,3	61,5
so früh wie möglich	BBCH 33/34	BBCH 61			_
100 kg N/ha Alzon	60 kg N/ha als Alzon	-	44,3	49,4	63,4
Anf. bis Mitte 02	BBCH 32				
100 kg N/ha als ASS	80 kg N/ha als KAS	-	44,9	50,9	62,3
Ende 02/Anf. 03	BBCH 32/34				
100 kg N/ha als ASS + Bor	80 kg N/ha als KAS	-	44,5	52,4	63,9
Ende 02/Anf. 03	BBCH 32/34				
180 kg N/ha als stabil. Rapsass	-	-	45,5	50,4	63,5
Anf. bis Mitte 02					
80 kg N/ha als ASS	80 kg N/ha als AAS	-	45,6	53,1	63,6
Ende 02/Anf. 03	BBCH 32		-		
100 kg N/ha als ASS	80 kg N/ha als KAS	-	48,6	52,0	63,4
Ende 02/Anf. 03	BBCH 39				
	GD t, 5 %		3,4	3,0	4,4

Tabelle 1.1.1/23:Einfluss des N-Düngungstermins auf den Ölgehalt von HybridrapsVS Dornburg, VS Kirchengel und VS Friemar 2005

	gung auf SBA-Grundlage	,	Ölgehalt				
1. N-Gabe	2. N. Gabe	Dornburg	(% TM) Kirchengel	Friemar			
100 kg N/ha als KAS	80 kg N/ha als KAS	3. N-Gabe		48,2			
Ende 02/Anf. 03	BBCH 33/34	-	49,4	40,2	47,4		
100 kg N/ha als Alzon	40 kg N/ha als KAS	40 kg N/ha als AHL	48,6	48,2	47,2		
so früh wie möglich	BBCH 33/34	BBCH 61					
100 kg N/ha Alzon	60 kg N/ha als Alzon	-	50,7	48,3	48,6		
Anf. bis Mitte 02	BBCH 32						
100 kg N/ha als ASS	80 kg N/ha als KAS	-	49,5	47,8	48,1		
Ende 02/Anf. 03	BBCH 32/34						
100 kg N/ha als ASS + Bor	80 kg N/ha als KAS	-	49,2	47,7	47,7		
Ende 02/Anf. 03	BBCH 32/34						
180 kg N/ha als stabil. Rapsass	-	-	50,3	48,1	47,2		
Anf. bis Mitte 02	[
80 kg N/ha als ASS	80 kg N/ha als AAS	-	50,6	48,0	47,3		
Ende 02/Anf. 03	BBCH 32						
100 kg N/ha als ASS	80 kg N/ha als KAS	-	49,6	47,8	46,9		
Ende 02/Anf. 03	BBCH 39						
·	GD t, 5 %	_	1,2	0,5	0,8		

Tabelle 1.1.1/24: Einfluss des N-Düngungstermins auf den Ölertrag von Hybridraps VS Dornburg, VS Kirchengel und VS Friemar 2005

	ung auf SBA-Grundlage	2005	Ölertrag				
				(dt/ha)			
1. N-Gabe	2. N. Gabe	3. N-Gabe	Dornburg	Friemar			
100 kg N/ha als KAS	80 kg N/ha als KAS	-	21,0	22,1	27,5		
Ende 02/Anf. 03	BBCH 33/34						
100 kg N/ha als Alzon	40 kg N/ha als KAS	40 kg N/ha als AHL	20,7	22,9	26,4		
so früh wie möglich	BBCH 33/34	BBCH 61					
100 kg N/ha Alzon	60 kg N/ha als Alzon	-	20,4	21,7	28,0		
Anf. bis Mitte 02	BBCH 32						
100 kg N/ha als ASS	80 kg N/ha als KAS	-	20,2	22,1	27,3		
Ende 02/Anf. 03	BBCH 32/34						
100 kg N/ha als ASS + Bor	80 kg N/ha als KAS	-	19,9	22,7	27,7		
Ende 02/Anf. 03	BBCH 32/34						
180 kg N/ha als stabil. Rapsass	-	-	20,8	22,1	27,3		
Anf. bis Mitte 02							
80 kg N/ha als ASS	80 kg N/ha als AAS	-	21,0	23,2	27,3		
Ende 02/Anf. 03	BBCH 32			_			
100 kg N/ha als ASS	80 kg N/ha als KAS	-	21,9	22,6	27,1		
Ende 02/Anf. 03	BBCH 39						
	GD t, 5 %	•	1,8	1,2	1,8		

Tabelle 1.1.1/25: Einfluss des N-Düngungstermins auf den N-Gehalt von Hybridraps VS Dornburg, VS Kirchengel und VS Friemar 2005

	vs Kirchengel und vs Frie Jung auf SBA-Grundlage	erriar 2005	N-Gehalt				
	,			(% TM)			
1. N-Gabe	2. N. Gabe	3. N-Gabe	Dornburg	Kirchengel	Friemar		
100 kg N/ha als KAS	80 kg N/ha als KAS	-	3,25	3,56	3,63		
Ende 02/Anf. 03	BBCH 33/34						
100 kg N/ha als Alzon	40 kg N/ha als KAS	40 kg N/ha als AHL	3,40	3,54	3,67		
so früh wie möglich	BBCH 33/34	BBCH 61					
100 kg N/ha Alzon	60 kg N/ha als Alzon	-	3,08	3,54	3,45		
Anf. bis Mitte 02	BBCH 32						
100 kg N/ha als ASS	80 kg N/ha als KAS	-	3,25	3,67	3,52		
Ende 02/Anf. 03	BBCH 32/34						
100 kg N/ha als ASS + Bor	80 kg N/ha als KAS	-	3,33	3,68	3,59		
Ende 02/Anf. 03	BBCH 32/34						
180 kg N/ha als stabil. Rapsass	-	-	3,17	3,58	3,65		
Anf. bis Mitte 02							
80 kg N/ha als ASS	80 kg N/ha als AAS	-	3,15	3,62	3,63		
Ende 02/Anf. 03	BBCH 32						
100 kg N/ha als ASS	80 kg N/ha als KAS	-	3,29	3,63	3,69		
Ende 02/Anf. 03	BBCH 39						
	GD t, 5 %		0,15	0,08	0,13		

Fazit: Nach dem ersten Versuchsjahr war kein eindeutiger Einfluss des N-Düngungstermins auf den Ertrag und die Inhaltsstoffe der einzelnen Düngungsvarianten festzustellen. Dabei ist zu beachten, dass, aufgrund der Witterungsverhältnisse im Februar/März 2005, die 1. N-Düngungsgabe an den meisten Standorten erst später als im Versuchsplan vorgesehen, erfolgen konnte. Der Versuch wird fortgesetzt.

Anbauversuch Winterraps

Versuchsnummer: 120 700

<u>Versuchsfrage:</u> Einfluss von Sorte und Fungizideinsatz auf die Winterhärte von Winterraps unter extremen Bedingungen

Tabelle 1.1.1/26: Einfluss von Sorte und Fungizideinsatz auf die Winterhärte von Winterraps VS Oberweißbach 2005

Sorte	Fungizid	Pflan	zenzahl	Bestan	deshöhe	Ø Wur	zelhals	Wurze	ellänge
				(c	m)	(m	ım)	(cm)	
		Herbst	Frühjahr	Herbst	Frühjahr	Herbst	Frühjahr	Herbst	Frühjahr
Elektra	Ohne	34	36	22	39	8,5	13,5	19,0	18,0
	ı l/ha Folicur	30	37	20	40	9,5	13,5	17,0	20,0
Talent	Ohne	31	28	23	43	8,5	12,5	15,5	18,0
	1 l/ha Folicur	30	34	23	42	8,5	13,0	17,0	20,0
Mika	Ohne	31	38	22	35	8,0	13,5	18,5	20,3
	1 l/ha Folicur	25	36	20	33	8,5	13,5	15,0	20,5
Baldur	Ohne	29	38	20	37	9,5	14,5	11,5	18,5
	1 l/ha Folicur	33	48	21	38	7,5	16,5	12,0	20,5
Express	Ohne	37	36	22	32	8,0	13,0	17,0	20,0
	ı l/ha Folicur	27	37	21	35	9,5	16,5	16,0	20,0
Smart	Ohne	32	32	22	30	8,5	11,0	12,0	15,5
	ı l/ha Folicur	30	32	23	30	8,0	14,5	19,0	19,5
Viking	Ohne	24	30	18	48	7,5	13,5	18,5	18,0
	1 l/ha Folicur	24	38	18	43	9,5	15,5	13,0	17,0
Oase	Ohne	30	36	22	46	8,5	15,0	18,0	19,5
	ı l/ha Folicur	28	41	21	36	8,5	14,5	14,5	20,0
₹	Ohne	31,0	34,3	21,4	38,8	8,4	13,3	16,3	18,5
	ı I/ha Folicur	28,4	37,9	20,9	37,1	8,7	14,7	15,4	19,7

<u>Fazit:</u> Ein eindeutiger Einfluss der Herbst-Fungizidbehandlung auf die Ausprägung der Merkmale der Einzelpflanzen bei Raps ist nach dem ersten Versuchsjahr nicht festzustellen. Teilweise deutet sich eine Wirkung hinsichtlich des Wurzelhalsdurchmessers und der Wurzellänge ab, die möglicherweise sortenspezifisch sein könnte. Für eindeutige Aussagen ist der Versuch fortzusetzen.

Anbauvergleiche Praxisdemonstration Winterraps

<u>Versuchsfrage:</u> Leistungsfähigkeit ausgewählter Winterrapssorten unter Thüringer Standortbedingungen

Tabelle 1.1.2/1: Kornertrag (dt/ha, 91 % TS) ausgewählter Winterrapssorten unter Thüringer Standortbedingungen 2004

Sorte	TLPVG	AU	ĀG	ÅG	AG	AG	⊼ je Sorte •
	Buttelstedt	Schlöben	Thonhausen	Friedrichsthal ¹	Behrungen	Wingerode	× je 501te
Elektra	48,6	57,1	-	42,9	51,1	53,8	50,7
Libretto	50,3	61,2	51,7	44,2	52,4	52,1	52,0
Titan	50,5	60,7	55,5	42,8	54,0	48,0	51,9
Talent	38,8	57,5		42,1	52,0	52,2	48,5
Trabant	44,8	57,7	50,5	42,3	55,7	54,0	50,8
Viking	48,2	55,1	51,7	40,7	51,0	53,2	50,0
Oase	44,9	51,0	48,1	41,3	54,1	45,9	47,6
Express	45,2	50,8	-	40,7	47,1		46,0
Caletta	43,1	54,2	52,4	40,6	45,6	47,0	47,2
Baldur	47,8	60,1	54,4	40,4	58,6	50,4	52,0
Calypso	46,5	51,2	53,6	41,7	47,0	54,6	49,1
Mika	46,3	57,6	60,0	43,1	51,4	54,4	52,1
Alkido	40,4	59,7	56,1	41,5	54,0	54,5	51,0
Courage	46,3	57,8	56,9	40,9	47,8	58,8	51,4
Toccata	33,9	51,6	57,0	39,0	50,6	51,2	47,2
Smart	42,5	50,0	52,1	41,2	50,7	48,8	47,6
Roxet	39,6	56,0	50,2	37,1	48,5	50,6	47,0
Aviso	37,1	55,5	52,4	39,3	52,2	48,8	47,6
Chelsi	44,7	60,4	54,0	37,0	49,3	51,6	49,5
Pioneer	46,0	51,6	57,4	38,1	56,3	51,9	50,2
Olpop	43,8	51,0	56,5	36,2	45,2	49,8	47,1
Ontario	-	47,7	53,3	36,4	52,3	50,6	48,1
⊼ je Ort	44,2	55,2	53,9	40,4	51,2	51,5	

^{1) =} Sorte muss an mindestens 3 Orten gestanden haben

 Tabelle 1.1.2/2:
 Ölgehalt (%, 91 % TS) ausgewählter Winterrapssorten unter Thüringer Standortbedingungen 2004

Sorte	TLPVG	AU	AG	AG	AG	AG	⊼ je Sorte [,]
	Buttelstedt	Schlöben	Thonhausen	Friedrichsthal	Behrungen	Wingerode	•
Elektra	41,2	41,1	-	45,9	42,3	45,6	43,2
Libretto	40,5	41,2	44,8	45,6	43,1	46,8	43,7
Titan	42,4	42,5	45,0	45,0	42,6	45,9	43,9
Talent	39,2	40,7	-	45,3	42,2	45,0	42,5
Trabant	41,3	43,3	45,8	46,0	43,2	47,0	44,4
Viking	41,5	42,9	44,3	43,3	42,7	45,0	43,3
Oase	43,4	41,9	47,1	46,0	44,0	47,2	44,9
Express	43,4	43,0	-	44,3	43,2		43,5
Caletta	44,0	44,0	46,9	45,0	43,2	47,2	45,0
Baldur	42,3	43,0	44,8	43,9	42,1	46,0	43,7
Calypso	41,9	42,0	45,6	42,8	41,7	46,1	43,4
Mika	42,7	41,9	45,0	43,9	43,2	45,7	43,7
Alkido	40,4	42,4	44,6	44,0	41,6	46,5	43,2
Courage	41,9	40,4	44,8	44,0	41,7	44,6	42 ,9
Toccata	40,2	41,1	46,4	42,2	41,4	45,6	42,8
Smart	42,6	41,6	44,5	43,7	42,9	46,4	43,6
Roxet	42,9	41,4	46,0	44,6	42,6	46,8	44,0
Aviso	41,5	41,2	44,4	44,3	42,0	46,0	43,2
Chelsi	42,7	41,7	44,3	43,0	41,8	46,2	43,3
Pioneer	40,4	40,2	42,8	44,1	41,8	45,7	42 ,5
Olpop	41,7	40,0	45,1	43,3	42,0	45,0	42,8
Ontario	-	39,9	44,0	43,1	42,3	45,1	42, 9
⊼ je Ort	41,8	41,7	45,1	44,2	42 ,4	46,0	

^{1) =} Sorte muss an mindestens 3 Orten gestanden haben, Ölgehaltsbestimmung erfolgte mittels NIRS-Methode

Tabelle 1.1.2/3: Ölertrag (dt/ha) ausgewählter Winterrapssorten unter Thüringer Standortbedingungen 2004

Sorte	TLPVG	AU	AG	AG	AG	AG	⊼ je Sorte 1)
	Buttelstedt	Schlöben	Thonhausen	Friedrichsthal	Behrungen	Wingerode	
Elektra	20,0	23,5		19,7	21,6	24,5	21,9
Libretto	20,4	25,2	23,2	20,2	22,6	24,4	22,7
Titan	21,4	25,8	25,0	19,3	23,0	22,0	22,8
Talent	15,2	23,4		19,1	22,0	23,5	20,6
Trabant	18,5	25,0	23,1	19,4	24,1	25,4	22,6
Viking	20,0	23,6	22,9	17,6	21,8	23,9	21,6
Oase	19,5	21,4	22,7	19,0	23,8	21,7	21,4
Express	19,6	21,9		18,0	20,4		20,0
Caletta	19,0	23,9	24,6	18,2	19,7	22,2	21,3
Baldur	20,2	25,8	24,4	17,7	24,7	23,2	22,7
Calypso	19,5	21,5	24,5	17,8	19,6	25,2	21,4
Mika	19,8	24,1	27,0	18,9	22,2	24,9	22,8
Alkido	16,3	25,3	25,0	18,3	22,5	25,3	22,1
Courage	19,4	23,4	25,5	18,0	19,9	26,2	22,1
Toccata	13,6	21,2	26,4	16,5	20,9	23,3	20,3
Smart	18,1	20,8	23,2	18,0	21,8	22,6	20,8
Roxet	17,0	23,2	23,1	16,5	20,7	23,7	20,7
Aviso	15,4	22,9	23,3	17,4	21,9	22,4	20,6
Chelsi	19,1	25,2	23,9	15,9	20,6	23,9	21,4
Pioneer	18,6	20,7	24,6	16,8	23,5	23,7	21,3
Olpop	18,3	20,4	25,5	15 <u>,</u> 7	19,0	22,4	20,2
Ontario		19,0	23,4	15,7	22,1	22,8	20,6
⊼ je Ort	18,5	23,0	24,3	17,9	21,7	23,7	

^{1) =} Sorte muss an mindestens 3 Orten gestanden haben

Tabelle 1.1.2/4: Rohprotein- (%, 91 % TS, 2 % Besatz) und Glucosinolatgehalt (μmol/g, 91 % TS, 2 % Besatz) ausgewählter Winterrapssorten unter Thüringer Standortbedingungen 2004

Sorte	TLP	νĠ	Α	U	Α	.G	A	G	Α	G	Α	G
	Butte	lstedt	Schl	öben	Thonh	nausen	Friedri	chsthal	Behru	ıngen	Wing	erode
	RP	GSL	RP	GSL	RP	GSL	RP	GSL	RP	GSL	RP	GSL
Elektra	21,0	13,6	21,1	10,9		-	16,4	8,7	19,8	10,3	17,0	13,3
Libretto	21,8	12,6	21,9	11,7	18,6	12,7	17,3	11,1	19,4	10,1	16,4	13,6
Titan	20,0	11,2	20,4	12,4	17,8	9,6	17,6	12,3	19,1	8,8	16,3	15,0
Talent	22,7	14,4	22,4	11,1	-	-	17,2	10,3	20,1	9,9	17,7	12,9
Trabant	21,2	16,1	20,3	12,6	17,7	11,6	17,1	10,7	19,4	10,0	16,3	13,7
Viking	20,2	8,3	20,8	11,0	17,8	3,6	18,2	9,2	18,9	5,6	16,9	8,3
Oase	20,2	12,2	19,7	6,1	16,8	11,3	17,5	12,3	18,5	8,9	16,6	13,4
Express	20,6	20,3	20,6	12,8		-	18,9	13,6	19,6	11,7		
Caletta	18,8	12,4	18,9	10,1	16,0	9,6	17,6	11,2	18,9	12,9	15,4	15,3
Baldur	19,6	12,1	19,1	10,6	17,5	8,2	18,5	11,7	19,5	12,4	15,9	11,1
Calypso	21,1	14,1	21,0	12,8	17,8	11,6	20,4	14,7	20,9	14,3	16,8	11,8
Mika	20,5	13,4	20,9	12,2	18,1	8,6	19,5	13,9	19,5	11,0	17,5	10,9
Alkido	21,4	18,6	20,9	16,6	18,5	12,8	18,7	15,3	20,4	12,5	15,6	14,1
Courage	21,3	18,5	22,7	13,7	18,7	14,3	19,2	15,2	20,3	12,2	17,6	18,4
Toccata	21,3	25,7	21,5	22,7	17,7	11,5	19,8	18,8	20,0	17,9	16,4	22,1
Smart	18,7	16,5	20,8	14,6	17,7	14,9	19,0	14,8	19,0	12,0	14,8	18,5
Roxet	19,4	17,2	20,7	17,0	16,8	14,2	18,1	16,5	19,2	12,5	15,7	18,0
Aviso	20,7	16,8	21,5	15,0	19,1	10,5	18,7	13,3	20,4	13,4	17,4	12,9
Chelsi	20,2	20,6	20,9	15,9	18,6	18,0	19,5	18,6	20,6	15,4	16,3	20,4
Pioneer	20,8	11,5	22,1	12,0	18,5	15,6	18,3	13,5	19,8	10,6	17,2	19,2
Olpop	20,4	18,1	21,9	15,3	17,9	14,4	19,3	17,0	19,8	16,6	17,6	19,0
Ontario	-	-	20,5	10,5	16,2	9,2	17,7	12,1	18,5	12,3	15,7	18,6
⊼ je Ort	20,6	15,4	20,9	10,3	17,8	11,7	18,4	13,4	19,6	11,9	16,5	15,3

^{*)} EU-Richtwert = 25 µmol/g

Tabelle 1.1.2/5: Kornertrag (dt/ha, 91 % TS) ausgewählter Winterrapssorten unter Thüringer Standortbedingungen 2005

					כייד
				50.4	41,9
				-	44,3
				•	37,7
					44,4
37,2		46,6	48,7	Y	44,0
39,1				43,0	38,4
42,4	42,3	33,9	45,2	47,2	42,2
	37,8			46,4	41,0
43,8	36,9	30,3			38,0
42,6	40,7	38,5	46,3	46,9	43,0
46,3	39,4	29,1	42,1	51,3	41,6
42,9	44,1	51,5	42,7	46,0	45,4
41,8	42,1	51,8	41,4	52,2	45,9
46,1	40,6	42,3	43,3	48,5	44,2
45,6	40,5	37,6	35,4	51,8	42,2
44,6	42,5	38,4	41,6	50,2	43,5
43,3	43,6	38,8	41,0	-	41,7
37,6	44,1	40,7	46,3	49,7	43,7
45,3	39,2	35,3	30,3	-	37,5
44,8	41,5	40,6	40,0	52,0	43,8
47,3	42,5	39,5	44,6	50,4	44,9
44,8	40,3	40,5	49,0	-	43,6
44,5	42,4	41,6	36,7	48,7	42,8
	Stallmist	Gülle		8	
TLPVG Buttelstedt	Schlöben	Schlöben	AG Thonhausen	AG Wingerode	⊼ je Sorte 1)
	44,8 47,3 44,8 45,3 37,6 43,3 44,6 45,6 46,1 41,8 42,9 46,3 42,6 43,8 40,8 42,4 39,1	Stallmist 44,5 42,4 44,8 40,3 47,3 42,5 44,8 41,5 45,3 39,2 37,6 44,1 43,3 43,6 44,6 42,5 45,6 40,5 46,1 40,6 41,8 42,1 42,9 44,1 46,3 39,4 42,6 40,7 43,8 36,9 40,8 37,8 42,4 42,3 39,1 33,9 45,2 44,3 43,6 30,8 50,0 39,4 45,2 39,3	Stallmist Gülle 44.5 42.4 41.6 44.8 40.3 40.5 47.3 42.5 39.5 44.8 41.5 40.6 45.3 39.2 35.3 37.6 44.1 40.7 43.3 43.6 38.8 44.6 42.5 38.4 45.6 40.5 37.6 46.1 40.6 42.3 41.8 42.1 51.8 42.9 44.1 51.5 46.3 39.4 29.1 42.6 40.7 38.5 43.8 36.9 30.3 40.8 37.8 35.6 42.4 42.3 33.9 39.1 33.9 31.5 37.2 45.2 46.6 46.2 44.3 40.5 43.6 30.8 35.0 50.0 39.4 42.9 45.2 39.3 36.4	Stallmist Gülle 44,5 42,4 41,6 36,7 44,8 40,3 40,5 49,0 47,3 42,5 39,5 44,6 44,8 41,5 40,6 40,0 45,3 39,2 35,3 30,3 37,6 44,1 40,7 46,3 43,3 43,6 38,8 41,0 45,6 42,5 38,4 41,6 45,6 40,5 37,6 35,4 46,1 40,6 42,3 43,3 41,8 42,1 51,8 41,4 42,9 44,1 51,5 42,7 46,3 39,4 29,1 42,1 42,6 40,7 38,5 46,3 43,8 36,9 30,3 41,1 40,8 37,8 35,6 44,3 42,4 42,3 33,9 45,2 39,1 33,9 31,5 44,6 37,2 45,2 </td <td>Stallmist Gülle 44.5 42.4 41.6 36.7 48.7 44.8 40.3 40.5 49.0 - 47.3 42.5 39.5 44.6 50.4 44.8 41.5 40.6 40.0 52.0 45.3 39.2 35.3 30.3 37.6 44.1 40.7 46.3 49.7 43.3 43.6 38.8 41.0 - 44.6 42.5 38.4 41.6 50.2 45.6 40.5 37.6 35.4 51.8 46.1 40.6 42.3 43.3 48.5 41.8 42.1 51.8 41.4 52.2 42.9 44.1 51.5 42.7 46.0 46.3 39.4 29.1 42.1 51.3 42.6 40.7 38.5 46.3 46.9 43.8 36.9 30.3 41.1 - 40.8 37.8 35.6<!--</td--></td>	Stallmist Gülle 44.5 42.4 41.6 36.7 48.7 44.8 40.3 40.5 49.0 - 47.3 42.5 39.5 44.6 50.4 44.8 41.5 40.6 40.0 52.0 45.3 39.2 35.3 30.3 37.6 44.1 40.7 46.3 49.7 43.3 43.6 38.8 41.0 - 44.6 42.5 38.4 41.6 50.2 45.6 40.5 37.6 35.4 51.8 46.1 40.6 42.3 43.3 48.5 41.8 42.1 51.8 41.4 52.2 42.9 44.1 51.5 42.7 46.0 46.3 39.4 29.1 42.1 51.3 42.6 40.7 38.5 46.3 46.9 43.8 36.9 30.3 41.1 - 40.8 37.8 35.6 </td

^{1) =} Sorte muss an mindestens 3 Orten gestanden haben

 Tabelle 1.1.2/6:
 Ölgehalt (%, 91 % TS) ausgewählter Winterrapssorten unter Thüringer Standortbedingungen 2005

Sorte	TLPVG	AU	AU	AG	AG	⊼ je Sorte •
	Buttelstedt	Schlöben	Schlöben	Thonhausen	Wingerode	,
		Stallmist	Gülle		_	
Talent	46,4	45,0	43,9	43,5	48,4	45,4
Elektra	45,9	46,4	44,2	45,2	[45,4
Titan	46,5	46,1	43,7	46,7	50,2	46,6
Trabant	47,8	46,8	44,1	45,6	49,3	46,7
Oase	49,4	46,2	43,7	48,0		46,8
Aragon	47,1	48,4	45,5	45,9	50,1	47,4
Libretto	47,3	45,0	43,2	46,7		45,6
Mika	46,5	45,8	43,3	45,6	49,3	46,1
Alkido	46,3	44,5	42,5	47,5	48,4	45,8
Courage	47,6	45,9	42,4	45,0	48,4	45,9
Baldur	46,7	45,4	42,1	46,3	47,8	45,7
Calypso	46,5	45,4	42,6	44,9	48,6	45,6
Gospel	45,6	46,4	40,9	47,8	47,4	45,6
Smart	48,7	46,4	42,8	45,9	47,3	46,2
Roxet	47,6	46,3	42,1	46,3		45,6
NK Fair	48,1	43,8	41,5	45,4	47,2	45,2
Verona	47,2	45,3	43,3	46,4	50,8	46,6
Monarch	46,4	45,6	42,5	44,9	45,7	45,0
Montego	46,2	45,2	42,8	44,9	48,7	45,6
Pacific	46,3	45,4	44,4	47,7	L	46,0
Ella	47,0	45,4	44,4	46,1		44,8
Grizzly	47,1	44,5	42,8	44,9	L	44,8
Chelsi	45,5	45,2	44,8	44,3	48,2	45,6
⊼ je Ort	46,9	45,7	43,2	45,9	48,5	

^{1) =} Sorte muss an mindestens 3 Orten gestanden haben

 Tabelle 1.1.2/7:
 Ölertrag (dt/ha, 91 % TS) ausgewählter Winterrapssorten unter Thüringer Standortbedingungen 2005

Oleri	trag (dt/ria, 91 %	13) ausgewahlter	winterrapssorten	unter i nuringer s	standortbedingun	gen 2005
	TLPVG	AU	AU	AG	AG	⊼ je Sorte •
	Buttelstedt			Thonhausen	Wingerode	
		Stallmist	Gülle			
	18,8	17,4	16,6	15,4	21,4	17,9
	18,7	17,0	16,3	20,2	-	18,0
	20,0	17,8	15,7	19,0	23,0	19,1
	19,5	17,7	16,3	16,6	23,3	18,7
	20,3	16,5	14,0	13,3	-	16,0
	16,1	19,4	16,8	19,3	22,7	18,9
	18,6	17,9	15,3	17,4		17,3
	18,9	17,7	15,1	17,3	22,5	18,3
	19,2	16,4	14,6	15,3	22,8	17,7
	19,9	16,9	16,3	17,7	21,4	18,4
	17,8	17,4	19,8	17,5	22,7	19,0
	18,2	18,2	20,0	17,4	20,3	18,8
	19,2	16,6	10,8	18,3	22,1	17,4
	18,9	17,2	15,0	19,3	20,2	18,1
	19,0	15,5	11,6	17,3	-	15,8
	17,9	15,1	13,5	18,3	19,9	16,9
	18,2	17,4	13,4	19,1	21,8	18,0
	16,6	14,1	12,2	18,2	17,9	15,8
	15,6	18,6	18,1	19,9	18,7	18,2
	19,5	18,3	16,3		-	18,6
	18,7	12,7	14,1	17,3		15,7
	21,4	15,9	16,7	18,3	[18,1
	18,7	16,2	14,8	18,8	22,1	18,1
	18,7	16,9	15,4	17,9	21,4	
	Olei	TLPVG Buttelstedt 18,8 18,7 20,0 19,5 20,3 16,1 18,6 18,9 19,2 19,9 17,8 18,2 19,2 19,0 17,9 18,9 19,0 17,9 18,2 16,6 15,6 19,5 18,7 21,4 18,7	TLPVG AU Buttelstedt Schlöben Stallmist 17,4 18,7 17,0 20,0 17,8 19,5 17,7 20,3 16,5 16,1 19,4 18,6 17,9 19,2 16,4 19,9 16,9 17,8 17,4 18,2 18,2 19,2 16,6 18,9 17,2 19,0 15,5 17,9 15,1 18,2 17,4 16,6 14,1 15,6 18,6 19,5 18,3 18,7 12,7 21,4 15,9 18,7 16,2	TLPVG Buttelstedt AU Schlöben Stallmist AU Schlöben Gülle 18,8 17,4 16,6 18,7 17,0 16,3 20,0 17,8 15,7 19,5 17,7 16,3 20,3 16,5 14,0 16,1 19,4 16,8 18,6 17,9 15,3 18,9 17,7 15,1 19,2 16,4 14,6 19,9 16,9 16,3 17,8 17,4 19,8 18,2 18,2 20,0 19,2 16,6 10,8 18,9 17,2 15,0 19,0 15,5 11,6 17,9 15,1 13,5 18,2 17,4 13,4 16,6 14,1 12,2 15,6 18,6 18,1 19,5 18,3 16,3 18,7 12,7 14,1 21,4 15,9 16,7 18,7 16,	TLPVG AU AU Schlöben Stallmist Schlöben Gülle Thonhausen 18,8 17,4 16,6 15,4 18,7 17,0 16,3 20,2 20,0 17,8 15,7 19,0 19,5 17,7 16,3 16,6 20,3 16,5 14,0 13,3 16,1 19,4 16,8 19,3 18,6 17,9 15,3 17,4 18,9 17,7 15,1 17,3 19,2 16,4 14,6 15,3 19,9 16,9 16,3 17,7 17,8 17,4 19,8 17,5 18,2 18,2 20,0 17,4 19,2 16,6 10,8 18,3 18,9 17,2 15,0 19,3 19,0 15,5 11,6 17,3 19,0 15,5 11,6 17,3 18,2 17,4 13,4 19,1 16,6 14,1	Buttelstedt Schlöben Stallmist Schlöben Gülle Thonhausen Wingerode 18,8 17,4 16,6 15,4 21,4 18,7 17,0 16,3 20,2 - 20,0 17,8 15,7 19,0 23,0 19,5 17,7 16,3 16,6 23,3 20,3 16,5 14,0 13,3 - 16,1 19,4 16,8 19,3 22,7 18,6 17,9 15,3 17,4 - 18,9 17,7 15,1 17,3 22,5 19,2 16,4 14,6 15,3 22,8 19,9 16,9 16,3 17,7 21,4 17,8 17,4 19,8 17,5 22,7 18,2 18,2 20,0 17,4 20,3 19,2 16,6 10,8 18,3 22,1 18,9 17,2 15,0 19,3 20,2 19,0 15,5 11,6

^{1) =} Sorte muss an mindestens 3 Orten gestanden haben

Tabelle 1.1.2/8: Rohproteingehalt (%, 91 % TS, 2 % Besatz) und Glucosinolatgehalt (μmol/g, 91 % TS, 2 % Besatz) ausgewählter Winterrapssorten unter Thüringer Standortbedingungen-

Sorte	TLPVG B	uttelstedt		hlöben	AU Scl		AG Tho	nhausen	AG Win	gerode
			Stall	mist	Gü	lle				
	RP	GSL	RP	GSL	RP	GSL	RP	GSL	RP	GSL
Talent	22,1	15,4	23,5	19,2	24,8	18,3	24,8	13,8	19,5	12,7
Elektra	22,1	17,1	21,4	13,4	23,9	13,3	23,6	17,4		
Titan	21,5	11,9	22,2	14,6	24,0	13,2	21,6	11,3	18,5	8,4
Trabant	21,2	14,2	21,9	14,6	24,0	15,3	23,7	13,2	20,0	8,4
Oase	20,2	12,9	22,3	13,4	24,1	13,0	22,2	12,6		
Argon	20,9	14,0	20,3	14,1	23,6	14,7	22,7	13,0	18,1	10,3
Libretto	21,4	15,1	23,8	16,0	26,0	16,9	23,0	15,0		
Mika	21,7	16,4	23,4	15,9	25,8	17,3	23,2	15,0	19,2	11,5
Alkido	21,4	17,8	24,0	15,4	26,1	18,5	20,5	14,5	19,5	11,4
Courage	21,0	16,6	22,4	17,3	26,4	19,0	23,8	20,5	20,8	15,9
Baldur	20,6	12,9	22,6	13,4	25,3	15,4	21,3	10,7	19,9	12,5
Calypso	22,1	15,3	23,0	13,8	26,0	16,2	24,1	16,3	20,0	14,7
Gospel	21,6	15,4	21,5	14,2	25,7	17,5	20,3	15,2	19,2	12,9
Smart	18,7	12,5	21,0	10,8	24,3	14,0	22,4	13,6	20,2	10,6
Roxet	20,7	16,1	22,3	16,0	25,5	21,2	22,6	15,9		
NK Fair	21,9	17,8	25,8	20,9	27,4	20,5	25,1	16,9	23,3	14,4
Verona	21,8	19,8	24,0	13,7	25,1	15,6	22,1	11,5	18,3	11,9
Monarch	20,0	15,1	22,3	15,2	24,3	15,3	22,7	12,8	21,4	14,0
Montego	22,4	11,2	23,5	14,7	26,1	13,6	25,7	12,3	20,5	9,8
Pacific	21,6	11,9	22,2	11,3	23,7	10,1	20,1	10,3		
Ella	21,8	9,3	23,6	10,9	24,7	11,2	24,2	9,8		
Grizzly	20,1	19,8	22,3	15,4	23,3	17,1	21,6	17,1		
Chelsi	22,8	21,2	22,7	19,6	23,3	18,9	24,4	20,9	20,5	17,9
⊼ je Ort	21,3	15,2	22,7	14,9	24,9	15,9	22,8	14,3	19,9	12,3

^{1) =} EU-Richtwert = $25 \mu mol/g$

<u>Fazit:</u> Die durchgeführten Anbauvergleiche zu Winterraps belegen das hohe Ertragsniveau auf Thüringer Standorten, wenngleich zwischen den einzelnen Regionen deutliche Unterschiede zu verzeichnen sind. Insbesondere unter günstigen Bedingungen, wie im Jahr 2004, sind Erträge über 5 t/ha auch unter Praxisbedingungen möglich.

^{2) =} Sorte muss an mindestens 3 Orten gestanden haben

1.2 Öllein

Herkunftsprüfung Öllein (Drittmittel)

Versuchsfrage: Ertragsleistung ausgewählter Zuchtstämme (CEBECO)

Tabelle 1.2/1: Kornertrag und Lagerneigung ausgewählter Öllein-Zuchtstämme

VS Dornburg 2004

VS Dornburg 2	<u>'</u>	
Sorte/Stamm	Kornertrag	TKG
	(dt/ha, 91 % TS)	(g)
Taurus	25,6	6,2
Scorpion	22,9	5,8
Barbara	27,8	5,6
Lirica	24,0	6,3
	23,5	6,1
	24,9	5,8
Windermere	23,7	6,2
Gemini	25,4	6,1
PG 2	23,2	6,8
PG 3	27,4	6,5
PG 4	25,8	6,1
PG 5	27,3	6,6
	23,9	6,0
PG 8	23,5	6,3
PG 11	24,6	6,0
PG 14	21,0	5,6
PG 15	23,1	5,7
PG 16	23,6	6,3
PG 17	24,8	6,2
PG 18	24 5	5,6
	22 1	5,5
PG 21	22 0	6,2
PG 22	20,8	6,1
PG 23	23,6	6,0

Versuchsnummer: 124 700

<u>Fazit:</u> Innerhalb des geprüften Spektrums sind einige leistungsstarke Typen vorhanden, die die Erträge der zum Vergleich geprüften Sorten übertreffen.

Versuchsnummer:

124 728

Anbauversuch Öllein

Versuchsfrage: Mechanische Unkrautbekämpfung bei Öllein

Tabelle 1.2/2: Einfluss der Unkrautbekämpfung auf den Kornertrag (dt/ha, 91 % TS) von Öllein

VS Dornburg und VS Kirchengel 2002 bis 2004

10 20110 and 10 111 and 10 200 200 200 4							
Variante		Dornburg			Kirchengel		
	2002	2003	2004	2002	2003	2004	
Kontrolle (chemische Unkrautbekämpfung)	22,4	19,4	Umbruch	24,4	12,7	20,8	
RA 13,5 cm; 2 x Striegeln bei 12 cm Wuchshöhe	22,6	3,8]	17,0	7,2	15,4	
RA 39,5 cm; Maschinenhacke nach Bedarf	23,7	12,5]	16,1	8,8	15,1	
RA 39,5 cm; 2 x Maschinenhacke	24,7	10,8]	18,3	8,4	12,1	
GD t, 5 %	1,9	2,1		2,6	1,6	2,9	

Tabelle 1.2/3: Einfluss der Unkrautbekämpfung auf den Besatz (%) von Öllein VS Dornburg und VS Kirchengel 2002 bis 2004

V3 Dollibuig und V3 Kitchengel 2002 bis 2004							
Variante	Dorr	nburg	Kirchengel				
	2002	2003	2002	2003	2004		
Kontrolle (chemische Unkrautbekämpfung)	8,6	6,6	9,8	7,8	13,9		
RA 13,5 cm; 2 x Striegeln bei 12 cm Wuchshöhe	18,5	69,3	37,3	13,4	29,2		
RA 39,5 cm; Maschinenhacke nach Bedarf	15,2	33,6	37,3	9,8	29,8		
RA 39,5 cm; 2 x Maschinenhacke	17,8	41,6	29,7	9,0	38,8		
GD t, 5 %	4,8	5,5	6,3	3,5	7,6		

Tabelle 1.2/4: Einfluss der Unkrautbekämpfung auf den Ölgehalt (% TM) von Öllein VS Dornburg und VS Kirchengel 2002 bis 2004

Variante	Dornburg				
	2002	2003	2002	2003	2004
Kontrolle (chemische Unkrautbekämpfung)	48,3	49,4	47,3	49,0	49,7
RA 13,5 cm; 2 x Striegeln bei 12 cm Wuchshöhe	48,7	48,4	46,4	47,9	49,2
RA 39,5 cm; Maschinenhacke nach Bedarf	48,6	49,9	46,0	48,5	48,9
RA 39,5 cm; 2 x Maschinenhacke	48,6	49,6	47,0	48,4	48,5
GD t, 5 %	0,9	0,6	0,6	1,3	0,4

Tabelle 1.2/5: Einfluss der Unkrautbekämpfung auf den Ölertrag (dt/ha) von Öllein VS Dornburg und VS Kirchengel 2002 bis 2004

Variante	Dornburg				
	2002	2003	2002	2003	2004
Kontrolle (chemische Unkrautbekämpfung)	9,8	8,7	10,5	5,7	9,4
RA 13,5 cm; 2 x Striegeln bei 12 cm Wuchshöhe	10,0	1,7	7,2	3,1	6,9
RA 39,5 cm; Maschinenhacke nach Bedarf	10,5	5,7	6,7	3,9	6,7
RA 39,5 cm; 2 x Maschinenhacke	10,9	4,9	7,8	3,7	5,3
GD t, 5 %	0,9	1,0	1,2	0,7	1,3

<u>Fazit:</u> Die Ergebnisse belegen, dass eine rein mechanische Unkrautbekämpfung im Öllein zur Sicherung der Bestände nicht ausreicht. Obwohl nicht immer eine signifikante Ertragsverminderung eintrat, stieg der Besatz der mechanischen Varianten im Vergleich zur chemischen Behandlung stark an.

Versuchsnummer:

124 730

Anbauversuch Öllein

Versuchsfrage: Einfluss der Fungizidbehandlung auf Kornertrag und Qualität von Öllein

Tabelle 1.2/6: Einfluss der Fungizidbehandlung auf den Kornertrag (dt/ha, 91 % TS) von Öllein, Sorte 'Lirina' VS Dornburg und VS Kirchengel 2003 bis 2005

Variante	Dornburg			Kirchengel		
	2003	2004	2005	2003	2004	2005
Unbeh. Kontrolle	26,6	21,7	26,0	9,6	26,2	24,1
Score 0,4 l/ha (vor Blüte)	26,3	23,6		10,8	26,7	
Cantus 1,0 l/ha			25,6			26,6
SF Ronilan 1,5 l/ha + 1,5 l/ha (Knospe, Vollblüte)	25,9	23,3		9,7	27,2	
Eria 1,0 l/ha (Vollblüte			26,2			26,9
TM Folicur 1,0 l/ha + 1,0 l/ha Amistar (vor Blüte)	27,8	21,7	25,9	10,7	27,5	27,3
GD t, 5 %	1,8	4,8	0,8	2,3	1,8	2,0

Tabelle 1.2/7: Einfluss der Fungizidbehandlung auf den Ölgehalt (% TM) von Öllein VS Dornburg und VS Kirchengel 2003 bis 2005

va Dollibulg ulid va Kilchengel 2003 bis 2003						
Variante	Dornburg			Kirchengel		
	2003	2004	2005	2003	2004	2005
Unbeh. Kontrolle	49,2	48,9	49,7	48,4	49,3	51,1
Score 0,4 l/ha (vor Blüte)	49,0	48,7		48,3	49,2	
Cantus 1,0 l/ha			49,8			51,2
SF Ronilan 1,5 l/ha + 1,5 l/ha (Knospe, Vollblüte)	49,0	48,4		48,4	49,2	
Eria 1,0 l/ha (Vollblüte			49,7			51,1
TM Folicur 1,0 l/ha + 1,0 l/ha Amistar (vor Blüte)	49,1	48,5	49,5	47,6	48,8	50,7
GD t, 5 %	0,2	0,4	0,2	0,5	0,3	0,4

Tabelle 1.2/8: Einfluss der Fungizidbehandlung auf den Ölertrag (dt/ha) von Öllein VS Dornburg und VS Kirchengel 2003 bis 2005

Variante		Dornburg	_			
	2003	2004	2005	2003	2004	2005
Unbeh. Kontrolle	11,9	9,7	11,8	4,2	11,8	11,2
Score 0,4 I/ha (vor Blüte)	11,7	10,4		4,8	11,9	
Cantus 1,0 l/ha			11,6			12,4
SF Ronilan 1,5 l/ha + 1,5 l/ha (Knospe, Vollblüte)	11,6	10,2	-	4,3	12,2	
Eria 1,0 l/ha (Vollblüte		-	11,8			12,5
TM Folicur 1,0 l/ha + 1,0 l/ha Amistar (vor Blüte)	12,4	9,6	11,6	4,6	12,2	16,6
GD t, 5 %	0,8	2,1	0,4	1,0	0,8	1,0

Fazit: In keinem der Versuchsjahre war ein signifikanter Einfluss der Fungizidbehandlung auf den Ertrag festzustellen. Auch der Ölgehalt und der Ölertrag wurden durch die Behandlung nicht positiv beeinflusst, die Anwendung der Tankmischung Folicur + Amistar senkte im Durchschnitt aller Jahre den Ölgehalt um ca. 0,5 % im Vergleich zum Mittel aller Varianten. Eine Auswirkung der Fungizidbehandlung auf die Samenfarbe war ebenfalls nicht festzustellen.

Anbauversuch Öllein

Versuchsfrage: Einfluss der Insektizidbeizung auf den Kornertrag von Öllein

 Tabelle 1.2/9:
 Einfluss der Insektizidbeizung auf Feldaufgangsrate und Kornertrag von Öllein

VS Dornburg 2004

Variante	Feldaufgangsrate	Kornertrag (dt/ha, 91 % TS)
	(%)	(dt/ha, 91 % TS)
Unbehandelte Kontrolle	31	16,3
Beize 1	52	24,9
Beize 2	62	25,6
GD t, 5 %		5,9

Fazit: Im Ergebnis des einjährigen Versuches war ein deutlicher positiver Effekt der Beizung auf Feldaufgangsrate und Ertrag festzustellen. Dabei wirkte die Beize 2 tendenziell besser als die Beize 1.

Anbauversuch Öllein

Versuchsfrage: Einfluss von Insektizidbeizung und Saatstärke auf Ertrag und Qualität von Öllein

Tabelle 1.2/10: Einfluss der Insektizidbeizung auf Kornertrag und Qualität von Öllein in Abhängigkeit von der Saatstärke VS Dornburg und VS Kirchengel 2005

Variante		ertrag 91 % TS)	0	ehalt TM)	Ölertrag (dt/ha)		
	Dornburg	Kirchengel	Dornburg `	['] Kirchengel	Dornburg ` '	['] Kirchengel	
Ohne Beize, 45 kg/ha	22,5	15,5	49,5	49,3	10,2	7,0	
Mit Beize, 45 kg/ha	25,0	15,2	49,7	49,1	11,3	6,8	
Mit Beize, 31,5 kg/ha	23,8	15,0	49,3	49,1	10,7	6,7	
GD t, 5 %	2,1	3,2	0,3	0,2	1,0	1,5	

<u>Fazit:</u> In Dornburg war im ersten Versuchsjahr ein leichter Effekt der Insektizidbeizung zu erkennen. Für gesicherte Aussagen sind weitere Versuche erforderlich.

Anbauversuch Öllein

Versuchsnummer:

Versuchsnummer: 124 729 41

Versuchsnummer:

124 729

<u>Versuchsfrage:</u> Vergleich verschiedener Herbizide hinsichtlich Wirkung und Verträglichkeit bei Öllein

Tabelle 1.2/11: Wirkung und Verträglichkeit von Herbiziden in Öllein VS Dornburg 2005

Versuch: Herbi	Versuch: Herbizidvergleich						llein				
Versuchsort:	Versuchsstation Dornburg					Versuchsbetreuer: Frau Ormerod					
Sorte:	orte: Bodenart/-zahl:										
Vorfrucht: N-Düngung:											
Aussaat: Ernte:											
Variante	Anwe	endung		В	onitur: 31	(= Decku .05./13.06	~ ~	n %)	Phyto- tox	Ertrag	
	l/ha	Datum ES	CHEAL	THLAR	POLSS	HERBA		GE- SAMT	in %	(dt/ha, 91 % TS)	(%)
ı UK	-	-	2 5	2 5	5 15	3 6		12 31	0	25,5	100
2 SF Concert	0,03	09.05. 19.05.	95 100	100 100	100 100	96 93			0	24,6	96
3 Curol B	0,75	09.05.	96 80	97 100	98 77	89 80			0	25,8	101
4 Basagran	2,0	09.05.	0	25 20	40 20	20 75			0	26,0	102
5 Refine Extra	0,035	09.05.	30 10	100 100	70 75	65 60			0	26,4	104
	GD t, 5 % 1,9										
HERBA:GALAP, S	STEME, \	VERSS, A	RAPS, FU	MOF, EU	PHE, VIC	SS					

Der Versuch wurde im Rahmen eines Ringversuches angelegt. Von 8 Varianten kamen 5 Varianten im Thüringer Versuch zur Prüfung. Generell war am Versuchsstandort der Unkrautdruck nicht stark. Hauptunkräuter waren Weißer Gänsefuß, Hellerkraut und Knötericharten. Pgl. 2 wurde als gängige Standardvariante eingesetzt. Die Wirkung war dementsprechend gut und ausreichend. Beste Variante war Pgl. 3 mit Curol B, 0,75 l/ha. Die Varianten 4 und 5 waren in ihrer Wirkung nicht ausreichend und konnten nicht überzeugen. Dies zeigte auch das Ernteergebnis. Zwischen den Prüfgliedern bestanden keine signifikanten Unterschiede. Phytotoxizität trat nur geringfügig in Form von leichten Blattaufhellungen auf, die keinen Einfluss auf die Pflanzenentwicklung hatten.

1.3 Sommerraps

Versuchsfrage:

Anbauversuch Sommerraps

Einfluss der Insektizidbeizung auf den Kornertrag von Sommerraps

Versuchsnummer:

Tabelle 1.3/1: Einfluss der Insektizidbeizung auf den Kornertrag von Sommerraps VS Dornburg 2005

Variante	Kornertrag	Kornertrag
	Kornertrag (dt/ha, 91 % TS)	(rel., %)
1 (unbehandelte Kontrolle)	22,3	100
2	25,4	114
3	27,3	122
4	27,3	122
5	29,6	132

<u>Fazit:</u> Durch die insektizide Saatgutbeizung konnte im Versuchsjahr 2005 eine deutliche Reduzierung des Kohlfliegenbefalls erreicht werden, die sich auch im Ertragsanstieg der behandelten zur unbehandelten Variante widerspiegelt. Die Befallsbonitur Kohlfliege, ermittelt anhand des Larvenfraßes an der Wurzel, stand in direktem Zusammenhang mit dem Ertragsverhalten der Varianten. Je stärker die Wurzel geschädigt war, desto geringer war der Ertrag des jeweiligen Prüfgliedes.

1.4 Sonnenblume

Anbauvergleich Praxisdemonstration Sonnenblume

<u>Versuchsfrage:</u> Leistungsfähigkeit und Ertragssicherheit von Sonnenblumen unter Thüringer Stand-

Tabelle 1.4/1: Kornertrag, Ölgehalt und TKG ausgewählter Sonnenblumensorten AU Schlöben 2004

Sorte	Kornertrag (dt/ha, 91 % TS)	Ölgehalt (% TM)	TKG (g, 91 % TS)
Salut RM	29,4	51,5	35,2
Herliaroc	30,1	51,9	43,3
Sweet	29,8	52,9	35,0
Sanluca RM	24,9	49,4	42,4
MH 2205 (Sansol)	28,8	50,8	37,0
Candisol	27,2	49,2	45,0
Pegasol	27,5	46,2	42,2
Alisson RM	33,1	50,5	40,3
Maeva	29,7	50,7	44,3
Alliance	28,0	49,4	37,4
ES Karamba	28,9	49,2	46,0
Cortinal	31,0	48,8	44,8
PR 64 A 54	29,1	48,3	35,7
PR 64A63	35,9	53,0	35,4
x	29,5	50,1	40,3

Tabelle 1.4/2: Kornertrag, Ölgehalt und TKG ausgewählter Sonnenblumensorten

AU Schloben 200	· · · · · · · · · · · · · · · · · · ·	ا ا ا	TVC
Sorte	Kornertrag	Ölgehalt	TKG
	(dt/ha, 91 % TS)	(% TM)	(g)
Pegasol	30,1	49,7	66,6
Sunsol	31,2	49,6	55,8
Candisol	35,5	49,2	49,6
Prodisol	32,4	48,1	65,5
Energy Sonnenblumen	46,1	50,0	49,9
Bahia	24,2	48,7	50,8
Herliaroc	26,8	50,4	47,6
Salut RM	20,6	52,4	36,8
Sweet	33,4	48,8	60,1
Karamba	30,8	47,6	57,9
Maeva	27,8	46,6	54,4
Allisson	31,4	51,2	51,2
×	30,9	49,4	53,8

<u>Fazit:</u> Trotz großer sorten- und jahresbedingter Unterschiede hinsichtlich Ertrag und Ölgehalt ist abzuleiten, dass Sonnenblumen auch in Thüringen anbauwürdig sind.

2 Nachwachsende Rohstoffe

2.1 Alternative Ölpflanzen

2.1.1 High-Oleic-Sonnenblume

N-Düngung Sonnenblume

Versuchsfrage: N-Bedarf von HO-Sonnenblumen im Vergleich zu konventionellen Sonnenblumen

Tabelle 2.1.1/1: Einfluss der N-Düngung auf den Kornertrag (dt/ha, 91 % TS) von HO-Sonnenblumen im Vergleich zu

Versuchsnummer:

Versuchsnummer:

126 715

126 740

konventionellen Sorten

VF Straußfurt und VS Dornburg 2004 und 2005

Sorte	N-Düngung	Straußf	urt	Dorr	burg
		2004	2005	2004	2005
	N _{min} zur Aussaat (kg/ha)	107 (konv.)/88 (HO)	58	74	59
Rigasol	ohne N	20,9	22,5	30,5	34,3
(konv. Sorte)	25 kg/ha	23,5	24,4	33,4	35,8
	50 kg/ha	21,3	26,2	29,7	35,4
	75 kg/ha	21,5	27,4	31,0	37,9
PR 64 H 61	ohne N	19,6	19,9	28,6	38,3
(HO-Sorte)	25 kg/ha	20,6	22,7	29,5	36,3
	50 kg/ha	20,2	22,8	28,7	38,0
	75 kg/ha	20,4	23,6	28,5	30,7
GD t, 5 %		4,7	2,4	2,6	3,4

Fazit: Bei hohen N-Gehalten im Boden, wie 2004 an beiden Standorten zu verzeichnen, wirkte sich die N-Düngung nicht auf den Ertrag aus. Ausgehend von dem N-Sollwert von 100 kg/ha für Sonnenblumen, waren diese Ergebnisse zu erwarten. Aufgrund der niedrigeren N-Gehalte im Boden waren die Voraussetzungen für den Versuch im 2. Jahr 2005 deutlich besser. Hier stieg am Standort Straußfurt der Ertrag nahezu proportional zur N-Gabe bei beiden Sorten an. Auch am Standort Dornburg traf diese Tendenz für die konventionelle Sonnenblume zu, während die HO-Sorte nicht auf die N-Düngung reagierte.

Saatzeiten HO-Sonnenblume

Versuchsfrage: Einfluss der Saatzeit auf Ertrag und Ölgehalt bei HO-Sonnenblumen

Tabelle 2.1.1/2: Einfluss der Saatzeit auf den Kornertrag von HO-Sonnenblumen VS Dornburg, VS Großenstein und VF Straußfurt 2002 bis 2004

	Saatzeit										Ко	rnertra	ıg				
											(dt/ha	a, 91 %	ś TS)				
Dornburg Großenstein Straußfurt						Dornburg Großenstein Strauß			traußfu	urt							
2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004
28.03.	24.03.	19.03.	18.03.	26.03.	22.03.	28.03.	20.03.	17.03.	31,4	44,3	28,1	32,8	44,0	37,3	36,6	24,1	19,4
08.04.	03.04.	29.03.	02.04.	04.04.	10.04.	08.04.	31.03.	26.03.	31,6	41,7	29,1	34,8	42,8	34,8	34,5	24,3	21,9
18.04.	11.04.	13.04.	12.04.	14.04.	13.04.	22.04.	10.04.	07.04.	30,3	43,6	28,1	32,4	40,8	40,3	27,6	26,1	18,9
	•		(GD t, 5 9	6	•			3,2	1,1	4,3	4,4	1,3	4,2	4,4	1,2	2,0

Tabelle 2.1.1/3: Einfluss der Saatzeit auf den Ölgehalt (% TM) von HO-Sonnenblumen VS Dornburg, VS Großenstein und VF Straußfurt 2002 bis 2004

Saatzeit	Dornburg			Große	nstein	Straußfurt	
	2002	2003	2004	2002	2004	2002	2003
1	56,1	54,3	52,3	54,4	51,6	51,4	48,8
2	55,8	53,2	52,6	54,4	52,6	50,9	48,4
3	55,6	52,5	52,1	55,4	51,8	50,6	47,7
GD t, 5 %	1,0	0,5	2,2	1,7	0,9	1,6	1,4

Tabelle 2.1.1/4: Einfluss der Saatzeit auf den Ölertrag (dt/ha) von HO-Sonnenblumen VS Dornburg, VS Großenstein und VF Straußfurt 2002 bis 2004

Saatzeit	Dornburg			Große	nstein	Straußfurt	
	2002	2003	2004	2002	2004	2002	2003
1	17,7	21,9	13,4	16,2	17,5	17,1	10,7
2	17,5	20,2	13,9	17,2	16,7	16,0	10,7
3	17,4	20,9	13,3	16,3	19,0	12,7	11,3
GD t, 5 %	1,2	0,5	2,2	2,2	1,7	2,3	0,6

Fazit: Im Ergebnis des Versuches ist kein eindeutiger Einfluss der Saatzeit auf den Ertrag festzustellen. Die Ursache dafür ist sicherlich in der jeweiligen Jahreswitterung zu sehen. In der Regel wurden aber bei früherer Saat höhere Ölgehalte erzielt, so dass eine frühe Aussaat der Sonnenblumen in Hinblick auf hohe Ölerträge je Flächeneinheit zweckmäßig erscheint.

2.1.2 Senf

Senf, der in Deutschland lange Zeit in großem Umfang zur Speisesenfherstellung angebaut wurde, aber aufgrund geringer Wirtschaftlichkeit infolge fehlender Flächenbeihilfezahlungen im Rahmen der EU-Marktregelungen fast völlig aus dem Anbauspektrum verschwand, könnte mit der Änderung der Beihilferegelungen der GAP wieder eine gewisse Anbaubedeutung erlangen.

Arten-/Sortenvergleich Senf

, -

<u>Versuchsfrage:</u> Leistungsfähigkeit verschiedener Sorten/Herkünfte von Gelb- und Sareptasenf sowie Schwarzem Senf unter Thüringer Standortbedingungen

Versuchsnummer:

122 800

Tabelle 2.1.2/1: Kornertrag und TKG unterschiedlicher Senfarten und -sorten bzw. -herkünfte VS Dornburg 2002 bis 2004

	TO Doiniburg 200	2 013 2004							
Art	Sorte/Herkunft Bezugsquelle		(d	Kornertrag (dt/ha, 91 % TS)			TKG (g, 91 % TS)		
			2002	2003	2004	2002	2003	2004	
<i>Sinapis alb</i> a	Gelber	N. L. Chrestensen	23,2	28,6	33,0	3,70	7,20	6,82	
	Zlata	Freudenberger	29,2	33,6	33,9	6,75	7,54	6,29	
Brassica juncea	Vitasso	Lochow	9,2	4,5	4,7	1,60	1,04	1,64	
Brassica nigra	Schwarzer	N. L. Chrestensen	10,5	17,6	4,3	2,28	2,65	2,11	
	Braunsenf	Gahlke GmbH	8,8	18,3	9,2	2,21	2,59	2,41	
	Schwarzer Senf	Bornträger	7,2	-	-	1,47	-	-	
	Schwarzer Senf	Pharmasaat	-	20,0	7,9	-	2,57	1,97	
GD t, 5 %			4,4	2,0	2,6	0,49	0,37	0,33	

Tabelle 2.1.2/2: Ölgehalt und Ölertrag unterschiedlicher Senfarten und -sorten bzw. -herkünfte VS Dornburg 2002 bis 2004

Art	Sorte/Herkunft	Bezugsquelle		Ölgehalt (% TM)			Ölertrag (dt/ha)		
			2002	2003	2004	2002	2003	2004	
Sinapis alba	Gelber	N. L. Chrestensen	27,7	27,7	32,7	5,8	7,2	9,8	
	Zlata	Freudenberger	27,1	30,4	33,2	7,2	9,3	10,2	
Brassica juncea	Vitasso	Lochow	33,1	28,9	33,9	2,8	1,2	1,4	
Brassica nigra	Schwarzer	N. L. Chrestensen	31,5	32,4	29,3	3,0	5,2	1,2	
	Braunsenf	Gahlke GmbH	29,1	31,8	31,7	2,3	5,3	2,6	
	Schwarzer Senf	Bornträger	27,3	-	-	1,8	-	-	
	Schwarzer Senf	Pharmasaat	-	32,0	32,0	-	5,8	2,3	
GD t, 5 %			2,8	2,3	1,3	1,5	0,8	0,8	

<u>Fazit:</u> Die geprüften Sorten des Gelbsenfs erreichten die höchsten Erträge. Der Schwarze Senf erzielte nur unter günstigen Bedingungen Erträge von ca. 50 bis 60 % des Gelbsenfs. Am ertragsschwächsten war in allen Versuchsjahren der Sareptasenf. Da die Preise für alle Senfarten auf etwa gleichem Niveau liegen, lohnt sich in Thüringen nur der Anbau von Gelbsenf.

Anbauversuch Senf

Versuchsnummer: 122 725

Versuchsnummer:

122 713

Versuchsfrage: Einfluss des Einsatzes von Wachstumsreglern auf Ertrag und Qualität von Gelbsenf

Tabelle 2.1.2/3: Einfluss des Einsatzes von Wachstumsreglern auf Lagerneigung, Wuchshöhe und TKG von Gelbsenf, Sorte .Zlata'

VS Dornburg 2004 bis 2005

Behandlung	Lager vor Ernte (1 – 9)		Wuch	shöhe	TKG		
	(1 -	- 9)	(cm)		TKG (g, 91 % TS)		
	2004	2005	2004	2005	2004	2005	
Ohne	3,8	5,5	178	178	6,82	5,73	
Folicur (1,0 l/ha)	3,5	5,5	167	165	6,93	5,54	
Caramba (1,5 l/ha)	2,0	5,0	154	167	6,90	5,37	
GD t, 5 %			11	7	0,41	0,41	

Tabelle 2.1.2/4: Einfluss des Einsatzes von Wachstumsreglern auf Kornertrag, Ölgehalt und Ölertrag von Gelbsenf, Sorte "Zlata"

VS Dornburg 2004 bis 2005

Behandlung	Kornertrag (dt/ha, 91 % TS)			ehalt TM)	Ölertrag (dt/ha)	
	2004	2005	2004	2005	2004	2005
Ohne	27,2	19,4	33,1	27,3	8,2	4,8
Folicur (1,0 l/ha)	25,8	19,4	33,0	27,7	7,8	4,9
Caramba (1,5 l/ha)	27,5	19,9	33,6	27,9	8,4	5,1
GD t, 5 %	2,1	1,3	0,7	1,6	0,7	0,6

Fazit: Der Einsatz von Wachstumsreglern wurde in beiden Versuchsjahren nicht ertragswirksam. Trotz der Einkürzung der Pflanzen durch die Spritzung verbesserte sich die Standfestigkeit nicht. Ein Einfluss auf Ölgehalt und Ölertrag war ebenfalls nicht zu verzeichnen.

Anbauversuch Senf

Versuchsfrage:

Einfluss der S-Düngung auf Ertrag und Qualität von Gelbsenf

Tabelle 2.1.2/5: Einfluss der S-Düngung auf Kornertrag und TKG von Gelbsenf, Sorte 'Zlata'

VS Dornburg und VS Kirchengel 2004 bis 2005

	TO Doinibuig a									
S-Düngung			ertrag			TKG				
		(dt/ha,	91 % TS)			(g, 91	% TS)			
	Dorr	Dornburg Kirchengel				ıburg	Kirch	Kirchengel		
	2004	2005	2004	2005	2004	2005	2004	2005		
Ohne	25,8	17,3	24,7	29,2	6,86	5,33	6,81	7,23		
50 kg/ha	24,9	17,6	25,9	29,2	6,63	5,51	6,86	6,99		
GD t, 5 %	3,3	4,4	2,2	5,3	0,28	0,72	0,43	0,46		

 Tabelle 2.1.2/6:
 Einfluss der S-Düngung auf S-Gehalt und S-Entzug von Gelbsenf, Sorte ,Zlata'

VS Dornburg 2004 bis 2005

S-Düngung	S-Geh (% TI		S-Entzug (kg/ha)		
	2004	2005	2004	2005	
Ohne	1,32	1,50	31,1	23,7	
50 kg/ha	1,38	1,56	31,4	25,1	
GD t, 5 %	0,08	0,06	3,9	5,9	

<u>Fazit:</u> Die Schwefeldüngung hatte in beiden Jahren und an beiden Standorten keinen Einfluss auf den Ertrag. Auch das TKG wurde nicht eindeutig beeinflusst. Der Versuch wird weitergeführt.

Sortenversuch Senf

Versuchsnummer: 122 800

Versuchsfrage: Ertrag und Qualität von Gelbsenfsorten unter Thüringer Standortbedingungen

Tabelle 2.1.2/7: Einfluss der Sorte auf den Kornertrag und die Qualität von Gelbsenf

VS Dornburg 2005

Sorte	Kornertrag	TKG	Ölgehalt	Ölertrag	Sinalbingehalt	Erucasäure	Ölsäure
	(dt/ha, 91 % TS)	(g, 91 % TS)	(% TM)	(dt/ha)	(µmol/g)	(%)	(%)
Sina	17,0	5,25	25,8	4,0	180	44,4	16,9
Concerta	15,4	5,20	25,5	3,6	168	41,9	19,8
Mikado	21,1	5,11	29,4	5,6	143	34,8	25,1
Martigena	21,1	5,42	28,6	5,5	169	7,0	55,1
Silenda	21,6	5,80	27,9	5,5	139	8,0	53,8
Hohenh. Gelb	23,6	5,03	29,1	6,3	148	36,5	24,0
Litember	15,4	4,64	25,7	3,6	147	41,0	18,6
Tango	10,7	4,09	25,5	2,8	150	30,4	25,4
Gisilba	21,1	5,24	29,4	6,2	152	34,3	25,8
GD t, 5 %	2,4	0,72	1,1	0,8	26	1,5	2,2

<u>Fazit:</u> Die geprüften Sorten des Gelbsenfs erreichten mit Ausnahme der Sorten 'Litember', 'Concerta' und 'Tango' hohe Erträge. Hinsichtlich der wertgebenden Inhaltsstoffe, wie Sinalbin, Ölgehalt und Fettsäurezusammensetzung unterschieden sich die Sorten teilweise erheblich. Der Versuch wird fortgesetzt.

2.1.3 Iberischer Drachenkopf

Iberischer Drachenkopf weist im Öl ca. 70 % Linolensäure auf und eignet sich deshalb für die Herstellung von Farben, Lacken und Linoleum. Er könnte in diesem Bereich eine Alternative zum Öllein darstellen. Auch Absatzchancen im Baustoffsektor und als Nahrungsergänzungsmittel zeichnen sich ab.

Herkunftsprüfung Iberischer Drachenkopf

Versuchsnummer: 619 700

<u>Versuchsfrage:</u> Leistungsfähigkeit verfügbarer Drachenkopf-Herkünfte mit und ohne Fungizidbehand-

Tabelle 2.1.3/1: Kornertrag, TKG sowie Ölgehalt und -ertrag von Drachenkopf-Herkünften mit und ohne Fungizidbehandlung (Ronilan 1,5 + 1,5 l/ha)

VS Dornburg 2004

Herkunft	Kornertrag (dt/ha, 91 % TS)		Tŀ (į	(G g)	Ölge (% -	ehalt TM)	Ölertrag (dt/ha)		
	ohne	mit	ohne	mit	ohne	mit	ohne	mit	
1	20,2	20,3	4,3	4,5	33,1	34,2	6,1	6,3	
2	22,1	21,3	4,6	4,8	33,4	34,9	6,7	6,8	
3	19,5	19,9	4,6	4,7	33,6	34,2	6,0	6,2	
4	19,3	19,6	4,5	4,5	34,0	34,0	6,0	6,0	
5	21,9	17,3	4,4	4,7	32,6	34,5	6,5	5,4	
6	23,1	22,1	4,5	4,9	32,7	35,0	6,9	7,0	
7	22,6	21,9	4,8	4,7	34,0	34,4	7,0	6,9	
8	23,7	24,5	4,5	4,7	33,8	34,8	7,3	7,8	
9	22,4	20,2	5,0	4,9	34,2	35,2	7,0	6,5	
10	22,2	22,2	4,6	4,8	32,6	34,0	6,6	6,9	
GD t, 5 %	2,9		0,2		1,	0	1,0		

Tabelle 2.1.3/2: Kornertrag, TKG sowie Ölgehalt und -ertrag von Drachenkopf-Herkünften mit und ohne Fungizidbehandlung (Folicur 1,5 I/ha)
VS Dornburg 2005

Herkunft		ertrag		⟨G		ehalt		rtrag	
	(di/ria, g	91 % TS)	(g)		(%	TM)	(dt/ha)		
	ohne	mit	ohne	mit	ohne	mit	ohne	Mit	
1	17,1	19,5	4,6	5,0	36,6	34,9	5,7	6,2	
2	16,2	19,6	4,9	5,0	36,9	35,0	5,4	6,2	
3	16,8	19,9	4,9	5,1	36,5	34,8	5,6	6,3	
44	18,4	19,6	4,7	4,8	36,6	34,2	6,1	6,1	
5	16,0	19,2	4,7	5,0	36,4	35,0	5,3	6,1	
6	15,2	19,1	5,1	5,3	36,8	34,9	5,1	6,1	
7	17,0	19,3	5,0	5,1	37,4	34,8	5,8	6,1	
8	14,5	20,0	4,8	4,9	36,7	34,0	4,8	6,2	
9	15,4	18,5	4,9	5,1	36,9	34,2	5,2	5,8	
10	14,6	20,0	5,0	5,0	36,4	33,8	4,8	6,2	
GD t, 5 %	2,	,2	0	,2	1,	,2	0	,6	

Fazit: Die geprüften Herkünfte wiesen hinsichtlich des Kornertrages und Ölgehaltes teilweise deutliche Unterschiede auf. Im Jahr 2005 brachte eine Fungizidbehandlung einen signifikanten Ertragszuwachs. Dabei handelte es sich, wie am TKG erkennbar, um einen eindeutigen Fungizideffekt. Generell ist zur Erhöhung der Ertragssicherheit eine Fungizidbehandlung im Drachenkopf zu empfehlen.

2.1.4 Saflor

Safloröl ist aufgrund seiner Fettsäurezusammensetzung von hohem ernährungsphysiologischen Wert und bietet sich außerdem für eine Verwendung im chemisch-technischen Bereich an. Wegen seiner relativen Anspruchslosigkeit könnte der Saflor auch für den Ökolandbau geeignet sein.

Stammprüfung Saflor

Versuchsnummer: 519 700

Versuchsfrage: Ertragsleistung unterschiedlicher Saflorsorten/-stämme

Tabelle 2.1.4/1: Kornertrag und Qualität von Saflorsorten/-stämmen VS Dornburg 2004

Prüfglied	Sorte/Stamm	Kornertrag (dt/ha, 91 % TS)	TKG (g)	Ölgehalt (% TM)	Ölertrag (dt/ha)
1	Sabina	31,0	33,6	26,2	7,4
2	St. Bendeleben	28,7	35,8	23,9	6,2
3	Do. 3/2000	30,3	32,8	31,1	8,6
4	1-4-4	27,7	35,0	33,9	8,5
5	1-10/1	27,5	35,8	33,6	8,4
6	1-10/2	34,4	32,4	30,4	9,5
7	1-10/4	28,0	37,6	35,3	9,0
8	В. 01	29,4	33,7	29,7	8,0
9	L. 03	28,0	36,6	29,8	7,6
10	98-9-16/1	28,8	33,8	30,7	8,0
11	6/99	26,0	36,2	32,4	7,6
12	2/99	24,6	33,6	31,7	7,1
13	84/13	25,9	40,7	33,2	7,8
14	84/15 b	22,3	30,6	32,2	6,5
15	84/15 d	29,9	33,4	28,1	7,6
GD t, 5 %		3,4	2,5	3,0	1,0

Tabelle 2.1.4/2: Kornertrag von Saflorsorten/-stämmen (überregional)
VS Kirchengel – Versuchsfeld Mittelsömmern 2004 und 2005 (Ökoanbau)

Prüfglied	2004	2005
1	13,8	18,5
2	13,8 16,5	15,5
3	21,1	18,6
4	20,0	13,9
5	13,6	17,8
6	17,0	21,2
7	16,4	18,5
8	18,5	21,5
9	9,8	17,2
10	14,8	12,4
GD t, 5 %	4,3	3,6

Tabelle 2.1.4/3: Kornertrag und Qualität von Saflorsorten/-stämmen

Prüfglied	Sorte/Stamm	Pflanzen/m²	Kornertrag (dt/ha, 91 % TS)	TKG (g)	Ölgehalt (% TM)	Ölertrag (dt/ha)
1	Sabina	71	32,9	30,0	21,6	6,5
2	04/04	55	16,8	27,2	19,2	2,9
3	Auslese aus 04/04	42	17,8	25,4	17,6	2,8
4	05/04	46	21,0	25,7	18,8	3,6
5	06/04	51	21,1	28,4	26,3	5,0
6	Auslese aus 13/03	35	21,6	27,0	23,5	4,6
7	14/03	49	27,7	27,8	22,5	5,7
8	Neu, Lieder 04	41	18,3	25,7	18,3	3,0
9	Neu, ES 04	47	21,8	27,8	21,5	4,2
10	4+19/6/04	40	25,3	27,8	24,6	5,7
11	13/03	52	23,6	27,4	23,7	5,1
12	07/04	51	15,9	24,3	17,0	2,5
13	Neu, GGW 03	44	15,9	24,4	20,7	3,0
14	Auslese aus 15b/03	48	21,3	27,6	20,7	4,0
15 a+b	Neu, 10c/04	38	22,1	27,1	18,9	3,8
15 c+d	03/03 + 04	54	24,8	27,4	18,6	4,2
GD t, 5 %			5,0	2,3	3,1	1,3

Tabelle 2.1.4/4: Kornertrag und Qualität von Saflorsorten/-stämmen VS Kirchengel – Versuchsfeld Mittelsömmern 2005 (Ökoanbau)

Prüfglied	Sorte/Stamm	Pflanzen/m²	Kornertrag (dt/ha, 91 % TS)	TKG (g)	Ölgehalt (% TM)	Ölertrag (dt/ha)
1	Sabina	55	21,0	31,4	19,3	3,7
2	04/04	56	7,3	28,8	18,0	1,1
3	Auslese aus 04/04	35	9,7	29,3	17,6	1,6
44	05/04	42	8,0	21,8	17,1	1,2
5	06/04	39	9,9	33,2	22,3	2,0
6	Auslese aus 13/03	31	12,1	32,0	21,6	2,4
7	14/03	22	16,2	29,6	20,0	3,0
8	Neu, Lieder 04	39	8,4	29,2	16,4	1,2
9	Neu, ES 04	38	11,2	33,4	21,1	2,1
10	4+19/6/04	33	13,7	31,9	23,8	3,0
GD t, 5 %		•	4,5	3,4	2,7	0,9

Es ist ersichtlich, dass der Saflor auch unter den für diese wärmeliebende Kultur nicht optimalen Witterungsbedingungen relativ gute Erträge am Standort Dornburg erzielte. Die aus Dornburger Zuchtmaterial stammenden Auslesen übertrafen wie auch in den Vorjahren hinsichtlich des Ölgehaltes die als Vergleich angebauten Sorte 'Sabina' bzw. den Stamm Bendeleben um bis zu 10 %. Vor allem in Trockengebieten oder auch im Ökoanbau könnte der Saflor zukünftig Anbaubedeutung erlangen.

2.1.5 Koriander

Das fette und das ätherische Öl von Koriander finden Verwendung in der Duftstoff-, chemischen und Nahrungsmittelindustrie.

Anbauversuch Koriander

Versuchsnummer: 625 840

Versuchsfrage: Ertragsleistung ausgewählter Koriandersorten in Abhängigkeit von der Saatzeit

Tabelle 2.1.5/1: Kornertrag und TKG verschiedener Koriandersorten in Abhängigkeit von der Saatzeit

VS Dornburg 2002/2003 bis 2004/2005

Saatzeit		T , ,	Kornertrag			TKG	
	Sorte		(dt/ha, 91 % TS))		(g)	_
		2003	2004	2005	2003	2004	2005
September	Thüringer	31,4	25,6	-	7,70	6,05	6,27
	Jantar	32,0	26,9	-	6,73	6,20	7,70
März	Thüringer	24,1	23,5	19,9	8,70	7,20	6,55
	Jantar	21,1	18,7	26,0	6,53	6,50	7,55
April	Thüringer	16,3	20,7	17,9	10,63	6,35	3,85
	Jantar	20,3	19,9	17,8	7,90	5,00	5,00
GD t, 5 %		6,9	4,7	4,3	1,58	0,76	1,63

 Tabelle 2.1.5/2:
 Gehalt und Ertrag an fettem Öl verschiedener Koriandersorten in Abhängigkeit von der Saatzeit

VS Dornburg 2002/2003 bis 2004/2005

Saatzeit	Sorte		Ölgehalt (% TM)			Ölertrag (dt/ha)	
		2003	2004	2005	2003	2004	2005
September	Thüringer	19,8	19,2	-	5,7	4,5	-
	Jantar	19,9	18,7	-	5,8	4,6	-
März	Thüringer	17,2	19,5	19,7	3,8	4,2	3,6
	Jantar	17,2	18,8	21,3	3,3	3,2	5,0
April	Thüringer	17,0	19,7	17,8	2,5	3,7	2,9
	Jantar	18,5	19,0	18,9	3,4	3,5	3,0
GD t, 5 %		1,4	0,7	1,4	1,5	0,9	1,0

Tabelle 2.1.5/3: Gehalt und Ertrag an ätherischem Öl verschiedener Koriandersorten in Abhängigkeit von der Saatzeit VS Dornburg 2002/2003 bis 2004/2005

Saatzeit	Sorte		Äth. Öl * (ml/100 g TM)			Ertrag äth. Öl (l/ha)				
		2003	2004	2005	2003	2004	2005			
September	Thüringer	0,95	0,94	-	24,3	21,6	-			
	Jantar	1,56	1,63	-	40,5	48,4	-			
März	Thüringer	0,96	1,05	1,04	20,4	26,1	19,0			
	Jantar	1,73	1,89	0,91	30,4	35,1	21,6			
April	Thüringer	0,86	0,97	1,07	11,1	22,5	17,5			
	Jantar	1,25	1,56	1,01	23,5	35,8	16,4			
GD t, 5 %		0,30	0,39	0,12	10,5	11,0	4,0			

^{*} Wasserdampfdestillation

Tabelle 2.1.5/4: Zusammensetzung des ätherischen Öls (%) verschiedener Koriandersorten in Abhängigkeit von der Saatzeit VS Dornburg 2003 bis 2005

Sorte	`	+β)-Pir	ien	(+)	-Limor	nen	γ-	Terpin	en	L	inaloc	ol .	Ger	anylac	etat	(Geranio	ol
Saatzeit																		
	2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005
Sorte 'Th	nüring	er'																
Sept.	9,31	8,51	-	3,14	2,92	-	11,32	12,37	-	61,28	61,90	-	3,51	3,14	-	1,93	-	-
März	9,27	8,56	8,06	3,10	3,00	2,55	12,39	12,31	10,98	60,35	61,83	66,58	3,36	3,59	3,38	1,89	[2,19
April	9,20	8,79	7,89	3,29	2,71	2,45	11,83	12,12	11,38	60,5	62,66	66,36	4,28	3,41	3,35	1,87	-	2,39
Sorte 'Ja	ntar'																	
Sept.	8,84	8,07	-	3,46	3,35	-	8,39	9,28	-	62,79	63,57	-	3,78	3,76	-	1,89	-	-
März	8,68	8,23	8,22	3,44	3,48	2,51	9,03	8,28	11,97	62,29	63,75	64,68	3,98	4,18	3,64	1,84	-	2,25
April	9,29	8,68	8,06	3,89	3,20	2,41	8,84	8,52	12,47	60,41	63,91	65,24	4,71	4,38	3,42	1,82	-	2,35

Fazit: Die Ergebnisse zeigen, dass die angebauten Koriandersorten unter Thüringer Bedingungen hohe Erträge realisieren können. Die Herbstaussaat erreichte in den Jahren 2003 und 2004, auch nach dem strengen Winter 2002/2003, die höchsten Erträge. Der Totalausfall des Jahres 2005 ist auf Staunässe durch eine defekte Drainage auf dem Versuchsfeld zurückzuführen. Die Sorte "Jantar" zeichnet sich in der Regel durch besonders hohe Gehalte an ätherischem Öl aus. Allerdings konnte mittels Wasserdampfdestillation keine erschöpfende Extraktion des Inhaltsstoffes erzielt werden. Gravierende Unterschiede hinsichtlich der Zusammensetzung des ätherischen Öls zwischen den Jahren, Saatzeiten und Sorten sind nicht zu verzeichnen. Zur Sicherung des Anbaus sind Präventivmaßnahmen zur Behandlung des Bakteriellen Doldenbrands zu empfehlen.

Fungizidversuch Koriander (Lückenindikation)

Versuchsnummer: 625 732

<u>Versuchsfrage:</u> Wirkung und Verträglichkeit von Fungiziden zur Behandlung von Doldenkrankheiten auf die Ertragsleistung von Koriander

Tabelle 2.1.5/5: Einfluss der Fungizidbehandlung auf Kornertrag und TKG von Koriander VS Dornburg 2004 und 2005

Variante		ertrag	Tk	(G
	(dt/ha, g	91 % TS)	(ફ	ਤ)
	2004	2005	2004	2005
Unbehandelte Kontrolle	21,7	17,3	5,75	6,80
Score (2 x 4 l/ha)	19,8	-	5,45	-
Folicur (2 x 1 l/ha)	24,7	-	6,20	-
Ortiva (2 x 1 l/ha)	22,0	-	5,40	-
Funguran (2004: 3 x 3 kg/ha; 2005: 2 x 3 kg/ha)	25,3	21,7	6,65	6,55
Aliette WG (2 x 3 l/ha)	-	20,4	-	6,50
Thiovit JET (2 x 3 l/ha)]	17,4	-	6,70
Forum (3 x 1,2 l/ha)	-	18,5	-	6,62
GD t, 5 %	2,9	2,3	0,71	0,45

Tabelle 2.1.5/6: Wirkung und Verträglichkeit von Fungiziden gegen Doldenkrankheiten bei Koriander VS Dornburg 2004

	V3 D011101	uig 2004							
Versuch: Fungiz	zidvergleich			Kultur: Koriander					
Versuchsort:		VS Dornbu	rg Ve		Versuchsbetreuer: F		Frau Ormerod		
Sorte: Jantar			Bode	Bodenart/-zahl:					
Vorfrucht: Sommer		Sommerge	rste	N-D	üngung:	105 kg/ł	ıa		
Aussaat: 30.03.0		30.03.04		Ernt	e:	23.08.02	1		
Variante Anwendung		7	Bon	iturn	oten (Welke)		Ertrag		
j	l/ha	Datum	1. Bonitur: 25.06.0.	4	2. Bonitur: 28.07.0	04	(dt/ha, 91 % TS)	(%)	
<u> </u>			Welke		Welke		, , ,	` '	
ı UK	-	-	1		2		21,7	100	
2 SF Score	2 X O,4	09.06.04 17.06.04	1		2		19,8	91	
3 SF Folicur	2 X 1,0	09.06.04 17.06.04	1		1		24,7	114*	
4 SF Ortiva	2 X 1,0	09.06.04 17.06.04	1		1		22,0	101	
5 SF Funguran	3 x 3,0	09.06.04 17.06.04 25.06.04	1		1		25,3	117**	
	•				GD t, 5 %		2,91		

Fazit: Der Befall war im Jahr 2004 generell nur sehr gering. Trotzdem konnte eine signifikante Wirkung der Mittel Folicur und besonders Funguran bei der Ertragsermittlung festgestellt werden. Schädigungen traten nicht auf.

Tabelle 2.1.5/7: Wirkung und Verträglichkeit von Fungiziden gegen Doldenkrankheiten bei Koriander VS Dornburg 2005

Versuch: Fung	izidver	such			ŀ	Kultur: Koriander							
Versuchsort:		Versuchs	station Do	ornburg	1	Versuchsbetreuer: Frau				Ormerod			
Sorte:		Jantar	antar				denart/-zahl:		67	7			
Vorfrucht:		Winterrap	s		I	N-[Düngung:		69 kg	kg/ha			
Aussaat:		04.04.2005 Ernte: 17.08.2005					.2005						
Variante	Anwendung			be	befallene Blüten in Boniturnoten				Ertrag	Ertrag			
	l/ha	Datum	Datum	Datum	1. Bonitui	r	2. Bonitur am:	Endbonitu	r am.:	(dt/ha, 91 % TS)	(%)		
					am:23.06	5.	08.07.	27.07.					
1 UK					1,0		2,7	3,0		17,3	100		
2 Aliette WG	3,0	13.06.	23.06.		1,25		2,2	2,1		20,4	116**		
3 Thiovit JET	3,0	13.06.	23.06.		1,35		2,5	2,75		17,5	101		
4 Funguran	3,0	13.06.	23.06.		1,0		2,2	1,9		21,7	125***		
5 Forum	1,2	13.06.	23.06.	04.07.	1,1		2,5	2,6		18,5	107		
							•	GD t, 5	%	2,3			

Fazit: Nach dem Drillen lief der Koriander aufgrund der Frühjahrstrockenheit mit starken Verzögerungen in den Parzellen auf. So begann ein Teil des Bestandes bereits zu blühen, während bis zu 50 % der Pflanzen in den einzelnen Parzellen erst 10 bis 15 cm Wuchshöhe aufwies. Dies führte auch zu einer schwierigen Bestimmung des Spritzbeginns. Der Befall mit Doldenbrand wurde im TLL-Labor in Kühnhausen nachgewiesen, entwickelte sich aber nicht gravierend weiter. Die Ernteergebnisse wiesen einen signifikanten Mehrertrag der Variante 2 (Aliette WG) und der Variante 4 (Funguran) aus. Letztgenannte bestätigte damit das Ergebnis aus dem Vorjahr.

2.1.6 Schwarzkümmel

Schwarzkümmel findet als typisches Gewürz der südlichen Küche zunehmend auch in Mitteleuropa Verwendung. Das fette Öl der Pflanze ist ernährungsphysiologisch wertvoll und wird im Bereich der Pharmazie, aber auch im Nahrungsergänzungsbereich eingesetzt.

Saatzeiten Schwarzkümmel

Versuchsnummer:

529 740

Versuchsfrage: Einfluss der Saatzeit auf Ertrag und Ölgehalt von Schwarzkümmel

 Tabelle 2.1.6/1:
 Einfluss der Saatzeit auf Kornertrag und TKG von Schwarzkümmel

VS Dornburg 2001 bis 2004

Saatzeit			TKG				
		(dt/ha,		(g)			
	2001	2002	2003	2004	2002	2003	2004
Ende August	Umbruch	Umbruch	nicht geprüft	nicht geprüft	-	-	-
Ende September	Umbruch	Umbruch	nicht geprüft	nicht geprüft	-	-	-
Ende März	9,3	15,1	21,7	13,7	2,04	2,92	2,05
Mitte April	9,0	16,9	21,4	10,6	2,05	2,90	2,15
Ende April	nicht geprüft	15,2	22,3	8,1	2,08	2,88	1,85
GD t, 5 %	1,4	1,3	2,4	2,7	0,04	0,06	0,16

Tabelle 2.1.6/2: Einfluss der Saatzeit auf Ölgehalt und Ölertrag von Schwarzkümmel VS Dornburg 2001 bis 2004

	Dollibulg 200									
Saatzeit			ehalt TM)		Ölertrag (dt/ha)					
	2001	2002	2003	2004	2001	2002	2003	2004		
Ende August	-	-	-	-	-	-	-	-		
Ende September	-	-	-	-	-	-	-	-		
Ende März	45,2	39,8	43,1	45,1	3,8	5,5	8,5	5,6		
Mitte April	44,7	39,3	42,8	45,8	3,6	6,0	8,4	4,4		
Ende April	-	39,3	42,1	44,2	-	5,4	8,6	3,3		
GD t, 5 %	0,7	1,1	0,6	0,8	0,60	0,4	0,9	1,1		

Fazit: Schwarzkümmel sollte wegen seiner relativ langen Vegetationszeit möglichst früh ausgesät werden. Die Jungpflanzen überstehen eventuell auftretende Spätfröste ohne Probleme. Spätere Aussaaten sind meist mit einem tendenziellen Absinken der Ölgehalte verbunden. Außerdem verschiebt sich die Erntezeit in den September und damit in meist ungünstige Erntebedingungen. Eine Spätsommer- bzw. Frühherbstaussaat ist aufgrund der ungenügenden Winterhärte des Schwarzkümmels nicht möglich.

Herkunftsprüfung Schwarzkümmel

Versuchsnummer: 529 800

<u>Versuchsfrage:</u> Untersuchungen zum Ertragspotenzial von Nigella sativa (Schwarzkümmel)

Tabelle 2.1.6/3: Kornertrag und TKG von Schwarzkümmel-Herkünften VS Dornburg 2003 bis 2005

Herkunft		Kornertrag			TKG		
		(dt/ha, 91 % TS)	(g)			
	2003	2004	2005	2003	2004	2005	
1 Nigella damascena	21,3	9,7	-	3,20	2,55	-	
2 Nigella sativa (Gahlke)	21,0	6,5	-	2,35	1,65	-	
3 Nigella sativa (Treudler)	23,7	16,1	19,6	-	2,65	2,75	
4 Nigella sativa (Appel)	13,8	10,0	11,0	3,60	2,95	3,10	
5 Nigella sativa (Türkei)	22,1	13,8	20,0	2,55	2,30	2,40	
6 Nigella sativa (Kinzel & Sohn)	22,0	9,7	-	2,40	2,90	-	
7 Nigella sativa (Nr. 18)	22,8	17,0	-	2,40	2,40	-	
8 Nigella sativa (Spinnrad)	19,4	5,2	-	2,30	1,65	-	
9 Nigella sativa (Gahlke Ägypten)	19,4	16,0	18,8	3,40	2,90	2,95	
10 Nigella sativa (Salushaus)	20,1	15,0	19,5	2,60	2,30	2,30	
11 Nigella sativa (Nr. 21)	22,8	15,5	19,8	2,85	2,65	2,80	
12 Nigella sativa (PHARMASAAT)	13,6	9,6	-	3,62	2,85	-	
13 Nigella sativa (Mieke)	19,9	15,0	13,1	3,15	2,65	2,65	
14 Nigella sativa (Syrien)	-		11,2	-	-	2,95	
GD t, 5 %	3,4	4,2	4,3	0,46	0,44	0,29	

Tabelle 2.1.6/4: Ölgehalt und Ölertrag von Schwarzkümmel-Herkünften VS Dornburg 2003 bis 2005

Herkunft	-	Ölgehalt (% TM)		Ölertrag (dt/ha)			
	2003	2004	2005	2003	2004	2005	
1 Nigella damascena	46,1	45,9	-	8,9	4,0	-	
2 Nigella sativa (Gahlke)	45,2	45,0	-	8,6	2,7	-	
3 Nigella sativa (Treudler)	43,8	45,6	41,0	9,4	6,7	7,3	
4 Nigella sativa (Appel)	41,6	38,2	37,7	5,2	3,5	3,8	
5 Nigella sativa (Türkei)	44,0	45,5	42,0	8,8	5,7	7,6	
6 Nigella sativa (Kinzel & Sohn)	44,6	38,0		8,9	3,4	-	
7 Nigella sativa (Nr. 18)	43,3	46,0	-	9,0	7,1	-	
8 Nigella sativa (Spinnrad)	44,8	44,6	-	7,9	2,1	-	
9 Nigella sativa (Gahlke Ägypten)	41,5	40,9	38,3	7,3	6,0	6,5	
10 Nigella sativa (Salushaus)	44,0	45,2	41,8	8,0	6,1	7,4	
11 Nigella sativa (Nr. 21)	43,1	44,6	38,8	8,9	6,3	7,0	
12 Nigella sativa (Pharmasaat)	40,7	37,6	-	5,0	3,3	-	
13 Nigella sativa (Mieke)	44,2	46,2	40,1	8,0	6,3	4,8	
14 Nigella sativa (Syrien)	-	-	35,6	-	-	3,6	
GD t, 5 %	1,6	3,3	2,4	1,5	1,8	1,8	

Tabelle 2.1.6/5: Gehalt (Wasserdampfextraktion) und Ertrag an ätherischem Öl verschiedener Schwarzkümmel-Herkünfte VS Dornburg 2003 bis 2005

	Herkunft		t an ätherische	em Öl*	Ertra	g an ätherische	em Öl	
			(ml/100 g TM))	(kg/ha)			
		2003	2004	2005	2003	2004	2005	
1	Nigella damascena	0,158	0,310	-	2,30	3,01	-	
2	Nigella sativa (Gahlke)	0,085	0,380	-	1,58	2,43	-	
3	Nigella sativa (Treudler)	0,062	1,365	0,757	1,34	22,40	13,98	
4	Nigella sativa (Appel)	0,024	0,105	0,055	0,30	1,10	0,70	
5	Nigella sativa (Türkei)	0,055	0,725	0,162	1,15	9,82	2,95	
6	Nigella sativa (Kinzel & Sohn)	0,125	0,095	-	2,48	0,98	-	
7	Nigella sativa (Nr. 18)	0,889	1,295	-	19,56	21,25	-	
8	Nigella sativa (Spinnrad)	0,152	0,320	-	2,69	1,51	-	
9	Nigella sativa (Gahlke Ägypten)	0,308	0,715	0,108	5,72	11,02	2,00	
10	Nigella sativa (Salushaus)	0,156	0,480	0,075	3,02	6,98	1,31	
11	Nigella sativa (Nr. 21)	1,015	1,295	0,640	21,56	19,26	12,49	
12	Nigella sativa (Phamasaat)	0,038	0,140	-	0,54	1,41	-	
13	Nigella sativa (Mieke)	0,112	0,245	0,017	2,07	3,80	0,17	
14	Nigella sativa (Syrien)		I -	0,050	-	-	0,58	
GD	t, 5 %	0,318	0,461	0,287	6,94	7,93	5,49	

^{*} Bestimmung mittels Wasserdampfextraktion

Tabelle 2.1.6/6: Zusammensetzung des ätherischen Öls (%) verschiedener Schwarzkümmel-Herkünfte (Hauptkomponenten) VS Dornburg 2004 und 2005

งร บังเมอเ	irg 2004 und	1 2005						
Herkunft	α+β-	Pinen	γ-Τε	rpinen	ρ-C	ρ-Cymol		chinon
	2004	2005	2004	2005	2004	2005	2004	2005
ı N. damasc.	1,92	-	0,16	-	9,93	-	3,12	-
2 N. sat. (Gahlke)	6,60	-	14,13	-	21,96	-	2,02	-
3 N. sat. (Treudler)	12,08	14,11	15,74	4,15	50,91	58,85	0,32	5,68
4 N. sat. (Appel)	9,14	5,45	9,80	4,66	51,28	62,48	0	6,55
5 N. sat. (Türkei)	14,14	12,37	6,61	3,16	57,20	54,61	0	9,71
6 N. sat. (Kinzel & Sohn)	10,84	-	4,00	-	59,38	-	0	-
7 N. sat. (Nr. 18)	14,16	-	9,96	-	55,64	-	0	-
8 N. sat. (Spinnrad)	11,32	-	27,74	-	36,62	-	0	-
9 N. sat. (Gahlke Ägypt.)	14,85	14,26	1,04	3,88	60,06	55,24	0	9,28
10 N. sat. (Salushaus)	16,49	12,92	0,56	3,46	57,80	53,52	0	13,10
11 N. sat. (Nr. 21)	18,50	15,78	0,41	2,54	54,91	45,53	0	22,06
12 N-sat. (Phamasaat)	12,50	-	0,78	-	54,90		0	-
13 N. sat. (Mieke)	17,33	8,51	0,60	2,67	56,10	48,50	0	18,65
14 N. sat. (Syrien)	-	10,78	-	3,10	-	60,05	0	8,44
GD t, 5 %	4,56	3,34	8,47	0,75	15,66	6,89	0,99	6,29

Fazit: Sowohl hinsichtlich des Ertrages als auch der Inhaltsstoffzusammensetzung sind zwischen den geprüften Herkünften deutliche Unterschiede zu verzeichnen. Erhebliche Jahresunterschiede treten in der Zusammensetzung des ätherischen Öls auf. In für den Schwarzkümmel günstigen Jahren, wie beispielsweise 2003, sind Erträge von 20 dt/ha möglich. Schwarzkümmel könnte aufgrund der relativen Schnellwüchsigkeit und Anspruchslosigkeit für den Ökoanbau geeignet sein.

Saatstärken Schwarzkümmel

Versuchsfrage:

Einfluss der Saatstärke auf Ertrag und Ölgehalt von Schwarzkümmel

Versuchsnummer: 529 741

 Tabelle 2.1.6/7:
 Einfluss der Saatstärke auf Kornertrag und TKG von Schwarzkümmel

VS Dornburg 2002 bis 2005

VS Dornburg 2002 bis 2003										
Saatstärke (kg/ha)			ertrag 91 % TS)		TKG (g)					
	2002	2003	2004	2005	2002	2003	2004	2005		
5	-	22,1	16,0	13,7	-	2,85	2,65	2,60		
10	19,0	22,8	14,8	13,3	2,17	2,82	2,55	2,65		
15	17,3	22,6	13,1	17,0	2,20	2,82	2,60	2,80		
20	17,4	23,5	16,9	18,7	2,38	2,78	2,60	2,70		
GD t, 5 %	1,8	1,8	2,7	3,6	0,14	0,05	0,07	0,10		

Tabelle 2.1.6/8: Einfluss der Saatstärke auf Ölgehalt und Ölertrag von Schwarzkümmel VS Dornburg 2002 bis 2005

Saatstärke (kg/ha)			ehalt TM)				rtrag /ha)				
(8)	2002	2003	2004	2005	2002	2003	2004	2005			
5	-	42,9	43,4	38,0	-	8,6	6,3	4,7			
10	38,5	43,1	43,9	38,8	6,66	6,66 9,0 5,9					
15	38,3	43,4	44,3	40,2	6,03	8,9	5,3	6,2			
20	38,8	43,4	44,0	40,1	6,13	9,3	6,8	6,8			
GD t, 5 %	0,9	0,4	0,5	1,4	0,53	0,7	1,1	1,4			

Fazit: In der Literatur wird für Schwarzkümmel eine Saatstärke von 20 kg/ha empfohlen. Die Einzelpflanzen des Schwarzkümmels verfügen jedoch über ein sehr gutes Kompensationsvermögen, so dass eine Reduzierung der Saatstärke auf ca. 10 kg/ha in der Regel auch unter Praxisbedingungen eine sichere Bestandesetablierung verspricht. Damit kann eine deutliche Einsparung der Produktionskosten erreicht werden. Die von diesem Fazit abweichenden Ergebnisse des Jahres 2005 sind auf extrem ungünstige Witterungsbedingungen im Frühjahr zurückzuführen. Anhaltende Trockenheit nach der Saat führte zu einem lückigen Auflaufen der Bestände, anhaltend kaltes Wetter behinderte die Bestockung der Einzelpflanzen.

Herbizidversuch/Lückenindikation Schwarzkümmel Versuchsnummer: 529 732

Versuchsfrage: Herbizidverträglichkeit von Schwarzkümmel

Tabelle 2.1.6/9: Wirkung und Verträglichkeit von Herbiziden bei Schwarzkümmel VS Dornburg 2005 (Lückenindikation)

Versuch: He	rbizidvergle		Kultur: Schw	,				
Versuchsort:	Dornburg		Versuchsbet	reuer:	Frai	ı Ormerod/Fı	au Schütze	
Sorte:	Wildausles	se	Bodenart/-za	ahl:	Leh	m/67		
Vorfrucht:	Winterraps	S	N-Düngung:	:	69 l	g/ha		
Aussaat:	02.04.05		Ernte:		-			
Variante	An	wendung	Wirkı			Deckungsgra	d in %)	Phytotox
Variante				Bonitu	ır: 31.05.0	5/13.06.05		in %
	l/ha	Datum/ES	CHEAL	POLAM	POLCO	THLAR	HERBA	
1 UK	-	-	2	10	1	2	2	
I UK			CHEAL POLAM 2 10 5 19 96 90		3	6	7	
	3,5	04.04./ VA	96	90	15	100	90	60A, 98/55WD,
2 Bandur			95	75	0	100	94	100/100 A H
							- '	60A, 100/60WD
3 Boxer	4,0	04.04./VA	5	0	25	10	30	3A, 8/18WD
3 boxer			3	0	0	0	5	5A, 13/13WD
4 Afalon	2,0	04.04./VA	25	0	0	25	35	24AV, 45/40WD
4 Atalon			10	0	0	0	15	20A , 45/50WD
Herba: STEME	; LAMAM; E	UPSS; SOLNI;	BRANA			_	<u> </u>	

Fazit: Aufgrund des späten und trockenen Frühjahrs liefen die Kultur und die Unkräuter sehr zögerlich auf. Es kam zu einem sehr lückigen und ungleichmäßigen Bestand. Besonders breitete sich der Ampferblättrige Knöterich auf der Versuchsfläche aus.

Es wurden drei Mittel im Vorauflauf getestet. Bandur hatte die beste Wirkung gegen die Hauptunkräuter, fiel aber wegen der phytotoxen Wirkung mit starker Ausdünnung, Aufhellung und Wuchsdepressionen negativ auf. Die beiden Mittel Boxer und Afalon zeigten in diesem Jahr unbefriedigende Wirkungen. Die leichten Schädigungen der Kultur durch Boxer verwuchsen sich. Afalon dünnte den Bestand um 20 % aus und 50 % der Pflanzen zeigten Wuchsdepressionen. Der Unkrautdruck war während der Applikation zu gering und die Wirkung der Herbizide reichte später nicht mehr aus.

2.2 Heil-, Duft- und Gewürzpflanzen

2.2.1 Große Brennnessel (Fasernessel)

Anbauversuch Große Brennnessel

Versuchsfrage: Eignung von Fasernesselstämmen für die pharmazeutische Nutzung

Tabelle 2.2.1/1: Ertrag und Blattertrag von Fasernesselstämmen bei mehrschnittiger Nutzung (Schnitt bei ca. 70 cm

Versuchsnummer: 526 861

Versuchsnummer: 611 800

Wuchshöhe)

VS Dornburg 2005 (1 Wdh.)

Stamm	1. Sc	:hnitt	2. Sc	hnitt	3. Sc	hnitt	Ges	samt
	Ertrag	Blattertrag	Ertrag	Blattertrag	Ertrag	Blattertrag	Ertrag	Blattertrag
	(dt TM/ha)	(dt TM/ha)						
1	26,1	16,6	31,6	20,3	24,4	15,0	82,1	51,9
2	66,2	37,4	38,1	20,2	29,2	18,0	133,5	75,5
3	32,5	21,6	34,9	22,2	25,9	17,0	93,4	60,8
4	26,1	17,2	31,6	16,9	25,2	16,1	83,0	50,2
5	22,4	15,5	50,5	32,3	27,0	20,2	99,9	71,0
6	27,2	17,4	28,0	17,9	23,1	15,0	78,4	50,3
7	32,4	19,8	43,3	25,9	26,5	15,6	102,3	61,2
8	78,0	39,4	49,6	29,9	28,3	23,5	165,8	92,8
9	35,9	24,0	31,4	19,7	25,3	17,1	92,6	60,8
10	24,4	17,1	30,8	22,4	21,2	15,3	76,4	54,9
11	33,7	23,3	76,0	53,0	50,0	33,3	159,6	109,7
12	92,3	48,5	58,5	33,2	41,1	24,2	191,9	105,9

Fazit: Hinsichtlich des Ertrages traten zwischen den Stämmen deutliche Unterschiede auf. Dabei erwiesen sich die Stämme 2, 8, 11 und 12 als besonders wüchsig. Ergebnisse zu den für eine pharmazeutische Nutzung wichtigen Inhaltsstoffen liegen noch nicht vor.

2.2.2 Kümmel

Anbauversuch Kümmel

<u>Versuchsfrage:</u> Einfluss von Sorte und Erntetermin auf Ertrag und Gehalt an ätherischem Öl (zu Milchund Gelbreife Ernte des Blühhorizontes, zur Vollreife Mähdrusch der Samen)

Tabelle 2.2.2/1: Einfluss des Erntetermins auf TM-Ertrag, Gehalt und Ertrag an ätherischem Öl verschiedener Kümmelsorten VS Dornburg 2002 bis 2004 (2004 nur Mähdrusch zur Vollreife)

	VS Dorn															
Stadium	Er	nteterm	iin		Ertrag		K	ornertr		Meth-		Äth. Ö		Ertr	ag äth	. Ol
		1	ı		TM/h			(dt/ha)		ode		100 g			(l/ha)	ı
	2002	2003	2004	2002	2003	2004	2002	2003	2004		2002	2003	2004	2002	2003	2004
Sorte 'Sprinter' (ei																
Milchwachsreife	27.08.	08.08.	-	27,1	23,2	-	16,8	14,8	-	frisch	0,9	0,7	-	24,4	15,4	
										trocken	0,4	0,6	-	10,8	13,9	
Gelbreife	05.09.	12.09.		22,4	16,1	-	14,9	10,2		frisch	0,5	0,8	-	11,2	12,9	
										trocken	0,4	0,3	-	9,0	4,8	
reifes Korn	20.09.	25.08.	30.08.	12,6	3,1	10,5	12,6	3,1	10,5		3,8	3,0	4,1	48,4	9,2	38,8
Sorte 'Rekord ' (zw					_	_				1	_					
Milchwachsreife		12.06.	-	35,4	37,4	-	14,0	20,9	-	frisch	1,2	1,8	-	43,0	68,4	-
										trocken	0,8	1,5	-	30,0	57,4	
Gelbreife	26.06.	23.06.		46,4	50,0		26,5	30,0		frisch	1,2	1,6		55,1	81,2	
				1 / 1	,		,,	,		trocken	1,0	1,4	-	46,8	70,6	1
reifes Korn	09.07.	02.07.	12.07.	22,7	17,0	5,5	22,7	17,0	5,5		3,2	3,5	3,6	74,4	57,9	18,0
Sorte 'Niederdeuts				,,	.,,-	ייכ	,,	-7,1-	נינ	l	<i>J</i> 1-	נינ	<i>Ji</i> -	7 777	3713	
Milchwachsreife	12.06.		5 <i>1</i>	22,2	4,7	_	7,4	2,5		frisch	1,8	1,6	_	39,2	7,2	_
	12.001	.2.001		,_	717		//-	_,,		trocken	1,1	1,1		25,1	6,1	i
Gelbreife	25.06	23.06.		19,7	8,3		10,5	4,8		frisch	1,1	1,0		21,3	8,5	<u>-</u>
delbrene	23.00.	25.00.		1317	0,5		10,5	4,0		trocken	1,1	0,9		21,2	8,4	<u>-</u>
reifes Korn	08.07	02.07.	12 07	11,4	2,6	7,8	11,4	2,6	7,8		3,5	4,8	4,7	40,3	7,2	33,2
Sorte 'Konzcewick			12.07.	''',4	2,0	7,0	11,4	2,0	7,0		ניכ	4,0	4,7	40,5	/,2	33,2
Milchwachsreife		12.06.	_	32,9	30,3	T -	11,6	16,8		frisch	1,6	1,6		56,9	48,1	
Willeliwaciisielle	12.00.	12.00.	_	32,9	30,3	_	11,0	10,6	_	trocken	1,0	1,3		32,7	40,0	
Gelbreife	25.06	23.06.	{	35,8				25,2		frisch	1,1					{
Gelbrelle	25.06.	23.06.	-	35,0	42,7	-	21,2	25,2	-	trocken		0,9		39,4	36,9	∤ ⁻
reifes Korn	08.07.	02.07.	12.07.	18,0			18.0					1,0		25,4	41,3	
		02.07.	12.0/.	10,0	11,4	5,6	10,0	11,4	5,6		2,9	3,3	4,0	52,1	38,3	20,2
Sorte 'Bleija' (zwei Milchwachsreife	. 	1	1							£.: -	T					
Milichwachsreife	12.06.	-	-	17,9	-	-	6,7	-	-	frisch trocken	_ 1,5 _			27,5		{ ⁻
Gelbreife			{								1,2			22,0		⁻
Gelbreife	25.06.	-	-	33,5	-	-	18,7	-	-	frisch	1,0			34,4		⁻
	-		{							trocken	0,8			26,0		
reifes Korn	08.07.	-	-	19,6	-	-	19,6	-	-		2,6	-	-	50,9	-	-
Sorte 'Arterner' (z	veijährig		1		T	T	T	ı	1		1		1			_
Milchwachsreife	-	12.06.	-	-	34,1	-	-	19,3	-	frisch	<u> </u>	1,6			55,9	
			ļ						L	trocken	L -	1,5			51,5	
Gelbreife	-	23.06.	-	-	44,4	-	-	27,9	-	frisch	L	1,1			48,3	
	<u> </u>		<u> </u>						<u> </u>	trocken	<u> </u>	1,1			67,2	<u> </u>
reifes Korn	-	02.07.	12.07.	-	14,4	12,9	_	14,4	12,9			3,1	3,6	-	43,9	12,4
GD t, 5 %			· · · · · ·	3,9	5,5	3,2	2,9	3,2	3,2	frisch	0,23	0,18	-	7,9	11,56	-
										trocken	0,42	0,41	0,4	7,2	7,61	11,4
l							1		L	L				• •		

Einfluss des Erntetermins und der Extraktionsmethode auf die Zusammensetzung des ätherischen Öls (%) Tabelle 2.2.2/2: bei Kümmel (WDE)

VS Dornburg 2002 bis 2004

Trocken 0,17 0,12 25,06 5,50 1,38 5,34 7,02 5,06 6,10 5,38 1,000 1,0		VS Dornb													1		
Sorte 'Sprinter' (einjährig) Dis Angaben entsprechen den Ermijahren und nicht den Vergleichsjähren.		Zustand		. ′		` '											
Milchwachsreife Frisch 0,18 0,11 0,12 1,20 1,48 1,62 8,13 10,24 5,472 6,72 6,70 1,70	Reife		2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004
trocken 0,17 0,12 25,06 15,50 1,18 5,54 7,02 5,006 6,10 5,10 1,000 1	Sorte 'Sprinter' (ei	njährig) 🛭	ie Angal	ben ents	orechen	den Ernte	ejahren u	ınd nicht	den Ver	gleichsjal	nren.						
trocken 0,17 0,12 2,06 15,50 15,50 1,38 5,54 7,02 5,06 6,010 1,000	Milchwachsreife	frisch	0,18	0,11	-	15,20	12,48	-	1,62	8,13	-	-	10,24	-	64,72	65,79	-
Carebreife		trocken	0,17	0,12	-		15,50	-	1,38		-	-	7,02	-	59,06		-
eifes Korn Frisch 0,60 0,51 0,52 0,42 54,14 52,90 42,05 0,13 0,24 0,11 0 0 44,36 45,82 56,92	Gelbreife	frisch	0,30	0,12	-			-			-		15,76	-			
Firsch 0.60 0.55 0.42 54.14 52.90 42.06 0.13 0.24 0.11 0 0 4.4.36 45.82 56.92 Sorte 'Rekord' (zweijahrig) Wilchwachsreife frisch 0.12 0.12 0.12 0.24.46 16.97 0.44 0.46 0.56 0.292 0.56,26 79.22 Gelbreife frisch 0.07 0.08 0.05 12.80 0.034 0.44 0.46 0.60 0.292 0.56,26 79.22 Frisch 0.07 0.08 0.05 12.80 0.034 0.44 0.46 0.60 0.292 0.56,26 79.22 Frisch 0.07 0.08 0.125 12.91 0.36 2.02 0.371 79.43 79.29 Frisch 0.52 0.46 0.40 0.50,40 53.82 44.61 0.11 0.14 0.16 0 38.38 45.22 54.53 Frisch 0.52 0.46 0.40 59.01 53.82 44.61 0.11 0.14 0.16 0 38.38 45.22 54.53 Frisch 0.10 0.14 0.04 16.73 0.45 0.54 0.54 0.54 0.54 Frisch 0.10 0.14 0.12 0.12 0.56 11.76 0.41 0.79 0.55 0.20 0.38 0.57 Frisch 0.58 0.55 0.26 60.19 58.43 1.76 0.41 0.79 0.55 0.20 0.38 0.57 Frisch 0.54 0.55 0.55 0.26 60.19 58.43 1.76 0.05 0.05 0.25 0		trocken	0,16	0,11							-	-			64,64		
gelagert 0,62	reifes Korn	frisch	0,60	0,55	0,42	54,14	52,90	42,06	0,13		0,11						56,92
Milchwachsreife frisch 0,12 0,12 24,46 16,97 0,44 0,46 0,60 2,92 66,26 79,22 0,66 15,57 15,56 15,56 15,56 15,56 15,56 15,56 15,56 15,57 15,56		gelagert					-				-	-		-		-	-
Milchwachsreife	Sorte 'Rekord ' (zw			1	l		l	1		1	1					l	
trocken trocken co. co.	Milchwachsreife		0.12	0.12	-	24.46	16.97	-	0.44	0.46	_	-	5.63	-	69.32	75.86	-
Gelbreife frisch 0,07 0,08 12,46 12,80 0,34 0,44 4,93 82,84 80,88 15,52 12,91 0,036 2,02 0 3,71 79,43 79,29 15,62 12,91 0,036 2,02 0 3,71 79,43 79,29 15,63 15		1				'											
trocken 0,09 0,05 1,15,52 12,91 0,36 2,02 3,71 79,43 79,29 - eifes Korn frisch 0,52 0,46 0,40 60,40 53,82 44,61 0,11 0,14 0,16 0 0 38,38 45,32 54,63 50,65	Gelbreife	frisch	{			! <u>_ </u>				{							
Frisch 0,52 0,46 0,40 60,40 53,82 44,61 0,11 0,14 0,16 0 0 38,38 45,32 54,63 39,83 0 0,00 0 0,00 0 0,00 0	00.010.10																
gelagert 0,50 59,01 0,08 39,83	reifes Korn		l		0.40			44 61			0.16						54 63
Sorte Niederdeutscher (zweijährig)	renes kom				-		-	44,01								42,24	<u> </u>
Milchwachsreife frisch 0,10 0,14 0,09 0,14 16,73 0,04 0,52 0,81 0,643 73,66 71,63 0.00 Gelbreife frisch 0,07 0,10 0 1,16,28 11,76 0,04 0,54 0,54 0,54 0,55 0,26 66,34 77,90 0.00 Gelbreife frisch 0,08 0,09 0,08 16,42 15,57 0,30 0,50 0,23 0,20 0 38,64 40,54 66.89 gelagert 0,55 0 60,03 0 0,09 0,09 0,05 0,10 0,12 0,138 0 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0	Sorte 'Niederdeut	-	_	 σ\		75,01			0,00						J3,0J		<u> </u>
Trocken 0,14 0,09 0,16 16,73 0,04 0,54 0,54 0,54 0,54 0,55 0,56 0,07 0,10 0,12 0,08 0,09 0,09 0,09 0,09 0,09 0,16,42 0,79 0,09 0,09 0,09 0,55 0,26 0,09 0,09 0,09 0,09 0,16,42 0,79 0,09 0,09 0,09 0,16,42 0,79 0,09 0,09 0,09 0,16,42 0,79 0,09					_	20.48	10.28	l _	0.53	0.81	I _	l _	6 42	Γ.	72 66	71 62	
Gelbreife frisch 0,07 0,10 12,68 11,76 0,41 0,79 5,54 82,80 80,76 1 1 1 1 1 1 1 1 1	IVIII CII W U CII SI CII C	1	<														
trocken 0,08 0,09 . 16,42 15,57 . 0,30 0,57 . . 2,26 . 81,68 80,42 . eifes Korn frisch 0,54 0,55 0,26 60,19 58,45 32,48 0,06 0,23 0,20 . 0 . 38,64 40,54 66,89 gelagert 0,55 .	Celbreife																
Friefick Korn frisch 0,54 0,55 0,26 60,19 58,45 32,48 0,06 0,23 0,20 0 0 0 38,64 40,54 66,89 80,68 80,69 1,38 0 0,59 0 0,59 0,66,99 71,65 0 0,59 1,58 0,58 0,58 0 0,58 0,58 0 0,59 0,5	Gelbreite																
gelagert 0,55 0 60,03 0 0,09 0 0 0 0 38,83 0 0	roifos Korn				0.26			22.48			0.20						66.80
Sorte Konzcewicki Zweijährig Milchwachsreife frisch 0,14 0,12 - 25,07 18,64 - 0,70 1,38 - 6,99 - 66,90 71,65 - 1,65 1,75 - 1,78 1,	relies Korii			0,55	0,20		50,45	32,40		0,23	0,20					49,54	00,89
Milchwachsreife	Sorta (Vanzaguiek					00,03			0,09						30,03		
trocken 0,16 0,12 - 29,38 18,00 - 0,58 0,58 - 2,42 - 62,9 77,80 - 66,06 - 67,53 - 66,06 - 67,53 - 66,06 - 67,53 - 66,06 - 67,53 - 67,5				0.10		25.07	1064		0.70	1.00		I	6.00		66.00	71.65	
Gelbreife frisch 0,08 0,10 - 14,06 14,53 - 0,55 1,15 - - 6,06 - 80,22 77,53 - 15,06 16,54 - 0,42 0,52 - 1,90 - 79,34 81,80 - 1,90 1,9	WillCriwaCristerie	1	(
trocken 0,09 0,09 0,09 0,15,96 14,54 0,42 0,52 0,19 0,09 0,09 43,76 54,17 gelagert 0,52 0 0,36 63,48 55,38 45,26 0,10 0,24 0,19 0 0 0 0 gelagert 0,52 0 0,72 0 0,07 0 0 0 0,24 0,19 0 0 0 gelagert 0,52 0 0,72 0 0,72 0 0,07 0 0 0 Gelbreife Frisch 0,12 0 0,24 0,19 0 0 0 0 trocken 0,18 0 0 0 0 0 0 0 trocken 0,18 0 0 0 0 0 0 0 trocken 0,18 0 0 0 0 0 0 trocken 0,10 0 0 0 0 0 0 trocken 0,10 0 0 0 0 0 trocken 0,10 0 0 0 0 trocken 0,66 0 0 0 0 gelagert 0,56 0 0 0 0 gelagert 0,56 0 0 0 0 trocken 0,12 0 0 0 gelagert 0,56 0 0 0 trocken 0,12 0 0 trocken 0,13 0 0 trocken 0,10 0 0 trocken 0,10 0 0 trocken 0,10 0 0 trocken 0,08 0 trocken 0,08 0 trocken 0,08 0 trocken 0,08 0 trocken 0,18 0 trocken	Callaraifa		J	J			l – <i>–</i> – –										
Feifes Korn frisch 0,58 0,56 0,36 63,48 55,38 45,26 0,10 0,24 0,19 - 0 - 36,30 43,76 54,17	Geibreile																
gelagert 0,52 - 57,26 - - 0,07 - - - - 41,64 - -	· · · · · · · · · · · · · · · · · · ·		l =														
Sorte 'Bleija' (zweijährig) Milchwachsreife frisch 0,12 - - 20,34 - - 0,68 - - - - - 62,68 - - - 62,68 - - - 62,68 - - - 62,68 - - - 62,68 - - - 62,68 - - - 62,68 - - - 62,68 - - - 62,68 - - - 62,68 - - - 62,68 - - - 62,68 - - - 62,68 - - - 62,68 - - - 62,68 - - - 62,68 - - - 62,68 - - - 62,68 - - - - 62,68 - - - 62,68 - - - 62,68 - - - - 62,68 - - - - 80,78 - - - - 80,78 - - - - 80,78 - - - - 80,78 - - - - 80,78 - - - - - 80,78 - - - - - - 80,78 - - - - - - - - -	reites Korn			0,56	0,36		55,38	45,26		0,24	0,19					43,76	54,17
Milchwachsreife	C (DL.))		0,52	•	-	5/,26	•	-	0,07	-	-	•	•	_	41,04	•	
trocken 0,18 - 28,82 - - 0,58 - - - 62,68 - - Gelbreife frisch 0,10 - - 14,16 - - 0,68 - - - - 78,79 - - 78,79 - - 78,79 - - 78,79 - - 78,79 - - 78,79 - - 78,79 - - 78,79 - - 78,79 - - 78,79 - - 78,79 - - - 80,78 - - - 80,78 - - - 36,66 - - 80,78 - - - 80,78 - - 80,78 - - 80,78 - - 80,78 - - 80,78 - - 80,78 - 80,78 - 80,78 - 80,78 - 80,78 - 80,78 - 80,78 - 80,78 - 80,78 - 80,78 - 80,78 - 80,78 - 80,78 - 80,								I	- (0	I	1						
Gelbreife frisch 0,10 - - 14,16 - - 0,68 - - - - 78,79 - - 14,84 - - 0,38 - - - - 80,78 - - 14,86 - - 14,84 - - 0,38 - - - - 80,78 - - 14,86 - - 14,84 - - 0,12 - - - 16,82 - - - 1,02 - - - 1,02 - - - 1,02 - - - 1	Milichwachsreife									{ ⁻							
trocken 0,10 14,84 0,38 80,78 Feifes Korn frisch 0,66 62,12 0,12 0,13 46,06 80,78 80,78 80,78 80,78 80,78 36,66 80,78 46,06 80,78	C II - :C		{							{							
Feifes Korn frisch 0,66 - - 62,12 - - 0,12 - - - - 36,66 - - 2,68 - - 0,13 - - - - 46,06 - - 52,68 - - 0,13 - - - - 5,86 - - 74,51 - 15,92 - - 0,46 - - 2,42 - - 80,10 - 1,00 - 1,00 - 1,39 - - 83,36 - - 83,36 - 1,39 - - 83,36 - 1,39 - - 83,36 - - - 1,39 - - - 83,36 - - - 1,39 - - - 83,36 - - - 1,39 - - - 83,36 - - - - - - - - -	Gelbreife																
gelagert 0,56 - 52,68 - - 0,13 - - - 46,06 - -			{														
Sorte 'Arterner' (zweijährig) Milchwachsreife frisch - 0,12 - - 16,82 - - 1,02 - - 5,86 - - 74,51 - trocken - 0,12 - - 15,92 - - 0,46 - - 2,42 - - 80,10 - Gelbreife frisch - 0,10 - - 14,64 - - 1,28 - - 5,66 - - 77,69 - trocken - 0,08 - - 13,64 - - 0,39 - - 1,39 - - 83,36 -	reites Korn		< - -	- <i>-</i>		<u> </u>											
Milchwachsreife frisch - 0,12 - - 16,82 - - 1,02 - - 5,86 - - 74,51 - trocken - 0,12 - - 15,92 - - 0,46 - - 2,42 - - 80,10 - Gelbreife frisch - 0,10 - - 14,64 - - 1,28 - - 5,66 - - 77,69 - trocken - 0,08 - - 13,64 - - 0,39 - - 1,39 - - 83,36 -		-	0,56	-	-	52,68	•	-	0,13	-	-	-	•	-	46,06	-	-
trocken - 0,12 15,92 0,46 2,42 80,10 - Gelbreife frisch - 0,10 14,64 1,28 5,66 77,69 - trocken - 0,08 13,64 0,39 1,39 83,36 -				1		T		1	1	1	1	ı				ı	
Gelbreife frisch - 0,10 - - 14,64 - - 1,28 - - 5,66 - - 77,69 - trocken - 0,08 - - 13,64 - - 0,39 - - 1,39 - - 83,36 -	Milchwachsreife	1	_ <i>:</i>				'								:		
trocken - 0,08 13,64 0,39 1,39 83,36 -			ļ <u> </u>	0,12													
	Gelbreife		ļ_ <i>-</i>										5,66		·		
reifes Korn frisch - 0,53 0,36 - 53,88 44,08 - 0,20 0,19 - 0 - - 45,01 55,32				l – – – –	-	-				0,39	-	-	1,39	-			-
	reifes Korn	frisch	-	0,53	0,36	_	53,88	44,08	-	0,20	0,19	-	0	-		45,01	55,32

¹⁾ unbekannte Substanz, konnte im Labor nicht identifiziert werden

Die Ergebnisse belegen, dass zur Gewinnung ätherischen Öls aus Kümmel die Verarbeitung des reifen Korns am günstigsten ist. Hier werden die höchsten Ölerträge je Flächeneinheit bei deutlich geringeren Aufwendungen für die Extraktion erzielt. Eine frühere Ernte des Kümmels ist nur für spezielle Anwendungen sinnvoll. Gleichzeitig stellte die einjährige Sorte 'Sprinter' ihre gute Anbaueignung durch hohe Kornerträge sowie Ölgehalte im Vergleich zu den etablierten zweijährigen Sorten unter Beweis. Insbesondere diese Sorte ist aus wirtschaftlichen Gründen für den Anbau zum Zweck der Gewinnung ätherischer Öle zu präferieren.

Anbauversuch Kümmel

Versuchsnummer: 611 741

Versuchsfrage: Mischanbau ein- und zweijähriger Kümmel

Tabelle 2.2.2/3: Einfluss des Mischanbaus von ein- und zweijährigem Kümmel auf den Kornertrag, Sorten 'Sprinter' (einjährig) und 'Konczewicki' (zweijährig)
VS Dornburg 2004/2005

Variante Variante	Saatstärke (kg/ha)	Kornert (dt/ha, 91	
1 Reinanbau Sprinter	8	Sprinter 2004	16,0
2 Reinanbau Konczewicki	8	Konczewicki 2005	14,7
3 Sprinter + Konczewicki	8 + 8	Sprinter 2004	7,8
(Saatgutmischung)		Konczewicki 2005	12,2
		Σ	20,0
4 Sprinter + Konczewicki	8 + 8	Sprinter 2004	6,9
(getrennt gedrillt)		Konczewicki 2005	12,4
		Σ	19,3
5 Sprinter + Konczewicki	10 + 6	Sprinter 2004	9,7
(getrennt gedrillt)		Konczewicki 2005	11,6
		Σ	21,3
6 Sprinter + Konczewicki	10 + 10	Sprinter 2004	9,4
(getrennt gedrillt)		Konczewicki 2005	11,2
		Σ	20,6
GD t, 5 %		2004	4,1
		2005	1,6

<u>Fazit:</u> Die Ergebnisse zeigen, dass alle Mischungsvarianten hinsichtlich des Gesamtertrages über beide Anbaujahre dem Reinbau der Sorten 'Sprinter' bzw. 'Konczewicki' signifikant überlegen waren. Wenn sich diese Ergebnisse in den Folgejahren bestätigen, wäre der Mischanbau von ein- und zweijährigem Kümmel durchaus eine Möglichkeit, die Wirtschaftlichkeit deutlich zu erhöhen. Eindeutige Einflüsse des Mischungsverhältnisses auf den Gesamtertrag waren noch nicht festzustellen.

2.2.3 Fenchel

Anbauversuch Fenchel

<u>Versuchsfrage:</u> Einfluss von Sorte und Erntetermin auf Ertrag und Gehalt an ätherischem Öl (zu Milchund Gelbreife Ernte des Blühhorizontes, zur Vollreife Mähdrusch der Samen)

Versuchsnummer:

612 860

Tabelle 2.2.3/1: Einfluss des Erntetermins auf TM-Ertrag, Gehalt und Ertrag an ätherischem Öl verschiedener Fenchelsorten VS Dornburg 2002 bis 2004

Stadium	Er	nteterm	nin		Ertrag t TM/h		K	ornertr (dt/ha	_	Meth- ode		Äth. Ö		Erti	rag äth (l/ha)	. Öl
	02	03	04	02	03	04	02	03	04	oue	02	100 g	04	02	03	04
Sorte 'Berfena'		•				•		•	•							
Milchwachsreife	30.08.	28.08.	13.09	34,4	48,5	45,8	8,6	24,2	20,3	frisch	3,0	3,3	3,2	101,3	160,2	
			<u> </u>							trocken	2,3	2,0	2,3	80,4	94,9	106,2
Gelbreife	10.09.	04.09.	29.09.	31,0	52,5	37,4	9,9	30,7	17,7	frisch	2,0	2,3	1,8	60,8	121,7	67,6
										trocken	1,4	2,2	1,6	42,7	114,1	59,1
reifes Korn	22.10.	18.09.	14.10.	10,6	7,9	16,4	10,6	7,9	16,4	-	7,2	5,6	6,4	70,1	43,5	105,6
Sorte 'Magnafena	a'															
Milchwachsreife	30.08.	28.08.	13.09.	27,5	41,7	48,9	4,9	21,6	19,3	frisch	3,0	3,6	3,0	81,2	151,8	144,9
										trocken	2,5	2,2	2,3	69,8	93,9	114,0
Gelbreife	10.09	04.09.	29.09.	29,4	54,6	34,5	10,0	30,0	15,6	frisch	2,3	2,9	2,2	67,4	159,9	77,1
										trocken	1,9	2,3	1,8	57,4	128,4	63,2
reifes Korn	22.10	18.09.	14.10.	9,5	10,1	10,5	9,5	10,1	10,5	-	7,2	4,8	7,4	64,1	48,2	77,5
Sorte 'Großfrüch	tiger'															
Milchwachsreife	30.08.	28.08.	13.09.	38,7	39,2	55,4	14,3	19,5	20,5	frisch	2,2	3,1	1,4	86,2	119,6	76,6
										trocken	1,6	3,1	0,8	61,3	98,2	41,4
Gelbreife	10.09.	04.09.	29.09.	34,1	52,2	36,9	11,1	30,6	11,7	frisch	2,3	2,6	1,5	78,3	135,0	53,8
										trocken	1,6	2,2	1,0	55,7	114,8	36,2
reifes Korn	22.10.	18.09.	14.10	10,8	13,4	12,5	10,8	13,4	12,5		6,2	5,6	4,0	62,0	75,0	49,9
GD t, 5 %	•			5,3	3,7	6,2	1,4	4,3	3,9	frisch	0,2	0,3	0,8	8,4	15,0	39,2
										trocken	1,1	0,9	2,3	6,2	15,3	29,8

Tabelle 2.2.3/2: Einfluss des Erntetermins und der Extraktionsmethode auf die Zusammensetzung des ätherischen Öls (%) bei Fenchel (Hauptkomponenten)
VS Dornburg 2002 bis 2004

Sorte	Zustand	(α	+β)-Pine	en		Fenchor	1		Estrago			Anethol	
Reife		2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004
Sorte 'Berfena'													
Milchwachsreife	frisch	3,13	4,46	4,15	35,48	28,67	34,90	2,19	2,46	2,10	50,24	54,72	49,00
	trocken	4,12	4,27	3,77	31,88	24,12	35,39	2,12	2,54	2,14	51,32	63,35	52,30
Gelbreife	frisch	3,04	3,94	4,62	35,58	34,61	29,73	2,20	2,34	2,24	50,59	51,26	52,96
	trocken	3,52	4,28	3,52	34,4	24,58	28,52	2,18	2,52	2,36	52,21	61,96	58,40
reifes Korn	frisch	5,27	7,74	4,13	25,04	24,05	20,73	2,24	2,20	2,21	58,65	51,21	67,01
	gelagert	4,23	1,94	4,37	20,17	11,93	26,34	2,10	2,44	2,16	66,02	80,78	60,34
Sorte 'Magnafena	ן,												
Milchwachsreife	frisch	3,79	5,33	5,01	35,48	37,96	34,85	2,12	2,16	2,19	49,49	47,08	49,63
	trocken	3,98	4,99	5,37	35,02	31,35	33,61	2,02	2,34	2,17	48,78	56,19	52,38
Gelbreife	frisch	3,71	4,22	4,84	39,06	36,74	31,46	2,08	2,30	2,32	46,94	50,69	53,50
	trocken	3,80	4,89	4,72	40,22	31,94	30,38	1,95	2,30	2,34	47,56	55,18	55,94
reifes Korn	frisch	6,91	10,50	6,50	27,00	20,32	21,28	2,06	2,22	2,27	54,43	53,40	63,87
	gelagert	6,16	5,31	6,35	25,14	20,04	25,81	2,02	2,14	2,29	58,05	65,71	59,34
Sorte 'Großfrücht	iger'												
Milchwachsreife	frisch	4,10	3,26	8,43	29,26	40,70	17,31	2,56	2,06	2,97	53,96	46,46	54,43
	trocken	4,78	4,23	7,79	27,56	33,18	19,41	2,54	2,28	2,23	57,26	54,50	58,42
Gelbreife	frisch	3,845	3,6	7,40	30,97	37,36	20,92	2,38	2,21	2,41	54,02	49,74	55,32
	trocken	3,91	4,48	5,65	30,08	29,92	20,14	3,02	2,44	2,58	56,91	57,99	61,80
reifes Korn	frisch	5,38	5,46	4,41	20,44	18,90	17,10	2,41	2,49	2,71	63,82	63,06	69,41
	gelagert	5,19	4,50	3,46	20,98	23,52	22,44	2,42	2,18	2,92	63,36	62,62	66,00

Beim Anbau des Fenchels zur Gewinnung ätherischer Öle ist es aus wirtschaftlicher Sicht günstig, zur Vollreife der Samen zu ernten, da hier, durch die sehr hohen Ölgehalte, auch hohe Ölerträge je Flächeneinheit erreicht werden. Außerdem enthält das so gewonnene Fenchelöl mehr Anethol und weniger Fenchon als das zu früheren Entwicklungsstadien extrahierte und weist somit die beste Qualität auf. Eine Extraktion zu früheren Entwicklungsstadien ist jedoch, z. B. bei ungünstigen Witterungsbedingungen, die die Ausreife des Korns verzögern, ebenfalls möglich. In diesem Fall sollte zur Vermeidung von Verlusten auf die Verarbeitung des frischen Erntegutes orientiert werden. Allerdings sind bei einer derartigen Vorgehensweise die größeren Anforderungen an die Anlagenkapazität und die, aufgrund der größeren Erntemenge, höheren Extraktionskosten zu beachten. Auch das in früheren Entwicklungsstadien gewonnene Öl entspricht in qualitativer Hinsicht den Anforderungen des DAB.

Anbauversuch Fenchel

Versuchsnummer: 612 840

Versuchsfrage: Einfluss von Saatzeit und Sorte auf Ertrag und Gehalt an ätherischem Öl bei Fenchel

Tabelle 2.2.3/3: Kornertrag sowie Gehalt und Ertrag an ätherischem Öl von Fenchelsorten in Abhängigkeit von der Saatzeit VS Dornburg 2004/2005

Saatzeit	Sorte	Ernte	Kornertrag (dt/ha, 91 % TS)	Äth. Öl. (ml/100 g TM)	Ertrag äth. Öl (l/ha)
Anfang September	Berfena	18.10.05	6,6	4,07	24,2
	Magnafena	18.10.05	2,3	4,23	9,0
	Großfrüchtiger	18.10.05	10,1	2,20	20,0
März/April	Berfena	08.11.05	1,5	3,80	3,4
	Magnafena	08.11.05	1,2	4,80	7,2
	Großfrüchtiger	08.11.05	3,1	2,88	8,4
GD t, 5 %			3,4	0,89	7,7

Tabelle 2.2.3/4: Zusammensetzung des ätherischen Öls verschiedener Fenchelsorten in Abhängigkeit von der Saatzeit VS Dornburg 2004/2005

Saatzeit	Sorte	α+β-Pinen	Limonen	Fenchon	Estragol	Anethol
Anfang September	Berfena	4,88	2,26	23,42	2,30	64,43
	Magnafena	5,79	2,02	21,28	2,38	66,10
	Großfrüchtiger	3,30	1,80	15,98	3,56	72,71
März/April	Berfena	5,32	2,54	27,84	2,30	61,38
	Magnafena	6,82	2,45	24,07	2,39	60,95
	Großfrüchtiger	4,22	2,19	20,33	2,80	67,50
GD t, 5 %		1,04	0,26	3,03	0,61	3,83

Fazit: Generell erreichte die Herbstaussaat höhere Erträge und ätherische Ölgehalte als die Frühjahrsaussaat. Positiv ist auch die frühere Reife zu bewerten. Allerdings waren die Ertragsverluste durch Samenausfall zu beiden Terminen bei den Sorten 'Magnafena' und 'Berfena' relativ hoch. Die späte Sorte 'Großfrüchtiger' dagegen wies zu beiden Terminen noch einen hohen Anteil an grünen Früchten auf, was auch die niedrigen Gehalte an ätherischem Öl erklärt. Hinsichtlich der Zusammensetzung des ätherischen Öls unterschied sich die Sorte 'Großfrüchtiger' von den beiden frühreifenderen Sorten, was möglicherweise in der unterschiedlichen Abreife des Korns begründet ist. Trotzdem erfüllten alle Proben die Anforderungen des DAB an Fenchelöl. Eine Weiterführung des Versuches ist vorgesehen.

2.2.4 Dill

Anbauversuch Dill Versuchsnummer: 614 860

<u>Versuchsfrage:</u> Einfluss von Sorte und Erntetermin auf Ertrag und Gehalt an ätherischem Öl (zu Milchund Gelbreife Ernte des Blühhorizontes, zur Vollreife Mähdrusch der Samen)

Tabelle 2.2.4/1: Einfluss des Erntetermins auf TM-Ertrag, Gehalt und Ertrag an ätherischem Öl verschiedener Dillsorten VS Dornburg 2002 bis 2004

	A2 DOLLIE				_							v				2.
Stadium	Eı	rnteterm	nin		Ertrag			rnertr	_	Meth-		Äth. Ö		Erti	ag äth	
		ı		(dt	:TM/h	ıa)		(dt/ha))	ode	(ml	/100 g	TM)		(l/ha)	
	02	03	04	02	03	04	02	03	04		02	03	04	02	03	04
Sorte 'Gewöhnliche	er'															
Milchwachsreife	06.08.	24.07.	05.08.	24,5	52,4	27,7	0,5	24,2	11,3	frisch	0,3	1,5	0,9	7,4	80,1	23,9
										trocken	0,2	1,0	0,8	3,7	50,5	21,8
Gelbreife	20.08.	30.07.	18.08.	27,8	50,6	31,1	5,3	22,2	17,1	frisch	0,2	1,3	0,5	6,2	63,4	14,6
										trocken	0,1	1,0	0,5	3,5	49,0	16,5
reifes Korn	15.09	11.08.	10.09.	4,0	23,0	4,2	4,0	23,0	4,2		2,2	2,9	3,7	8,0	66,1	15,9
Sorte 'Dukat'	•	•	,	ı	·					,			ı	ı	ı	
Milchwachsreife	06.08.	05.08.	05.08.	12,7	47,3	16,4	1,1	20,6	5,4	frisch	0,5	1,4	1,0	6,7	65,2	16,8
										trocken	0,3	1,0	0,7	3,8	47,6	11,9
Gelbreife	20.08.	10.08.	18.08.	13,5	56,5	17,5	2,9	26,9	7,7	frisch	0,4	1,1	0,8	5,3	61,1	12,9
						-	_			trocken	0,2	0,8	0,8	3,5	46,5	14,2
reifes Korn	15.09.	13.08.	10.09.	3,9	23,4	2,2	3,9	23,4	2,2		2,4	3,2	4,9	10,0	74,5	11,1
Sorte 'Blattreicher'			ı	ı						ı			ı	ı	ı	
Milchwachsreife	06.08.	24.07.	05.08.	28,0	52,3	22,9	2,2	28,6	8,8	frisch	0,5	1,5	0,9	13,9	79,9	19,9
										trocken	0,4	0,9	0,9	10,0	45,8	19,9
Gelbreife	20.08.	30.07.	18.08.	28,4	44,1	28,8	6,9	17,9	15,1	frisch	0,3	1,5	0,4	7,9	64,5	11,8
										trocken	0,2	0,9	0,6	5,0	40,5	17,7
reifes Korn	15.09.	11.08.	10.09.	2,9	25,2	4,0	2,9	25,2	4,0		2,8	3,0	4,6	7,8	74,7	18,2
Sorte 'Herkules'			ı	ı						ı			ı	ı	ı	
Milchwachsreife	06.08.	05.08.	05.08.	16,1	53,2	9,3	0,9	28,2	3,0	frisch	0,6	1,4	0,6	10,3	74,0	5,7
										trocken	0,2	0,9	0,7	3,7	50,1	6,3
Gelbreife	20.08.	10.08.	18.08.	17,9	56,2	6,9	3,8	25,6	3,0	frisch	0,5	1,3	1,3	9,4	67,6	8,7
										trocken	0,4	1,0	1,1	6,8	53,1	7,5
reifes Korn	15.09.	13.08.	10.09.	1,4	22,7	1,2	1,4	22,7	1,2		2,7	3,2	n. b.	3,9	72,1	
GD t, 5 %				4,1	5,4	10,9	0,88	1,99	5,1	frisch	0,1	0,1	0,3	1,5	4,2	6,0
										trocken	0,4	0,04	1,7	1,3	2,3	5,1
	1				1	1	1				, r	, т	,,	,	,,	,,

Tabelle 2.2.4/2: Einfluss des Erntetermins und der Extraktionsmethode auf die Zusammensetzung des ätherischen Öls (%) bei Dill (WDE)

VS Dornburg 2002 bis 2004

	13 BOILIBUI	0	113 2002		ı			ı		1)		_	
Sorte	Zustand		Myrcen			Limoner	1	l U	1+U2+U <u>3</u>	3 ''		Carvon	
Reife		2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004
Sorte 'Gewöhnlich	er'												
Milchwachsreife	frisch	61,59	16,81	35,06	12,52	11,18	16,85	22,42	9,46	17,42	2,82	59,42	27,28
	trocken	24,48	0,13	26,21	33,00	13,73	19,37	28,2	9,01	13,39	10,59	69,74	37,05
Gelbreife	frisch	59,69	16,70	28,44	12,90	11,87	16,05	19,86	8,27	12,89	6,08	60,18	39,02
	trocken	29,26	0,12	38,13	22,72	12,70	14,55	34,12	10,09	15,77	11,68	69,48	28,89
reifes Korn	frisch	2,18	0,29	0,90	77,86	56,00	57,54	0,46	0,58	2,13	17,44	39,40	39,42
Sorte 'Dukat'													
Milchwachsreife	frisch	56,14	18,0	44,19	16,64	11,49	17,45	17,16	12,89	19,77	9,12	57,50	15,68
	trocken	29,84	0,12	40,99	24,38	13,30	18,36	29,38	10,77	19,80	14,36	68,16	17,39
Gelbreife	frisch	48,56		29,99	19,32		14,84	14,76		15,90	15,15	-	35,67
	trocken	18,64	0,14	34,26	23,32	11,94	15,11	27,26	12,89	16,11	26,95	66,49	30,72
reifes Korn	frisch	1,40	0,27	1,23	68,18	56,32	56,10	0,28	0,57	2,68	27,40	40,05	40,00
	gelagert 2	0,94	-	-	59,29	-	-	0	-	-	34,07	-	-
Sorte 'Blattreicher'													
Milchwachsreife	frisch	51,56	17,01	38,43	13,80	9,79	15,15	20,13	11,45	21,03	13,26	58,41	22,25
	trocken	18,80	0,13	34,17	21,76	13,3	18,19	23,35	12,08	17,11	32,61	65,56	26,83
Gelbreife	frisch	51,80	16,70	35,64	14,08	11,87	15,71	19,61	9,90	15,31	12,10	59,80	30,10
	trocken	16,24	0,13	34,29	20,28	12,22	14,64	27,07	12,29	14,73	32,62	66,78	33,00
reifes Korn	frisch	1,38	0,28	0,89	66,88	56,86	56,28	0,16	0,58	2,44	29,19	39,66	40,39
	gelagert 2)	1,00	-	-	59,55	-	-	0,28	-	-	36,44	-	-
Sorte 'Herkules'													
Milchwachsreife	frisch	47,52	17,34	30,87	16,15	11,19	16,61	18,21	8,76	16,48	16,92	58,84	32,49
	trocken	21,18	0,13	51,33	23,36	11,94	16,42	23,19	12,43	21,22	28,44	68,06	7,81
Gelbreife	frisch	38,09		28,05	19,24		14,59	13,80		14,02	25,35		39,78
	trocken	15,54	0,12	36,75	22,43	10,84	18,51	23,55	12,05	14,33	34,08	68,24	26,32
reifes Korn	frisch	1,32	0,28		72,51	57,09		0,26	0,56	l	23,14	39,74	
	gelagert 2	0,98		-	63,62	-	-	0		-	32,78	-	-

¹⁾ unbekannte Substanz, konnte im Labor nicht identifiziert werden

Fazit: Die Ergebnisse beim Dill zeigen, dass bei einer Ernte des Blühhorizontes vor der Vollreife der Früchte die Frischverarbeitung höhere Ausbeuten an ätherischem Öl als die Extraktion des getrockneten Krautes liefert. Die besten Werte weist auch beim Dill das vollreife Korn auf. Durch die teilweise jedoch sehr niedrigen Kornerträge werden zu allen Ernteterminen annähernd gleiche Ölerträge je Flächeneinheit erreicht. Allerdings weist das ätherische Öl zu den einzelnen Ernteterminen und auch bei der Verarbeitung von frischem oder getrocknetem Erntegut sehr große Qualitätsunterschiede auf. Deshalb ist es gerade bei dieser Pflanzenart wichtig, die Ernte und Nacherntebehandlung entsprechend den Anforderungen der abnehmenden Hand zu gestalten.

2.2.5 Anis

Anbauversuch Anis Versuchsnummer: 628 860

<u>Versuchsfrage:</u> Einfluss von Sorte/Herkunft und Erntetermin auf Ertrag und Gehalt an ätherischem Öl (zu Milch- und Gelbreife Ernte des Blühhorizontes, zur Vollreife Mähdrusch der Samen)

²⁾ nur Einzelproben

Tabelle 2.2.5/1: Einfluss des Erntetermins auf TM-Ertrag sowie Gehalt und Ertrag an ätherischem Öl verschiedener Anisherkünfte

VS Dornburg 2003 und 2004

Stadium	Erntet	ermin		rag M/ha)		ertrag /ha)	Methode		. Öl o g TM)	Ertrag (l/l	
	2003	2004	2003	2004	2003	2004		2003	2004	2003	2004
Herkunft 'Chrestensen'											
Milchwachsreife	25.07.	30.07.	37,9	21,3	15,4	8,0	frisch	1,20	0,60	47,2	12,9
	l						trocken	1,40	0,58	52,8	12,6
Gelbreife	06.08.	14.08.	47,5	25,6	16,3	13,6	frisch	1,20	0,59	52,3	15,0
	l						trocken	0,90	0,47	43,2	11,9
reifes Korn	13.08.	30.08.	17,0	4,6	17,0	4,6	-	2,50	2,99	42,2	14,0
Herkunft 'Pharmasaat'											
Milchwachsreife	25.07.	30.07.	34,7	22,2	11,5	7,9	frisch	1,30	0,76	44,8	16,9
					L		trocken	1,20	0,79	42,4	17,4
Gelbreife	06.08.	14.08.	44,3	21,0	14,8	10,7	frisch	1,10	0,70	48,6	14,8
							trocken	1,00	0,49	45,9	10,5
reifes Korn	13.08.	30.08.	15,8	4,0	15,8	4,0	-	2,20	n. b.	35,1	n. b.
GD t, 5 %			7,5	9,2	1,5	3,6	frisch	0,1	0,09	2,2	2,3
							trocken	0,1	1,03	4,7	3,9

Tabelle 2.2.5/2: Einfluss des Erntetermins auf die Zusammensetzung des ätherischen Öls (%) verschiedener Anisherkünfte (WDE)

VS Dornburg 2003 und 2004

Stadium	Methode	Estr	agol	trans-A	nethol
		2003	2004	2003	2004
Herkunft 'Chrestensen'					
Milchwachsreife	frisch	1,38	2,54	97,02	93,17
	trocken	1,12	3,26	95,96	92,85
Gelbreife	frisch	1,02	2,55	97,86	93,93
	trocken	1,09	2,10	96,60	94,43
reifes Korn	-	0,82	6,85	90,65	86,01
Herkunft 'Pharmasaat'	•				
Milchwachsreife	frisch	2,26	2,66	96,85	93,00
	trocken	1,60	2,58	95,88	94,00
Gelbreife	frisch	1,65	2,42	97,11	93,36
	trocken	1,50	2,24	95,54	94,18
reifes Korn	-	1,32	n. b.	91,26	n. b.

Es ist festzustellen, dass die Produktion von Anis unter mitteleuropäischen Bedingungen relativ risikobehaftet ist, da die Pflanze sehr anfällig gegenüber pilzlichen Schaderregern ist. Insbesondere in feuchten Jahren, wie 2002 und 2004, kann es zu Ertragseinbußen oder Totalausfall kommen. Zugelassene Fungizide zur Minimierung des Anbaurisikos gibt es nicht. Zur Gewinnung ätherischer Öle ist es aus arbeitswirtschaftlichen Gründen bei der Ernte, Nacherntebehandlung, Trocknung und Extraktion sinnvoll, das vollreife Korn zu verwenden, da dieses erheblich mehr ätherisches Öl enthält als der Blühhorizont zu früheren Entwicklungsstadien.

2.2.6 Echte Kamille

Anbauversuch Kamille Versuchsnummer: 616 800

Versuchsfrage: Einfluss der Sorte auf Ertrag und Gehalt an ätherischem Öl

Tabelle 2.2.6/1: TM-Ertrag, Gehalt an ätherischem Öl und Ölertrag verschiedener Kamillesorten(WDE) VS Dornburg 2003

Sorte	Ernted	datum	Bl	ütenertrag		Ätherise	ches Öl	Ertr	ag an äth. Ö)
				lt TM/ha)		(ml/100	g TM)		(l/ha)	_
	1. Pflücke	Pflücke	1. Pflücke	2. Pflücke	Σ	1. Pflücke	2. Pflücke	1. Pflücke	2. Pflücke	Σ
						frisch	trocken	frisch	trocken	
'Germania'	02.07.	23.07.	4,7	1,8	6,5	0,08	0,16	0,34	0,16	0,50
'Bodegold'	02.07.	23.07.	7,7	1,9	9,6	0,15	0,14	0,81	0,30	1,11
'Zloty Lan'	02.07.	23.07.	4,1	2,1	6,2	0,38	0,10	1,09	0,26	1,35
'Bona'	02.07.	23.07.	5,9	0,9	6,8	0,12	0,33	0,62	0,16	0,78
'Mabamille'	02.07.	23.07.	3,3	1,6	4,9	0,28	0,31	0,65	0,34	0,99
'Herkunft Appel'	02.07.	23.07.	5,0	2,5	7,5	0,28	0,14	1,29	0,48	1,67
'Kirschkamille'	02.07.	23.07.	5,4	1,9	7,3	0,16	0,32	0,79	0,88	1,67
GD t, 5 %			0,6	0,5	1,0	0,07	0,05	0,21	0,37	0,70

Tabelle 2.2.6/2: TM-Ertrag, Gehalt an ätherischem Öl und Ölertrag verschiedener Kamillesorten (WDE) VS Dornburg 2004

	13 0	Jilibuig	2004											
Sorte	Er	ntedatu	ım		Blüten	ertrag		Äth	erische	s Öl	E	rtrag ar	ı äth. Öl	
		_			(dt TN	И/ha)	_	(ml	/100 g	TM)		(l/k	ıa)	
	1.	2.	3.	1.	2.	3.	Σ	1.	2.	3.	1.	2.	3.	Σ
								trocken	frisch	trocken	trocken	frisch	trocken	
'Germania'	28.05.	14.06.	28.06.	8,6	3,6	4,8	17,0	0,18	0,24	0,20	1,49	0,84	0,96	3,29
'Bodegold'	28.05.	14.06.	28.06.	7,5	4,9	8,3	20,7	0,23	0,16	0,17	1,66	0,58	1,34	3,58
'Zloty Lan'	04.06.	14.06.	28.06.	6,0	4,7	6,7	17,4	0,30	0,10	0,25	1,82	0,46	1,67	3,95
'Bona'	28.05.	14.06.	28.06.	11,0	4,5	7,2	22,7	0,18	0,10	0,19	1,87	0,45	1,34	3,66
'Mabamille'	04.06.	14.06.	28.06.	10,4	2,8	5,9	19,1	0,20	0,04	0,25	2,05	0,13	1,46	3,64
'Herk. Appel'	04.06.	14.06.	28.06.	5,9	4,7	6,3	16,9	0,37	0,16	0,31	2,18	0,72	1,95	4,85
'Kirschkamille'	28.05.	14.06.	28.06.	8,2	5,4	8,4	22,0	0,18	0,12	0,20	1,45	0,62	1,60	3,67
GD t, 5 %				2,4	1,8	1,5	2,9	0,09	0,07	0,06	0,49	0,30	0,42	0,70

Tabelle 2.2.6/3: Einfluss des Erntetermins und der Extraktionsmethode auf die Zusammensetzung (Hauptbestandteile) des ätherischen Öls (%) bei Kamille (WDE), Dornburg 2002 bis 2004 (2002: 1. und 3. Pflücke frisch, 2. Pflücke trocken, 2003: 1. Pflücke frisch, 2. Pflücke trocken, 2004: 1. und 3. Pflücke trocken, 2. Pflücke frisch destilliert) VS Dornburg 2002 bis 2004

	VS	Dornb	urg 20															
Sorte	Bisa	abololo	x. B	Bis	abolor	iox.	α-	Bisabo	lol	Ch	amazu	len	Bisa	abololo	ox. A	F	arnese	en
Pflücke	2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004
Sorte 'German	ia'																	
1.	3,40	5,36	4,91	3,78	9,08	4,40	26,58	4,47	13,42	11,82	2,96	5,52	15,70	36,51	16,58	10,68	6,84	26,72
2.	5,07	9,54	2,35															11,94
3.	5,75			4,38			13,34							-				22,39
×	4,74	7,45			8,29													20,37
Sorte 'Bodegol	ď'																	
1.		11,38	10,62	8,26	8,11	4,00	4,34	3,90	7,03	17,02	8,95	10,00	11,30	28,06	11,20	13,28	6,42	22,33
2.	11,30	15,04	7,36	4,90	7,17	1,90	8,66	15,27	24,26	9,64	12,54	14,47	13,26	18,81	6,92	24,27	14,30	13,66
3.	12,30		11,64				8,32			8,81		12,91			13,18			26,47
₹	12,16	13,21	9,87	6,47	7,64	3,55	7,11	9,58	12,56	11,82	10,74	12,46	15,55	23,44	10,43	16,77	10,35	20,83
Sorte 'Zloty La	n'																	
1.	15,78	13,58	12,46	11,76	9,20	7,09	4,53	3,53	10,55	20,91	15,86	13,10	8,51	17,55	6,49	7,14	5,28	17,58
2.	16,97	24,00	14,10	9,32	11,28	8,18												
3.	17,14	-	17,56	9,18	-	9,74	6,02	-	2,32	15,56	-	17,62	13,78	-	8,04	7,05	-	18,55
×	16,63	18,79	14,70	10,09	10,24	8,34	5,75	7,76	6,28	16,51	14,58	14,95	10,57	14,58	7,94	10,10	7,85	18,00
Sorte 'Bona'																		
1.		10,10																20,26
2.	6,69	20,45	4,40	3,21											3,74	20,7	10,28	10,21
3.	10,99			4,78							-					6,69	-	22,84
₹		15,28	5,02	3,61	9,06	1,99	25,69	16,72	31,04	13,85	17,86	14,57	8,30	9,70	3,48	14,43	7,49	17,77
Sorte 'Mabami	lle'					•			•	•		•	•					
1.	17,57	5,69			2,92											2,38		19,49
2.	7,84	13,13	7,31	2,41	6,96	4,64	20,14	27,82	22,42	16,17	16,23	16,08	8,09	6,89				9,18
3.	10,26		2,41	3,16	-						-					6,39		18,80
×	11,89	9,41	4,30	2,76	4,94	2,33	21,19	31,11	31,85	17,82	18,72	16,34	12,24	5,62	3,18	8,30	7,75	15,83
Herkunft 'App																		
1.																		17,38
2.	11,82	19,93	12,01	7,33	9,18	7,03	9,86	20,83	11,51	14,97	16,10	15,52	8,49	7,61	6,76	15,42	11,06	14,94
3.	15,08	-	9,64	6,53	-	5,34	16,78	-	19,74	18,72	-	18,51	9,58	-	4,74	5,30	-	18,14
×		14,46	10,66	7,59	7,02	6,05	10,04	24,86	16,04	16,08	18,95	15,78	8,88	6,46	5,61	14,83	7,30	16,83
Sorte 'Kirschka	1	1			1	1			1	1		1	1					
1.	1,70			1,22														13,50
2.					7,26									9,58				14,32
3.	12,20		3,76		-		20,72					18,79		-		10,92		16,26
×	7,72	10,80	2,51	3,03	6,15	1,54	27,00	28,76	38,10	14,11	18,28	15,91	5,97	7,42	2,32	15,43	7,05	14,70

Fazit: Im Ergebnis der Untersuchungen ist festzustellen, dass bei der Verarbeitung getrockneter Kamilleblüten bessere Ausbeuten an ätherischem Öl erzielt werden. Außerdem ist bei dieser Verfahrensweise auch die Qualität der Öle ausgeglichener als bei Frischextraktion. Aufgrund der sehr unterschiedlichen Zusammensetzung des ätherischen Öls muss die Sortenwahl entsprechend den Anforderungen der abnehmenden Hand getroffen werden. Die Gewinnung von ätherischem Öl aus der Kamille bietet sich aus den o. g. Gründen vor allem aus den Überschüssen der Teeproduktion an.

2.2.7 Zitronenmelisse

Anbauversuch Melisse

Versuchsnummer: 629 860

Versuchsfrage: Einfluss der Sorte auf Ertrag und Gehalt an ätherischem Öl

Ganzpflanzen- und Blattertrag sowie Gehalt und Ertrag an ätherischem Öl unterschiedlicher Melissesorten/-stämme zur Vollblüte im 1. und 2. Anbaujahr VS Dornburg 2002 bis 2004 Tabelle 2.2.7/1:

Sorte/ Stamm	Er	nteterm	iin		Ertrag t TM/ł			attertr t TM/ŀ		Methode		Äth. Öl 100 g		Ertr	ag äth (l/ha)	
	2002	2003	2004	١,	. ,	. ,	١ .	. ,	,		2002	2003	1 1	2002	` '	2004
Lemona	-	09.07.	27.07.	-	59,2	84,7	-	27,2	35,0	frisch	-	0,075	0,043		4,4	3,7
										trocken	-	0,025	0,016	-	1,6	1,4
Erf. Aufrechte	-	09.07.	27.07.	-	77,9	83,6	-	37,6	32,2	frisch	-	0,042	0,039	<u> </u>	3,3	3,3
										trocken		0,023	0,015		1,8	1,3
Typ Offstein	-	09.07.	27.07.	-	77,9	83,6		35,9	37,7	frisch		0,037	0,029	-	2,9	2,4
										trocken		0,013	0,018		1,0	1,5
Citronella	19.08.	09.07.	27.07.	46,4	58,8	86,3	30,5	32,2	43,7	frisch	0,085	0,051	0,036	4,0	2,7	3,0
										trocken	0,094	0,016	0,013	4,4	0,9	1,1
Stamm NLC	05.09.	09.07.	27.07.	58,4	15,7	69,2	34,6	3,7	34,0	frisch	0,069	0,032	0,039	4,4	0,5	2,7
										trocken	0,079	0,014	0,013	4,6	0,2	0,9
GD t, 5 %				8,7	13,1	9,7	4,6	6,9	5,9	frisch	0,024	0,09	0,009	1,5	0,7	0,8
										trocken	0,060	0,03	0,004	0,6	0,3	0,4

Tabelle 2.2:7/2: Einfluss der Destillationsmethode auf die Zusammensetzung des ätherischen Öls (in %) bei Melisse (WDE) VS Dornburg 2002 bis 2005

	V2 Dorr	iburg 2002 b							
Sorte/ Jahr	Methode	Citronellal	Caryo- phyllen	Neral ¹	Geranial [®]	Geraniol	Citronellol	Germacren	Unbek. Peak
Lemona									
2003	frisch	3,5	27,0	10,8	19,0	0,7	0,7	17,1	-
	trocken	1,9	17,0	9,8	17,3	0,3	0	1,8	27,4
2004	frisch	5,7	23,1	11,9	21,7	0,7	0,9	16,2	1,5
	trocken	6,1	15,8	14,9	25,1	0,8	0	3,6	17,9
2005	trocken	6,0	17,5	13,4	21,2	n. n.	0,4	6,3	10,6
Erfurter Aufrec	hte								
2003	frisch	3,5	29,5	6,8	12,1	0,2	0,6	22,6	-
	trocken	3,2	19,4	7,6	14,3	0,3	0	2,5	25,8
2004	frisch	6,1	19,7	14,3	26,2	1,2	2,4	13,2	1,5
	trocken	9,7	15,0	11,5	21,7	1,9	0	4,1	18,4
2005	trocken	9,1	19,0	11,3	19,3	n. n.	0,7	8,5	11,9
Typ Offstein	•		•						
2003	frisch	3,5	28,7	4,8	8,8	0,2	0,6	26,3	-
	trocken	1,5	7,7	2,1	4,2	0,4	0,1	1,6	47,7
2004	frisch	4,9	25,4	7,4	13,8	0,4	1,3	24,0	1,4
	trocken	9,9	15,6	10,2	19,8	1,5	0	4,7	19,3
2005	trocken	10,0	18,2	10,3	17,8	n. n.	0,6	9,9	11,9
Citronella	•		•	-					
2002	frisch	6,8	14,0	21,0	36,5	3,3	1,4	3,9	-
	trocken	8,5	11,4	28,3	41,0	0,4	0,2	0,8	
2003	frisch	1,8	30,0	4,2	7,6	0,1	0,3	27,8	-
	trocken	1,0	16,9	4,2	8,4	0,4	0	1,6	35,4
2004	frisch	3,8	25,1	8,5	15,6	1,1	2,1	22,0	1,6
	trocken	4,6	16,2	9,6	19,6	1,2	0	3,3	26,6
2005	trocken	4,7	19,4	11,0	18,1	n. n.	0,8	7,5	17,7
Stamm NLC					-				
2002	frisch	10,9	15,3	17,8	32,2	3,0	2,3	4,4	-
	trocken	11,8	15,8	20,8	34,7	0,7	0,5	3,6	
2003	frisch *	0,6	32,1	3,1	5,8	0,1	0,5	29,1	-
	Trocken	0,8	20,4	4,2	5,6	0,3	0	1,7	35,1
2004	Frisch	2,9	27,5	4,4	11,4	0,4	1,0	28,9	1,4
•	trocken	3,2	19,1	7,4	15,7	0,7	0	3,5	29,9
2005	trocken	7,0	20,9	8,1	14,5	n. n.	0,7	10,8	15,2
رححي	HOCKETT	/,0	20,7	0,1	(۱ ۲ ۰	111. 111.	Ο,,	10,0	י,יבי

¹⁾ Neral + Geranial = Citral

Wegen der sehr geringen Gehalte können bei Zitronenmelisse nur maximal 2 bis 4 l ätherisches Öl/ha gewonnen werden. Selbst bei Absatz des Öls im extrem hochpreisigen Segment dürfte

²⁾ aufgrund der geringen Erträge nur Einzelwert

damit eine Wirtschaftlichkeit im Vergleich zur Teeproduktion kaum gegeben sein.

2.2.8 Pfefferminze

Anbauversuch Pfefferminze

Versuchsfrage: Einfluss der Sorte auf Ertrag und Gehalt an ätherischem Öl

Tabelle 2.2.8/1: Ganzpflanzen- und Blattertrag sowie Gehalt und Ertrag an ätherischem Öl unterschiedlicher Pfefferminzsorten/-stämme zur Vollblüte im 1. Anbaujahr (1 Schnitt)

Versuchsnummer:

615 860

VS Dornburg 2002

Sorte/Stamm	Ernte- termin	Ertrag (dt TM/ha)	Blatt:Stängel- Verhältnis	Blattertrag (dt TM/ha)	Methode	Äth. Ölgehalt (ml/100 gTM)	Ertrag äth. Öl (l/ha)
BLBP 02	08.08.	14,5	1:0,39	10,3	frisch	1,71	25,3
					getrocknet	1,45	21,2
BLBP 31	29.07.	9,2	1:0,40	6,6	frisch	1,58	14,6
					getrocknet	1,63	15,5
BLBP 32	29.07.	12,2	1:0,46	8,2	frisch	1,50	18,6
					getrocknet	1,93	23,8
BLBP 75	29.07.	10,2	1:0,40	7,4	frisch	1,95	20,0
					getrocknet	1,94	20,0
Multimentha	14.08.	21,2	1:0,43	14,8	frisch	2,03	43,0
					getrocknet	3,70	78,4
GD t, 5 %		2,9		2,0	frisch	1,40	6,8
					getrocknet	5,20	14,9

Tabelle 2.2.8/2: Ganzpflanzen- und Blattertrag sowie Gehalt und Ertrag an ätherischem Öl unterschiedlicher Pfefferminzsorten/-stämme zur Vollblüte im 2. Anbaujahr (2 Schnitte)
VS Dornburg 2003

			CITICAL	g 2005												··
Sorte/	Err	ite-		Ertrag			tängel-	В	lattertra	ag	Methode	Äth. Öl	gehalt	Ert	rag äth.	. Ol
Stamm	Ter	min	(d	t TM/h	a)	Verh	ältnis	(d	t TM/h	a)		(ml/100	gTM)		(l/ha)	
	1.	2.	1.	2.	Σ	1.	2.	1.	2.	Σ		1.	2.	1.	2.	Σ
BLBP	08.07.	15.09.	52,8	44,2	97,0	1:0,7	1:0,7	30,6	26,7	57,3	frisch	1,52	1,85	80,0	81,9	161,9
02											getrocknet	1,40	1,60	74,3	70,7	145,0
BLBP 31	08.07.	15.09.	38,9	31,3	70,2	1:0,8	1:0,6	22,4	19,8	42,2	frisch	1,50	2,41	58,5	77,4	135,9
											getrocknet	1,40	1,82	54,2	57,0	111,2
BLBP 32	08.07.	15.09.	44,9	33,9	78,8	1:0,7	1:0,4	25,7	24,5	50,2	frisch	1,47	2,07	65,6	73,3	138,9
											getrocknet	1,38	1,66	61,9	56,7	118,6
BLBP 75	08.07.	15.09.	45,8	38,2	84,0	1:0,8	1:0,6	25,4	24,0	49,4	frisch	1,75	1,56	79,4	61,3	140,7
											getrocknet	1,24	1,81	56,3	69,4	125,7
Multi-	22.07.	22.09.	53,3	37,7	91,0	1:1,1	1:0,6	24,9	23,9	48,8	frisch	1,45	1,90	76,8	71,0	147,8
mentha											getrocknet	1,41	1,69	74,6	64,7	139,3
Menthol	22.07.	22.09.	45,7	32,9	78,6	1:0,9	1:0,5	24,5	21,5	46,0	frisch	1,40	1,98	64,3	65,0	129,3
a											getrocknet	1,22	1,14	55,7	38,2	93,9
Men-	22.07.	22.09.	14,1	10,6	24,7	1:0,4	1:0,3	9,7	8,4	18,1	frisch	1,33	1,65	18,8	16,6	35,4
tholna											getrocknet	1,11	0,98	15,7	10,4	26,1
BLPB	08.07.	15.09.	7,0	12,9	19,9	1:0,4	1:0,3	4,9	9,8	14,7	frisch	1,56	2,12	10,8	28,4	39,2
04											getrocknet	1,73	1,45	16,0	18,9	34,9
BLPB 56	22.07.	22.09.	14,4	10,5	24,9	1:0,6	1:0,4	9,1	7,8	16,9	frisch	1,78	1,72	24,7	18,7	43,4
											getrocknet	1,55	1,41	22,5	17,3	39,8
GD t, 5 9	6		8,2	6,0	14,0	-	-	4,2	3,6	7,6	frisch	0,08	0,23	12,4	14,3	25,2
											getrocknet	0,09	0,15	5,1	11,3	21,4

Tabelle 2.2.8/3: Ganzpflanzen- und Blattertrag sowie Gehalt und Ertrag an ätherischem Öl unterschiedlicher Pfefferminzsorten/-stämme zur Vollblüte im 3. und 4. Anbaujahr (je 1 Schnitt)
VS Dornburg 2004 und 2005

		Domburg								1	
Sorte/	Ern			trag	Blatte		Methode		lgehalt		äth. Öl
Stamm	terr	nin	(dt T	M/ha)	(dt TM	1/ha)		(ml/100	og TM)	(1/1	1a)
	2004	2005	2004	2005	2004	2005		2004	2005	2004	2005
BLBP 02	26.07.	19.07.	81,4	51,2	32,2	24,6	frisch	0,65	1,06	52,9	57,8
							trocken	0,90	0,82	73,5	44,1
BLBP 31	26.07.	19.07.	81,8	55,8	29,1	26,6	frisch	0,61	1,12	50,1	68,3
							trocken	0,83	0,95	67,2	57,2
BLBP 32	26.07.	19.07.	80,4	53,1	24,4	22,3	frisch	0,70	1,30	56,2	72,8
							trocken	0,54	1,20	44,1	65,9
BLBP 75	26.07.	19.07.	88,6	61,2	26,2	28,2	frisch	0,54	1,53	47,8	93,4
							trocken	0,72	1,40	63,8	84,8
Multi- mentha	04.08.	02.08.	73,5	63,3	28,2	26,0	frisch	1,02	1,51	75,1	95,5
							trocken	0,88	1,20	64,7	74,9
Menthola	04.08.	02.08.	57,3	41,7	23,4	21,4	frisch	1,06	1,48	60,4	63,0
							trocken	0,98	1,54	56,0	65,1
Mentholna	04.08.	02.08.	88,8	38,2	42,1	21,7	frisch	1,10	1,40	97,7	53,2
							trocken	1,02	1,41	90,6	54,2
BLPB 04	26.07.	-	64,2	-	24,6	-	frisch	0,63		40,6	
							trocken	0,69	-	44,8	-
BLPB 56	04.08.	-	57,4	-	24,4	-	frisch	0,98		56,5	-
							trocken	0,88		49,8	-
GD t, 5 %			13,0	14,1	6,2	3,7	frisch	0,22	0,30	18,0	28,7
							trocken	0,18	0,34	16,5	23,6

Tabelle 2.2.8/4: Einfluss der Sorte und der Destillationsmethode auf die Zusammensetzung des ätherischen Öls (%) bei Pfefferminze zur Vollblüte (WDE) VS Dornburg 2002 bis 2004

	V	3 Dombui	g 2002 dis	2004							
Sorte/ Jahr	Methode	Menthol	Menthon	Mentho- furan	(+)-Limo- nen	Eucalyptol	Isomen- thon	Menthyl- acetat	Caryophyl- len	(+)Pule- gon	Piperiton
BLBP 02				Turun	ПСП		tiloli	acctat	ICII	5011	
2002	frisch	27,23	40,02	1,29	7,67	4,77	3,64	2,47	0,69	1,81	1,33
2002	trocken	26,96	40,92	0,99	5,68	4,48	4,03	3,02	1,31	1,46	1,33
2003	frisch	36,60	28,70	0,80					0,60		
2003	trocken	39,10	31,00	1,60	7,70 7,00	5,70	4,00	2,50	0,50	1,70 0,40	1,90 0,70
2004					<u> </u>	5,90	4,70	3,30			
2004	frisch	37,06	30,70	1,26	6,31	4,18	2,93	4,54	1,28	1,20	1,08
	trocken	37,22	27,54	2,12	7,13	4,52	3,04	5,16	1,32	0,85	1,02
2005	frisch	35,42	37,86	1,92	8,29	5,27	2,88	1,98	0,00	1,22	1,40
	trocken	39,03	37,87	1,95	6,25	4,34	2,98	2,38	0,00	1,02	1,24
BLBP 31				•	_	,		,			
2002	frisch	27,98	38,20	0,83	9,07	4,01	2,77	2,57	1,25	1,26	1,43
	trocken	29,97	34,48	0,84	8,41	3,72	2,84	5,01	0,94	0,75	1,42
2003	frisch	38,30	27,20	0,50	8,70	5,60	3,50	2,20	0,50	1,10	2,20
	trocken	38,50	28,80	0,70	9,80	6,20	3,80	2,90	0,50	0,20	1,00
2004	frisch	37,44	30,70	1,18	7,58	3,74	2,81	4,16	0,80	1,00	1,14
	trocken	34,02	29,68	1,31	9,70	3,90	2,95	5,08	1,00	0,69	1,05
2005	frisch	35,56	37,55	1,82	8,30	4,86	2,83	2,14	0,00	1,39	1,62
-	trocken	36,14	36,64	1,82	8,12	4,74	2,87	2,54	0,00	1,10	1,50
BLBP 32					•		•				
2002	frisch	26,52	40,93	0,88	9,47	4,21	2,74	2,53	0,58	1,04	1,44
	trocken	30,97	33,81	0,72	8,01	4,10	2,65	5,97	0,48	0,39	1,61
2003	frisch	38,90	26,50	0,50	8,60	5,50	3,40	2,30	0,50	1,30	2,10
	trocken	40,30	27,40	0,60	9,80	6,30	3,20	2,80	0,20	0,00	1,10
2004	frisch	37,34	29,62	1,26	8,67	3,91	2,64	4,29	0,78	0,92	1,14
	trocken	34,15	31,28	1,44	9,46	3,86	2,88	4,56	0,90	0,63	1,18
2005	frisch	34,94	38,64	1,78	8,34	4,57	2,54	2,12	0,00	1,34	1,52
	trocken	35,24	35,27	1,98	7,82	4,6	3,13	3,37	0,48	1,17	1,56

Sorte/	Methode	Menthol	Menthon	Mentho-	(+)-Limo-	Eucalyptol	Isomen-	Menthyl-	Caryophyl-	(+) Pule-	Piperiton
Jahr				furan	nen		thon	acetat	len	gon	
BLBP 75											
2002	frisch	27,98	39,10	0,71	9,41	4,65	2,68	2,31	0,57	0,92	1,56
	trocken	32,36	31,58	0,62	7,93	4,16	2,61	6,57	0,46	0,34	1,66
2003	frisch	38,70	24,80	0,60	9,40	5,70	2,90	2,80	0,50	1,30	2,20
	trocken	40,70	25,70	0,60	10,30	6,40	3,20	3,40	0,10	0,00	0,80
2004	frisch	37,08	30,56	1,26	8,44	3,52	2,82	4,42	0,61	1,07	1,12
	trocken	35,70	30,16	1,40	8,48	3,92	2,85	5,10	0,90	0,73	1,26
2005	frisch	34,64	39,22	1,87	8,08	4,89	2,76	1,94	0,00	1,38	1,64
	trocken	34,30	37,67	1,96	8,13	5,08	2,80	2,38	0,00	1,15	1,54
Multime	ntha										
2002	frisch	15,34	56,41	4,45	0,97	3,23	4,39	0,77	1,24	3,91	1,42
	trocken	19,19	51,82	2,79	1,23	3,74	4,33	1,66	1,09	1,96	1,56
2003	frisch	23,90	41,60	7,70	1,50	3,60	5,20	1,00	0,80	10,60	0,70
	trocken	28,70	38,80	3,40	1,80	4,00	5,00	1,80	0,80	9,00	1,10
2004	frisch	21,50	50,46	2,40	2,30	2,68	4,54	2,27	1,16	4,00	1,40
	trocken	22,50	48,75	2,86	2,72	2,49	4,03	2,83	1,60	2,65	1,24
2005	frisch	17,54	56,54	6,34	1,21	4,44	4,42	0,54	0,73	5,44	1,03
	trocken	20,42	50,52	7,20	1,20	3,24	4,02	1,13	1,40	6,77	1,19
Menthol	1	1	•		ı	1		1	1		
2003	frisch	37,50	20,40	11,80	2,10	4,90	3,90	1,60	1,90	8,40	0,40
	trocken	42,70	18,50	6,10	2,00	5,30	2,70	2,10	3,10	7,30	0,20
2004	frisch	32,28	38,76	4,89	1,34	3,84	3,64	1,64	1,61	3,74	0,88
	trocken	35,00	34,22	7,72	1,34	3,60	3,12	1,80	1,96	2,57	0,74
2005	frisch	36,01	32,83	10,32	1,80	3,96	3,93	0,95	0,76	5,88	0,74
	trocken	35,75	31,10	12,30	1,76	3,78	3,85	1,04	1,47	5,12	0,66
Menthol		1	1		1	1		ı	1		
2003	frisch	43,40	16,10	11,30	2,70	5,70	2,50	2,30	2,00	6,60	0,00
	trocken	45,70	14,00	5,50	1,80	4,90	2,40	3,30	3,90	5,20	0,80
2004	frisch	41,93	25,28	7,68	1,70	4,89	2,73	2,16	1,98	3,40	0,42
	trocken	43,51	22,19	9,74	1,76	4,45	2,24	2,31	2,10	2,53	0,42
2005	frisch	40,16	28,20	11,91	2,29	3,94	3,88	1,19	0,82	5,08	0,56
	trocken	39,86	26,12	13,60	2,22	4,14	3,80	1,38	1,39	4,22	0,50
BLPB 04		1	1		Т	T		1 -			
2003	frisch	37,00	25,20	0,70	10,30	4,40	2,90	3,80	0,80	1,00	2,40
	trocken	41,00	19,20	2,60	6,40	5,00	2,40	4,20	2,60	2,40	0,50
2004	frisch	35,74	31,26	1,23	8,48	3,60	3,20	4,80	0,80	1,30	1,14
	trocken	34,16	31,50	1,98	6,71	3,40	2,74	5,49	1,35	1,06	1,12
BLPB 56	1 6. 1	T -	1		-	<u> </u>			1		
2003	frisch	35,80	20,20	9,10	4,80	4,10	4,00	3,80	2,50	9,40	0,70
	trocken	35,30	20,00	5,30	3,70	4,00	4,20	4,90	4,00	6,90	1,60
2004	frisch	33,68	28,42	7,42	1,68	3,34	3,54	3,76	2,60	7,18	1,00
	trocken	35,56	28,63	7,73	1,34	3,42	3,42	2,83	2,32	5,30	0,96

<u>Fazit:</u> Zusammenfassend ist festzustellen, dass ein vollständig den Anforderungen des DAB entsprechendes Pfefferminzöl nur durch Mischen der Öle verschiedener Sorten bzw. Stämme zu erreichen ist. Am ehesten eignen sich dafür die Stämme der BLBP. Das notwendige Mischungsverhältnis hängt dabei in starkem Maße vom jeweiligen Jahr und Erntezeitpunkt ab, da die Anteile der einzelnen Inhaltsstoffe im Öl erheblich variieren.

Die Gewinnung des ätherischen Öls ist sowohl aus frischer als auch getrockneter Ware mit annähernd den gleichen Ausbeuten und Zusammensetzungen möglich. Damit bietet sich dem Verarbeiter prinzipiell die Möglichkeit, einen Teil der Ernte, je nach Verarbeitungskapazität, frisch zu extrahieren und den Überschuss zu trocknen und außerhalb der Spitzenzeiten zu verarbeiten. Das ermöglicht gleichzeitig eine bessere Auslastung der Verarbeitungsanlage. Allerdings müssen dabei immer die Trocknungskosten berücksichtigt werden.

2.2.9 Thymian

Anbauversuch Thymian

Versuchsnummer: 623 860

<u>Versuchsfrage:</u> Einfluss von Sorte/Herkunft und Erntetermin auf Ertrag und Gehalt an ätherischem Öl

in Abhängigkeit von der Standweite

Tabelle 2.2.9/1: Einfluss von Standweite und Erntetermin auf Ganzpflanzen und Blattertrag sowie Gehalt und Ertrag an

ätherischem Öl $\operatorname{verschiedener}$ Herkünfte bzw. Sorten von Thymian

VS Dornburg 2002 bis 2005

Sorte /	· ·						ertrag		Methode	0,88 0,78 0,75 0,79 0,47 0,85 0,82 0,48 0,86 0,88 0,59 0,65 0,88 0,44 0,62 0,93 1,07 0,94 0,84 0,74 0,94 0,67 0,76 1,10 0,81 0,35 0,90				l	Ertrag	äth. Ö	I
Stadium			nag M/ha)				M/ha)		wiethode	,			١١			am. O ha)	1
Staululli	2002			12005	2002			2005						2002			12005
			2004	2005	2002	2003	2004	2005		2002	2003	2004	2005	2002	2003	2004	2005
Sorte 'Deuts																	
Pflanzung 30	cm x	20 cm															
Blühbeginn	23,9	21,1	58,4	46,6	12,8	12,0	30,5	23,2	frisch		0,90	0,76	0,70	24,4	19,1	<u>45,9</u>	33,2
									trocken	0,88	0,78	0,75	0,49	21,1	16,5	44,3	22,9
Vollblüte	44,6	11,9	33,2	36,2	20,3	6,3	17,2	17,6	frisch	0,79	0,47	0,85	0,68	35,3	5,5	28,4	24,4
									trocken	0,82	0,48	0,86	0,38	36,6	5,7	28,8	13,8
Blühende	44,5	10,6	51,5	48,1	23,5	5,7	23,8	21,8	frisch	0,88	0,59	0,65	0,56	38,9	6,3	32,9	26,8
									trocken	0,88		0,62	0,56	39,8	4,6	31,6	27,1
Pflanzung 30	cm x	30 cm															
Blühbeginn	47,0	18,9	68,2	61,7	25,1	10,4	32,3	31,0	frisch	0,93	1,07	0,94	0,77	43,5	19,1	64,4	47,8
	17.	, ,	,	.,	-		J .J	,	trocken		0.74		0,60	39,6	12,7	64,2	37,0
Vollblüte	42,1	15,1	58,8	67,4	19,1	8,2	26,7	29,2	frisch		_ ′′ '	,,,	0,76	28,5	11,8	64,1	50,8
	4-,.	٠,,.	,,,,	57,4	. 5,.	0,2	20,,	-3,-	trocken		{		0,84		5,2	52,6	56,3
Blühende	52,5	13,8	63,1	76,2	27,8	7,0	30,9	33,3	frisch			,,	0,68	41,6	8,0	38,6	51,6
Dianende	32,3	15,0	05,1	70,2	27,0	7,0	30,9	22,2	trocken	0,61	0,73	0,70	0,58	31,8	10,1	44,1	44,3
Herkunft 'Ap	nol'	l			l				trocker	0,01	0,73	0,70	0,50	31,0	10,1	44,1	44,3
Pflanzung 30		00 cm															
			57.0	20.7	10.0	10.1	20.4	16.9	frisch	1.15	1.01	0.74	0.75	282	22.0	42.0	0.4.7
Blühbeginn	24,6	23,6	57,0	32,7	12,9	13,1	29,4	16,8		1,15	1,01	0,74	0,75	28,3	23,9		24,7
Vollblüte					0		-0-	- 0 -	trocken	0,76	0,84	0,76	0,65	18,8	19,9	43,0	20,7
Voliblute	37,0	10,2	34,6	33,4	17,8	5,9	18,7	18,0	frisch	1,17	1,02	0,95	0,64	42,9	5,3	32,9	21,3
-1				_			_		trocken	1,10	0,41	0,78	0,48	40,1	3,8	26,7	16,1
Blühende	43,7	10,1	42,4	44,6	21,5	5,7	20,6	21,9	frisch	0,91	0,48	0,59	0,53	39,6	4,9	25,1	24,0
									trocken	0,88	0,66	0,56	0,50	38,3	6,6	24,0	21,9
Pflanzung 30	cm x	30 cm															
Blühbeginn	38,4	24,3	77,6	60,0	20,1	11,9	37,7	28,1	frisch	0,94	0,91	0,89	0,72	36,0	22,5	69,4	43,6
									trocken	0,93	0,70	0,81	0,71	35,6	16,8	62,8	42,5
Vollblüte	43,2	10,2	61,6	57,0	20,8	5,8	34,7	27,6	frisch	1,15	0,54	1,11	0,77	50,0	5,5	67,8	44,5
									trocken	0,82	0,32	0,75	0,55	35,6	3,2	45,9	30,9
Blühende	58,5	7,9	56,8	68,8	28,8	4,1	26,6	29,9	frisch	1,02	0,37	0,51	0,47	59,8	2,8	29,0	31,2
	'		•	,	,	"		,,,	trocken	0,91	0,65	0,53	0,48	53,6	5,2	29,7	33,0
GD t, 5 %	7,3	2,5	13,8	15,4	3,4	1,4	6,9	6,0	frisch	0,50	0,10	0,24	0,13	6,8	3,2	19,2	12,9
	1,,5	',	٥,٠	٦, ۲	"	′ '	'	,	trocken	0,45	0,08	0,14	0,13	7,3	2,3	14,2	13,2
	1		l		l		l		of OCICCIT	U,43	5,00	L ~, ·4	٥,٠٥	/,)	ر, ک	14,2	_ יס,∠

Einfluss der Sorte und der Destillationsmethode auf die Zusammensetzung des ätherischen Öls (%) bei Thymian (WDE) VS Dornburg 2002 bis 2005 Tabelle 2.2.9/2:

	VS Dornbur			T	T	,			
Sorte/Jah	ır <u>Met</u> hode	α-Terpinen	(+)-Limonen	γ-Terpinen	ρ-Cymol	Linalool	Caryophyllen	Thymol	Carvacrol
Sorte 'Deutso	:her Winter'								
Pflanzung 30	cm x 20 cm Blüh	nbeginn							
2002	frisch	2,1	1,5	21,1	14,3	2,5	2,4	41,8	2,0
	trocken	2,3	0,5	20,4	17,9	2,6	2,1	43,1	2,2
2003	frisch	2,2	0,4	20,4	12,5	2,4	2,1	49,5	2,0
2005	trocken	2,2			16,1				2,0
2001	frisch		0,5	15,4 16,6		2,5	3,1	45,9	2,6
2004		1,3			23,6	2,7	2,2	43,2	
	trocken	1,7	0,5	17,1	24,6	2,7	4,2	40,4	2,3
2005	frisch	0	1,7	18,8	16,7	2,4	4,2	47,1	3,0
	trocken	0	1,7	17,0	19,6	2,2	4,4	44,6	2,8
	cm x 20 cm Voll			1		1 1		T	
2002	frisch	2,1	0,5	21,8	17,6	2,5	2,2	40,2	1,9
	trocken	2,0	0,4	17,4	18,2	2,8	2,5	45,4	2,3
2003	frisch	2,2	0,5	20,6	14,0	2,2	4,0	41,9	2,0
	trocken	2,1	0,5	17,9	19,2	1,7	6,4	36,0	1,4
2004	frisch	1,4	0,6	17,0	20,1	2,3	3,0	46,5	2,3
•	trocken	1,2	0,4	12,7	19,3	2,4	4,0	51,0	2,6
2005	frisch	0	1,4	14,9	18,1	2,2	4,0	49,0	3,0
	trocken		' <u>'.</u> 4 1,7	16,3	23,7	2,5	4,4	39,8	2,8
Pflanzung 20	cm x 20 cm Blüh		'1/	1 '~,5	£31/	ر, <i>ک</i>	4,4	ا کین	2,0
2002	frisch		0,5	17,8	22,1	2,8	2,1	40.7	2,2
2002	trocken	<u>1,7</u>		16,4	22,8			40,7	
			0,5			2,9	2,4	40,9	2,2
2003	frisch	1,9	0,5	16,3	21,3	2,6	2,2	43,4	2,0
	trocken	1,9	0,6	16,0	17,2	2,2	3,4	42,6	2,1
2004	frisch	1,1	0,6	10,1	25,2	3,0	2,9	45,8	4,1
	trocken	1,2	0,5	9,8	28,5	2,9	3,9	43,8	2,4
2005	frisch	0	1,2	10,6	28,1	2,6	4,1	43,0	3,2
	trocken	0	1,3	9,8	30,2	3,0	3,8	41,1	3,1
Pflanzung 30	cm x 30 cm Blüh	beginn							
2002	frisch	2,5	0,7	24,6	13,5	2,1	2,8	39,7	1,9
	trocken	2,0	0,4	19,0	15,4	2,4	2,3	47,4	2,4
2003	frisch	2,2	0,4	21,4	11,0	1,9	3,2	47,7	1,9
	trocken	2,3	0,5	19,4	13,9	2,2	3,1	43,5	1,9
2004	frisch	1,3	0,7	16,4	21,3	2,5	2,0		2,5
2004	trocken							47,7	
		1,4	0,4	14,4	19,2	2,3	3,8	49,0	2,6
2005	frisch	0	1,8	19,4	17,4	2,3	3,8	46,5	2,7
	trocken	0	1,8	17,7	17,3	2,3	4,2	46,8	2,8
	cm x 30 cm Voll			1 .		1			
2002	frisch	2,0	0,5	20,6	16,7	2,1	3,0	40,9	2,0
	trocken	2,1	0,4	17,6	18,7	2,5	2,4	44,6	2,4
2003	frisch	2,6	0,5	22,9	15,0	2,1	3,2	41,2	2,0
	trocken	2,9	0,6	24,2	21,9	1,6	5,7	27,9	1,2
2004	frisch	1,3	0,7	16,2	19,8	2,9	2,8	48,0	2,4
'	trocken	1,9	0,4	16,1	22,1	2,4	3,8	43,0	2,1
								12,	
2005					18 4				2 0
2005	frisch	0	1,6	17,8	18,4	2,3	3,7	46,2	3,0
	frisch trocken	0			18,4 20,5				3,0 2,8
Pflanzung 30	frisch trocken cm x 30 cm Blüh	o nende	1,6 1,9	17,8 15,6	20,5	2, <u>3</u>	3,7 4,4	46,2 44,3	2,8
Pflanzung 30	frisch trocken cm x 30 cm Blüh frisch	0 0 nende 1,9	1,6 1,9 0,5	17,8 15,6	20,5 1 <u>7,3</u>	2,3 2,5	3,7 4,4 2,4	46,2 44,3 41,6	2,8 2,0
Pflanzung 30 2002	frisch trocken cm x 30 cm Blüh frisch trocken	onende	1,6 1,9 0,5 0,5	17,8 15,6 20,2 16,4	20,5 17,3 22,8	2,3 2,5 2,5 2,9	3,7 4,4 2,4 2,4	46,2 44,3 41,6 40,9	2,8 2,0 2,2
Pflanzung 30 2002	frisch trocken cm x 30 cm Blüh frisch trocken frisch	0 0 nende 1,9 1,8 2,2	1,6 1,9 0,5 0,5 0,5	17,8 15,6 20,2 16,4 21,1	20,5 17,3 22,8 15,6	2,3 2,5 2,9 1,6	3,7 4,4 2,4 2,4 4,1	46,2 44,3 41,6 40,9 43,0	2,8 2,0 2,2 2,1
Pflanzung 30 2002	frisch trocken cm x 30 cm Blüh frisch trocken frisch trocken	onende	1,6 1,9 0,5 0,5	17,8 15,6 20,2 16,4	20,5 17,3 22,8	2,3 2,5 2,5 2,9	3,7 4,4 2,4 2,4	46,2 44,3 41,6 40,9	2,8 2,0 2,2
Pflanzung 30 2002	frisch trocken cm x 30 cm Blüh frisch trocken frisch trocken frisch	0 0 nende 1,9 1,8 2,2	1,6 1,9 0,5 0,5 0,5	17,8 15,6 20,2 16,4 21,1	20,5 17,3 22,8 15,6	2,3 2,5 2,9 1,6	3,7 4,4 2,4 2,4 4,1	46,2 44,3 41,6 40,9 43,0	2,8 2,0 2,2 2,1
Pflanzung 30 2002 2003	frisch trocken cm x 30 cm Blüh frisch trocken frisch trocken	o nende - 1,9 1,8 - 2,2 - 2,4	1,6 1,9 0,5 0,5 0,5 0,6	17,8 15,6 20,2 16,4 21,1 20,7	20,5 17,3 22,8 15,6 15,1	2,3 2,5 2,9 1,6 2,1	3.7 4.4 2.4 2.4 4.1 3,0	46,2 44,3 41,6 40,9 43,0 40,3 49,3	2,8 2,0 2,2 2,1 1,9
2002	frisch trocken cm x 30 cm Blüh frisch trocken frisch trocken frisch	0 nende 1,9 1,8 2,2 2,4	1,6 1,9 0,5 0,5 0,5 0,6 0,6	20,2 16,4 21,1 20,7 10,1	20,5 17,3 22,8 15,6 15,1 22,5	2,3 2,5 2,5 2,9 1,6 2,1 3,0	3,7 4,4 2,4 2,4 4,1 3,0 2,7	46,2 44,3 41,6 40,9 43,0 40,3	2,8 2,0 2,2 2,1 1,9 2,3

Sorte/Jahr	Methode	α-Terpinen	(+)-Limonen	γ-Terpinen	ρ-Cymol	Linalool	Caryophyllen	Thymol	Carvacrol
Herkunft 'Appe			()		1 7	<u> </u>	7 1 7		
Pflanzung 30 c		hbeginn							
2002	frisch	2,3	0,7	23,3	15,6	2,1	2,4	39,2	1,9
	trocken	2,3	0,5	20,4	17,9	2,6	2,1	43,1	2,2
2003	frisch	1,8	0,4	16,1	12,2	2,1	3,1	53,2	2,3
	trocken	2,2	0,5	16,4	14,9	2,4	3,1	46,4	2,0
2004	frisch trocken	1,3	0,5 0,5	14,6 14,3	22,2 24,9	2,8 2,6	2, <u>5</u> 4,2	46,8 42,3	2, <u>7</u> 2,2
2005	frisch	0	1,6	16,0	15,9	2,2	3,9	51,6	2,6
2005	trocken	0	^{1,0}	12,7	17,7	2,1	5,1	49,7	3,5
Pflanzung 30 c		blüte	, I	.,		· · · · · · · · · · · · · · · · · · ·		1511	5,5
2002	frisch	2,2	0,5	22,1	16,8	2,2	2,3	42,1	2,2
	trocken	2,2	0,4	19,1	17,8	2,5	2,7	43,8	2,2
2003	frisch	2,2	0,5	19,2	16,4	2,2	4,8	43,2	2,0
	trocken	2,2	0,6	18,7	21,0	1,7	6,6	31,8	1,4
2004	frisch	1,2	0,8	13,8	20,7	2,4	3,4	49,0	2,4
	trocken	1,1	0,4	12,7	21,8	2,5	4,1	48,6	2,4
2005	frisch	0	1,2	12,8	18,8	2,3	4,2	49,7	3,2
DØ	trocken	0	1,2	10,8	17,0	2,3	4,1	53,2	4,0
Pflanzung 30 c			0.5	22.9	100	0.4	- C	20.0	1.0
2002	frisch trocken	1,9	0,5	20,8	18,8	2,4	2,6	39,8	1,9
		2,0	0,5	17,9	24,6	3,0	2,0	37,5	1,9
2003	frisch trocken	1,7	0,4	14,3	18,1 16,9	2,6	1,9 3,6	49,5	2,4
2004	frisch		0,5	17,7		2,1		42,2	2,1
2004	trocken	1,0	0,4	8,1 6,8	26,6	3,1	3,2	47,4	2,6
2005	frisch	0,8	0,4		26,7	3,0	4,2	46,9	2,4
2005	trocken	0	1,1 1,1	9,7 9,0	26,3 26,8	2,7 2,8	4,5 4,2	45,0 44,6	3,5 3,4
Pflanzung 30 c			.,.	۶,۰	20,0	2,0	4,2	44,0	J1 4
2002	frisch	2,4	0,6	23,5	14,0	2,5	2,4	41,5	2,0
	trocken	2,3	0,4	20,2	16,5	2,3	2,2	45,3	2,4
2003	frisch	2,2	0,4	19,9	14,4	2,3	2,8	46,7	1,9
	trocken	2,1	0,4	15,9	15,4	2,2	3,5	46,0	1,8
2004	frisch	1,4	0,9	15,5	21,7	2,5	2,3	48,2	2,2
	trocken	1,4	0,4	15,6	23,8	2,7	4,3	42,7	1,8
2005	frisch	0	1,5	16,3	15,2	2,1	4,2	51,5	2,9
	trocken	0	1,7	16,2	18,2	2,6	4,1	46,7	2,4
Pflanzung 30 c		blüte							
2002	frisch	2,3	0,4	22,7	17,4	2,6	2,4	41,3	2,1
	trocken	2,1	0,5	18,8	19,8	2,7	2,8	41,2	2,0
2003	frisch	2,6	0,5	21,9	15,7	2,1	4,5	40,3	1,8
	trocken	2,5	0,6	20,2	19,9	1,7	6,8	30,7	1,4
2004	frisch	1,3	0,9	13,7	19,5	2,3	3,6	50,5	2,5
	trocken	1,2	0,5	13,9	24,3	2,6	4,2	43,4	2,2
2005	frisch	<u> </u>	1,4	12,4	18,9	2,6	4,3	50,6	2,7
Dela maria de la compansión de la compan	trocken	O handa	1,9	12,0	22,7	2,8	4,8	45,7	2,9
Pflanzung 30 c	m x 30 cm Blui frisch		0.5	21.5	20.6	27	2.1	20.0	2.0
2002	trocken	^{2,0}	0,5 0,5	21,5 16,8	20,6 24,0	2,7	2,1	39,9	2,0 2,2
2002	frisch			18,0		3,0 1,6	2,3	40,1	
2003	trocken	^{2,1}	0,4 0,5	16,3	1 <u>5,3</u> 16,6		4,7 3,4	47,8	2,4 2,2
		•	0,8	7,6	25,1	2,3 3,0	3,4	44,5 50,8	2,8
2004	Tricen								2.0
2004	frisch trocken	1,0							
2004	trocken frisch	0,9	0,8 0,4 1,1	6,0 8,8	26,4 25,8	3,2 2,5	4,0 4,2	48,8 46,9	2,5 3,3

 $\underline{\text{Fazit:}} \quad \text{Es ist festzustellen, dass die Ernte des Thymians für die Gewinnung des \"{a}therischen \"{O}ls \ zum$

Zeitpunkt der Vollblüte erfolgen sollte. In diesem Stadium verbindet der Thymian hohe Trockenmasseerträge mit hohen Ölgehalten und erreicht damit auch die besten Ölerträge je Flächeneinheit. Da bei der Extraktion von frischem und getrocknetem Erntegut bezüglich der Ausbeute kaum Unterschiede auftreten, kann, je nach Verarbeitungskapazität, ein Teil der Erntemenge sofort verarbeitet, der Rest durch Trocknung lagerfähig gemacht werden. Dies schafft für den Verarbeiter gute Möglichkeiten zur Verbesserung der Auslastung seiner Extraktionsanlage. Es ist aber, wie bereits bei der Pfefferminze erwähnt, zu bedenken, dass durch die Trocknung die Selbstkosten für das Ausgangsmaterial zur Extraktion beträchtlich erhöht werden.

2.2.10 Salbei

Anbauversuch Salbei

Versuchsnummer: 630 860

Versuchsfrage: Einfluss von Sorte und Erntetermin auf Ertrag und Gehalt an ätherischem Öl

Tabelle 2.2.10/1: Einfluss von Sorte und Erntetermin auf Ganzpflanzen- und Blattertrag sowie Gehalt und Ertrag an ätherischem Öl von Salbei, 2. und 3. Anbaujahr, VS Dornburg 2003 und 2004

Stadium Blatt:Stängel-Blattertrag Methode Äth. Öl Ertrag äth. Öl Erntetermin Ertrag (dt TM/ha) Verhältnis (dt TM/ha) (ml/100 g TM) (l/ha) 2003 2003 2004 2003 2003 2004 2003 2003 2004 2004 2004 2004 Sorte 'Extrakta' frisch Blühbeginn 08.06 03.06. 13,8 1:0,50 0,85 12,5 1:0,77 9,1 7,0 0,45 12,2 5,6 trocken 0,65 0,79 10,9 8.1 Vollblüte frisch 10.06. 16.06 11,9 18,9 1:0,45 1:0,69 8,3 11,2 0,90 0,85 10,8 14,9 trocken 0,67 0,70 7,9 12,5 Blühende 16.06. 26,9 frisch 0,68 18,1 23.06 20,8 1:0,39 1:0,65 19,3 12,6 0,61 12,6 trocken 6,4 0,24 0,70 14,5 Herkunft 'Appel' 03.06. 08.06. 31,6 frisch Blühbeginn 16,3 1:0,64 1:0,93 9,8 16,6 12,6 0,56 0,40 9,4 trocken 18,6 0,57 0,59 9,4 Vollblüte 16.06. 1:0,77 15,8 10.06. 1:0,50 frisch 23,5 33,9 19,2 0,73 0,69 17,4 22,6 trocken 0,52 0,55 12,3 19,0 Blühende frisch 0,63 16.06. 23.06. 22,7 41,7 1:0,40 1:0,54 16,3 27,2 0,45 14,5 18,8 trocken 0,19 0,50 4,6 20,9 Herkunft 'Bornträger' frisch Blühbeginn 03.06. 08.06. 18,2 1:0,51 1:0,88 16,3 9,8 0,62 11,8 24,5 1,10 27,0 0,81 trocken 0,80 19,8 14,7 frisch Vollblüte 10.06 16.06 1:0,64 0,86 22,2 1:0,44 10,5 0,92 20,1 14,7 17,2 15,4 trocken 0,67 8,8 0,43 11,4 Blühende frisch 16.06. 23.06. 22,2 27,7 1:0,41 1:0,85 16,0 14,9 0,62 19,8 0,73 12,9 trocken 0,38 9,6 16,0 0,59 GD t, 5 % 2,6 6,1 frisch 0,08 5,6 3,6 9,6 0,21 3,2 2,6 4,6 trocken 0,10 0,12

Tabelle 2.2.10/2: Einfluss von Sorte und Erntetermin auf Ganzpflanzen- und Blattertrag sowie Gehalt und Ertrag an ätherischem Öl von Salbei, 2. und 3. Anbaujahr

VS Dornburg 2003 und 2004 Sorte / Methode $(\alpha+\beta)$ -P- Camph unbek (+)-1,8-Thujon α-Caryo-Borneol Viridi-Manool Stadium inen en Limonen Cineol phyllen florol Sorte 'Extrakta' 2003 Blühbeginn frisch n.b. 6,7 8,6 10,2 12,7 n. b. 5,2 29,7 1,5 7,1 trocken 6,6 n. b. 11,8 6,1 n. b. 10,0 2,0 7,5 4,3 14,4 Vollblüte frisch 4,7 n. b. n. b. 5,7 25,5 1,3 11,0 13,4 10,7 3,3 trocken n. b. 10,6 1,6 4,9 7,3 12,4 3,8 n. b. 7,4 3,2 Blühende frisch 5,6 14,8 8,4 n. b. п. Ь. 7,2 24,6 1,5 11,7 9,1 trocken 4,8 n. b. 2,6 8,9 6,3 8,5 10,7 6,7 n. b. 1,3 Sorte 'Extrakta' 2004 Blühbeginn frisch 3,2 2,9 18,9 1,1 10,9 11,5 3,8 12,2 5,1 <u>5,9</u> 5,2 trocken 15,0 1,2 9,8 12,7 4,0 7,7 2,7 3,2 15,5 Vollblüte frisch 12,8 6,0 4,3 3,0 21,3 1,5 11,0 9,9 7,0 3,3 trocken 4,8 18,2 5,5 14,6 6,1 2,5 1,3 9,2 3,7 12,0 Blühende frisch 10,7 4,5 <u>3,7</u> 20,0 1,4 6,8 10,6 6,2 9,4 3,2 trocken 10,3 3,8 5,4 3,1 17,6 1,5 7,7 11,0 12,0 5,7 Herkunft 'Appel' 2003 n. b. Blühbeginn frisch 9,8 14,6 10,6 n. b. <u>5,3</u> 3,5 25,4 1,3 <u>3,7</u> trocken 3,1 12,6 1,7 7,4 8,6 10,5 n. b. n. b. 7,1 4,5 Vollblüte frisch 6,0 25,0 10,6 5,8 n. b. n. b. 17,2 4,2 1,3 13,7 trocken 6,9 8,1 14,8 n. b. n. b. 1,6 6,1 10.1 3,4 4,9 Blühende frisch 5,8 10,8 n. b. 22,0 1,3 20,0 12,0 n. b. <u>3,7</u> 4,9 n. b. trocken 8,7 n. b. 4,7 1,1 5,7 9,6 13,4 2,4 3,5 Herkunft 'Appel' 2004 frisch Blühbeginn 2,6 1,4 19,0 1,0 <u>7,4</u> 12,4 9,2 2,2 11,8 4,9 5,6 trocken 4,9 1,8 1,6 11,9 11,6 2,5 5,1 15,0 12,9 Vollblüte frisch <u>3,4</u> 2,1 19,5 1,2 8,7 13,5 14,3 3,8 10,4 3,8 3,8 5,6 trocken 2,0 1,2 15,0 5,4 10,8 19,2 13,7 3,1 Blühende frisch 3,8 2,9 19,0 1,2 7,7 12,6 12,1 4,6 3,4 9,4 trocken 16,0 3,8 4,3 2,4 16,1 1,2 6,3 10,2 13,5 4,5 Herkunft 'Bornträger 2003 Blühbeginn frisch 2,9 25,6 15,6 8,6 n. b. n. b. 5,2 1,1 13,9 <u>3,4</u> trocken 7,8 n. b. 2,7 13,4 10,5 12,9 10,2 n. b. 1,5 4,1 Vollblüte frisch 6,0 3,8 16,1 n. b. n. b. 11,0 12,1 23,1 1,2 <u>7,3</u> trocken 6,1 8,9 1,6 5,2 n. b. 9,0 4,0 n. b. 2,9 13,9 Blühende frisch n. b. 8,3 n. b. 5,2 3,1 22,0 1,3 20,7 16,7 4,6 n. b. trocken 2,6 6,3 n. b. 11,8 5,1 9,9 1,2 13,7 4,5 Herkunft 'Bornträger ' 2004 Blühbeginn frisch 2,6 18,0 8,2 1,7 1,1 13,0 9,2 12,3 <u>3,3</u> 4,3 8,1 trocken 5,5 2,0 16,7 12,4 14,5 3,0 11,4 1,4 3,7 Vollblüte frisch <u>3,7</u> 20,0 1,2 11,8 11,6 2,2 <u>7,9</u> 11,4 3,2 4,0 5,8 trocken 5,2 9,6 16,9 2,2 14,6 1,3 14,0 4,4 3,7 frisch Blühende 10,8 <u>3,3</u> 2,3 17,5 1,3 10,4 14,9 10,3 5,1 2,9 2,6 trocken 12,5 4,0 13,5 1,2 7,7 12,1 15,1 2,9 5,4

Fazit: Aufbauend auf den erhaltenen Ergebnissen, scheint die günstigste Erntezeit bei Salbei zur Gewinnung ätherischer Öle der Zeitraum zwischen Vollblüte und Blühende zu sein. Zu diesem Zeitpunkt sind sowohl die Ölerträge je Flächeneinheit als auch die Gehalte an den wertgebenden Inhaltsstoffen Thujon und 1,8-Cineol am höchsten. Aufgrund der höheren Ausbeuten ist die Frischverarbeitung der Extraktion getrockneten Pflanzenmaterials vorzuziehen.

2.2.11 Moldawischer Drachenkopf

Anbauversuch Moldawischer Drachenkopf

Versuchsnummer: 631 860

Versuchsfrage: Einfluss von Sorte und Erntetermin auf Ertrag und Gehalt an ätherischem Öl

Tabelle 2.2.11/1: Einfluss der Erntetermins auf Ganzpflanzen- und Blattertrag sowie Gehalt und Ertrag an ätherischem Ölzweier Sorten von Moldawischem Drachenkopf VS Dornburg 2002 bis 2004

	VS Dornb	urg 200	2 bis 20	004												
Stadium		Ernte- termin		(4	Ertrag t TM/l		Bl	attertr t TM/l	ag	Methode		Äth. Ö '100g		Ertı	ag äth (l/ha)	ı. Öl
	2002	2003	2004		2003							2003		2002		
Sorte ,Arat '	1				<u> </u>	<u> </u>	<u> </u>	<u> </u>				•	•	<u> </u>	<u> </u>	
Blühbeginn	17.07.	10.07.	15.07.	19,8	25,7	46,0	11,5	18,6	22,2	Frisch	0,76	0,90	0,36	14,8	23,1	16,8
										trocken	0,52	0,57	0,39	10,4	14,8	17,8
2.Aufwuchs	10.08.	07.08.	-	15,0	40,6	-	10,3	25,7	-	Frisch	0,76	1,06		11,6	43,0	
										trocken	0,53	0,51	-	8,1	20,6	
\mathcal{L}				34,8	66,3	46,0	21,8	44,3	22,1	frisch				26,4	66,1	16,8
										trocken				18,5	35,0	17,8
Vollblüte	24.07.	21.07.	02.08.	41,7	36,7	58,2	22,5	25,9	30,9	Frisch trocken	0, <u>59</u> 0,37	1,24 0,69	0,69 0,56	24,6 15,8	45,9 24,9	40,1 32,8
Blühende	02.08.	31.07.	10.08.	42,0	36,4	56,3	22,0	27,4	35,8	Frisch trocken	0,99 0,61	1,21 0,68	0,77 0,49	41,5 25,2	44,0 22,3	42,4 27,0
Sorte ,Aratora'		I			ı	1	ı			I		1				
Blühbeginn	17.07.	10.07.	15.07.	19,6	32,3	41,5	11,4	21,3	20,0	Frisch	0,74	0,80	0,23	14,5	25,9	9,7
							L			trocken	0,55	0,55	0,29	10,2	18,2	11,8
2.Aufwuchs	10.08.	07.08.	-	8,9	33,0	-	6,3	20,3	-	Frisch	0,89	0,94		7,9	31,3	
										trocken	0,62	0,64		5,6	20,9	
\mathcal{L}				28,5	65,3	41,5	17,7	41,6	20,0					22,4	57,2	9,7
										trocken				15,8	39,1	11,8
Vollblüte	24.07.	21.07.	02.08.	31,8	35,8	59,6	18,1	25,3	30,8	Frisch	0,69	1,37	0,54	21,9	49,2	32,2
=1::1										trocken	0,47	0,68	0,38	15,7	23,9	22,8
Blühende	02.08.	31.07.	10.08.	35,6	43,8	55,8	24,3	31,8	33,0	Frisch	0,84	1,01	0,67	29,8	44,4	36,4
CD + - 0/							- 0	- 6		trocken	0,68	0,42	0,38	24,1	18,5	20,9
GD t, 5 %				4,3	2,2	9,1	2,8	1,6	6,6	Frisch	0,05	0,07	0,21	3,8	3,9	12,8
										trocken	0,05	0,05	0,10	2,6	1,7	7,4

Tabelle 2.2.11/2: Einfluss des Erntetermins und der Extraktionsmethode auf die Zusammensetzung des ätherischen Öls (%) von Moldawischem Drachenkopf (WDE)

	VS Do	rnburg 20	02 bis 200	4							
Stad	ium /	Citro	nellal	Ne	eral [,]	Gera	anial [,]	Ger	aniol	unbekan	nter Peak
Ja	ıhr	frisch	trocken	frisch	trocken	frisch	trocken	frisch	trocken	frisch	trocken
orte Arat											
BB	2002	0,16	0,23	16,18	16,55	27,05	27,93	2,92	2,62	46,31	45,21
	2003	0,20	0,33	20,40	14,70	29,50	21,36	2,50	1,89	36,60	53,16
	2004	0,23	0,45	21,88	23,54	33,65	34,71	2,79	2,57	32,04	28,58
VB	2002	0,17	0,14	22,01	23,04	35,17	35,69	4,48	1,64	29,37	30,00
	2003	0,20	0,30	22,20	18,99	32,20	26,48	3,70	1,53	35,13	44,74
	2004	0,29	n. n.	25,78	27,54	39,00	41,37	4,69	1,39	20,96	21,96
BE	2002	0,23	0,14	25,19	28,23	39,01	42,52	4,09	1,11	21,59	17,94
	2003	0,20	0,31	27,70	26,27	42,40	36,99	3,90	1,04	18,91	27,37
	2004	0,23	0,16	28,22	30,24	42,29	44,14	3,57	1,23	16,65	16,94
orte Arator	'a			•		•		•			•
BB	2002	0,15	0,14	14,96	14,79	25,32	25,12	2,31	2,71	49,97	49,48
	2003	0,20	0,36	20,80	14,86	30,00	20,08	2,70	2,04	38,74	53,36
	2004	0,34	0,38	20,57	22,68	32,91	34,22	2,62	2,07	33,68	30,61
VB	2002	0,16	0,15	22.62	21,93	35,41	35,72	4,43	1,51	28,63	31,93
	2003	0,20	0,31	22,20	19,16	31,80	26,28	3,40	1,56	35,09	44,82
	2004	0,31	0,28	25,18	27,34	38,75	40,04	4,28	1,17	22,90	24,50
BE	2002	0,20	0,16	25,07	27,55	39,01	41,39	4,32	1,15	21,65	19,58
	2003	0,20	0,29	28,40	28,84	43,70	40,98	4,40	0,88	15,03	21,26
	2004	n. n.	0,22	26,90	29,61	40,66	44,07	3,57	1,13	20,42	17,43

¹⁾ Neral + Geranial = Citral

<u>Fazit:</u> Der Moldawische Drachenkopf sollte zum Zwecke der Gewinnung ätherischer Öle zwischen Vollblüte und Blühende geerntet werden, da zu diesem Zeitpunkt sowohl die Biomasseerträge

als auch die Gehalte an ätherischem Öl am höchsten und somit die höchsten Ölerträge je Flächeneinheit realisierbar sind. Gleichzeitig weist das Öl zu diesem Zeitpunkt auch den höchsten Gehalt an Citral, als der wertgebenden Komponente im Öl, auf. Die Frischverarbeitung ist der Verarbeitung getrockneter Ware vorzuziehen, da hier, wegen der besseren Ausbeuten, teilweise über 50 % höhere Ölerträge je Flächeneinheit erreichbar sind. Neben den deutlich höheren Ausbeuten fallen natürlich auch die Trocknungskosten weg, die im Produktionsverfahren von Heil-, Duft- und Gewürzpflanzen nahezu 50 % der Gesamtkosten ausmachen.

2.2.12 Zitronenthymian

Anbauversuch Zitronentymian

Versuchsnummer:

keine

Versuchsfrage: Zusammensetzung des ätherischen Öls von Zitronenthymian

Tabelle 2.2.12/1: Zusammensetzung des ätherischen Öls von Zitronenthymian

VS Dornburg 2002 und 2005

Jahr	Methode	Gehalt äth. Öl	Linalool	Neral	Borneol	Geranial	Geranylacetat+	Geraniol
,		(ml/100 g TM)					Nerol	
2002	frisch	0,39	0	5,61	0,81	9,32	3,50	74,47
	trocken	n. b.	0	7,75	0,64	11,98	4,19	70,40
2005	frisch	1,50	0,64	13,74	1,44	18,36	3,94	55,01
	trocken	0,60	0,68	13,37	2,40	17,31	3,18	52,82

Aufgrund der geringen Flächengrößen und teilweise gravierenden Auswinterungsschäden war eine Ertragsbestimmung beim Zitronenthymian nicht möglich. Hinsichtlich der Gehalte an ätherischem Öl überschreitet der Zitronenthymian die der Melisse zwar, erreicht aber die Werte des Moldawischen Drachenkopfs bei weitem nicht. Das hohe Anbaurisiko durch die geringe Winterfestigkeit und die relativ niedrigen Ölgehalte lassen ihn als Alternative zu Melisse nicht geeignet erscheinen.

Traubensilberkerze 2.2.13

Herbizidversuch Traubensilberkerze (Lückenindikation) Versuchsnummer: 531 732

Versuchsfrage: Herbizidverträglichkeit von Traubensilberkerze

Tabelle 2.2.13/1: Wirkung und Verträglichkeit von Herbiziden in Traubensilberkerze

Versuch: Herbiz	idvergle	ich			Kultur: 1	Traubensilbe	rkerze		
Versuchsort:		Versu	chsstation I	Dornburg	Versuch	sbetreuer:	Frau	Ormerod	
Sorte:		Wilda	uslese		Bodenar	t/-zahl:	Lehn	1/62	
Vorfrucht:		Brach	е		N-Düng	ung:	41 kg	;/ha	
Pflanzung:		13.04.	2005		Ernte:		-	•	
Variante	Anwe	ndung			rad in % (UK Bonitur: 31.05				Phytotox in %
	l/ha	Datum ES	THLAR	CHEAL	POLSS	HERBA	SG	GESAMT	
1 UK	-	-	8 18	5 9	5 16	2 11		22 59	-
2 Ethofumesat	2,0	19.05. 12-14	30 30	78 80	15 15	75 80			30/28 BN
3 Butisan	2,0	19.05. 12-14	40 20	95 60	58 20	88 70			-
4 Boxer	4,0	19.05. 12-14	35 40	80 90	35 70	70 85			45/22
5 Stomp SC	3,5	19.05. 12-14	89 80	93 80	10 80	82 80			8/10
6 Fusilade Max	1,0	31.05. 12-14					80		-
HERBA: SOLNI; V	ERSS; E	UPHE						<u> </u>	

<u>Fazit:</u> Der Bestand entwickelte sich nach der Pflanzung normal. Der Unkrautdruck war anfangs stark. Besonders Gänsedistelarten entwickelten sich rasch. Hier wurde im Streichverfahren eine Behandlung mit Round up durchgeführt.

Gute Ergebnisse wiesen die Varianten Stomp SC und Boxer auf. Leichte phytotoxische Schäden in Form von Blattnekrosen überwuchsen sich später. Ethofumesat und Butisan hatten nur eine mittlere bis unzureichende Wirkung gegen die Hauptunkräuter. Fusilade Max wirkte erwartungsgemäß und zeigte keine phytotoxischen Schäden an der Kultur.

Im kommenden Jahr werden in dem angelegten Versuch auch Spritzfolgen und eine mechanische Unkrautbekämpfung zum Einsatz kommen.

2.3 Färberpflanzen

2.3.1 Färberknöterich

Färberknöterich enthält in den Blättern die indigobildende Vorstufe Indican und wurde früher in Japan, ähnlich dem Waid in Thüringen, zur Herstellung des blauen Indigofarbstoffes genutzt. Da er etwa 5- bis 10mal höhere Farbstoffgehalte aufweist als der Waid und unter Thüringer Standortbedingungen sehr gut gedeiht, bietet er günstige Voraussetzungen zur Produktion von Naturindigo.

N-Düngung Färberknöterich

Versuchsnummer: 501 715

Versuchsfrage: Optimale N-Versorgung von Färberknöterich

Tabelle 2.3.1/1: Einfluss der N-Düngung auf Blattertrag sowie Farbstoffgehalt und -ertrag bei Färberknöterich VS Dornburg 2002 bis 2004

			2002 013 2				1	I.		1	
N-Düngu		Schnitt		Blattertrag			ndicangeha		I	ndigoertra	5
$1.^{1)} + 2.^{2)}$	Gabe			(dt TM/ha))		(% i.d. TM))		(kg/ha)	
			2002	2003	2004	2002	2003	2004	2002	2003	2004
N _{min} zur Sa	aat (kg/ha)		49	52	45						
ohne	0	1.	22,7	18,8	12,8	2,48	5,40	5,21	28,0	50,6	33,4
		2.	17,8	14,6	17,7	3,82	5,80	3,91	34,0	42,5	34,7
Σ			40,5	33,4	30,4				62,0	93,1	68,1
140	140	1.	22,0	18,0	19,2	2,73	6,66	5,55	30,6	60,0	52,9
		2.	21,4	14,1	20,6	4,25	5,31	4,94	45,5	37,3	50,7
Σ			43,4	32,1	39,8				76,1	97,3	103,6
140 + 40	180	1.	22,5	18,7	16,4	3,16	6,42	5,34	35,7	60,3	43,8
		2.	22,4	15,4	20,5	3,97	6,48	6,31	45,1	50,7	65,0
Σ			44,9	34,1	36,8				80,8	111,0	108,8
160	160	1.	26,3	17,9	18,5	2,80	6,39	6,40	36,9	57,6	60,5
		2.	22,5	14,9	20,5	4,52	6,04	5,75	50,8	45,0	59,2
Σ			48,8	32,8	39,0				87,7	102,6	119,7
160 + 20	180	1.	20,0	18,1	19,7	3,13	6,21	6,39	31,9	56,2	63,2
L		2.	22,2	15,4	22,4	4,48	6,34	4,69	49,3	48,7	52,4
Σ			42,2	33,5	42,1				81,2	104,9	115,6
GD t	:, 5%	1.	3,3	2,8	3,7	0,64	0,59	0,79	9,1	10,8	15,9
		2.	3,4	1,7	2,5	0,63	1,01	1,07	10,6	10,5	14,4

N-Sollwert = N-Düngung + N_{min} -Gehalt im Boden (0 - 60 cm)

Fazit: Die Bemessung der Stickstoffgabe beeinflusst Ertrag und Farbstoffgehalt von Färberknöterich entscheidend. Mit steigender N-Gabe steigen sowohl Ertrag wie auch Indicangehalt nahezu proportional an. Dabei wirkt sich die Höhe der 1. N-Gabe deutlicher aus als die 2. N-Gabe.

Saatzeiten Färberknöterich

Versuchsnummer: 501 740

Versuchsfrage: Einfluss der Saatzeit auf Ertrag und Farbstoffgehalt von Färberknöterich

Tabelle 2.3.1/2: Einfluss der Saatzeit auf Blattertrag sowie Indicangehalt und Indigoertrag von Färberknöterich VS Dornburg 2002 bis 2004

	atzeit Schnitt Blattertrag Blatt:Stängel-Verhältnis Indicangehalt Indigoertrag													
Saatzeit	Schnitt		3lattertrag	,	Blatt:St	ängel-Ve	rhältnis		dicangeh		Ir	ndigoertra	ıg	
		(dt TM/ha)				(% i.d. TN	l)		(kg/ha)		
		2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004	
10.04.	1	14,7	9,9	16,8	1:0,90	1:0,79	1:1,24	6,69	5,60	4,62	49,1	28,3	37,3	
	2	24,0	19,4	19,2	1:1,12	1:0,84	1:0,53	6,23	8,23	3,74	75,1	79,8	35,9	
		38,7	29,3	36,0							124,2	108,1	73,2	
20.04.	1	9,8	16,6	19,3	1:0,98	1:1,03	1:1,01	6,89	6,84	5,00	33,3	56,7	49,8	
	2	18,6	15,4	18,8	1:0,99	1:0,62	1:0,49	5,81	9,91	3,58	53,0	76,3	33,7	
		28,4	32,0	38,1							86,3	133,0	83,5	
30.04.	1	14,5	15,6	11,6	1:1,08	1:1,37	1:1,14	6,41	3,63	5,85	46,2	28,0	33,0	
	2	23,1	12,4	16,8	1:0,86	1:0,50	1:0,56	3,93	4,49	4,14	45,3	27,7	34,6	
		37,6	28,0	28,4							91,5	<i>55,7</i>	67,6	
GD t, 5%	1	4,0	4,2	6,6				0,88	1,72	0,86	15,4	18,2	16,2	
	2	5,3	3,1	1,24				1,15	2,19	0,60	17,5	25,5	3,8	

²⁾ N-Gabe nach dem 1. Schnitt

Fazit: Färberknöterich sollte nach Möglichkeit bis 20. April gesät werden. Verschiebt sich die Saat bis Ende April verringern sich in der Regel die Biomasse- und auch die Farbstofferträge. Die niedrigen Erträge der zweiten Saatzeit im Jahr 2002 resultieren aus Herbizidschäden im Versuch.

Mutantenprüfung Färberknöterich

Versuchsnummer: 501 700

Versuchsfrage: Prüfung von Ertrag und Indigogehalt bei Färberknöterich-Mutanten

Tabelle 2.3.1/3: Ganzpflanzen- und Blattertrag sowie Indicangehalt und Indigoertrag von Färberknöterichmutanten VS Dornburg 2003 bis 2005

Feld-Nr	Schnitt		Ertrag			Blattertra			dicangeh		Ir	ndigoertra	ıg
		,	dt TM/ha	ľ	,	dt TM/ha	ľ	`	% i. d. TN	ı ´	2002	(kg/ha)	2005
- (6)	_	2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005
1 (Standard)	1	36,8	48,2	46,5	21,4	23,9	21,0	3,59	6,56	4,09	39,9	79,1	44,5
	2	36,1	30,0	54,0	24,1	14,7	29,5	2,88	3,51	7,04	35,4	25,7	101,8
	Σ	72,9	78,2	100,5	45,0	38,6	50,5				75,3	104,8	146,3
2 (06/02)	1	35,0	47,5	41,1	21,6	23,0	19,9	4,28	6,96	4,28	44,0	80,2	43,3
	2	38,4	32,6	43,6	24,8	15,1	24,9	2,68	3,38	7,07	32,7	25,2	86,3
	Σ	73,4	80,1	84,7	46,4	38,1	44,8			L - <u>-</u>	76,7	105,4	129,6
3 (08/02)	1	26,7	44,8	42,0	17,0	21,0	20,7	4,09	6,77	6,30	33,4	71,3	64,2
	2	31,5	34,1	42,1	20,5	15,6	23,6	2,86	4,21	6,50	28,2	33,0	77,1
	Σ_{-}	58,2	78,9	84,1	37,5	36,6	44,3			ļ	61,6	104,3	141,3
4 (15/02)	1	21,4	42,6	43,8	14,2	21,4	19,9	5,19	6,69	4,38	36,9	71,7	45,1
	2	23,2	35,0	45,4	16,3	16,2	26,5	2,59	4,51	5,91	21,1	35,8	78,4
	Σ	44,6	77,6	89,2	30,5	37,6	46,4				58,0	107,6	123,5
5 (16/02)	1	35,3	50,0	40,7	22,5	25,5	19,6	4,20	6,61	5,12	44,8	84,4	50,6
	2	36,8	37,2	47,7	24,4	18,0	27,1	2,84	4,57	5,12	34,6	41,4	69,3
	Σ	72,1	87,2	88,4	46,9	43,6	46,7			<u> </u>	<i>79,</i> 4	125,8	119,9
6 (33/02)	1	37,2	42,2	45,6	21,6	20,4	20,8	3,97	6,71	6,07	43,7	68,9	62,7
	2	32,2	29,6	45,4	21,3	14,2	26,6	2,71	3,75	4,30	28,7	26,7	57,6
	Σ	69,4	71,8	91,0	42,9	34,6	47,4]		L	72,4	95,6	120,3
7 (34/02)	1	37,8	45,5	46,8	21,8	23,1	22,1	4,70	6,98	6,96	51,5	80,8	77,1
	2	34,3	31,6	48,4	21,8	15,5	28,3	3,74	3,44	4,66	40,2	26,8	65,8
	Σ	72,1	77,1	95,2	43,6	38,6	50,4]		L	91,7	107,6	142,9
8 (48/02)	1	38,2	46,9	50,9	24,4	24,2	23,4	4,69	6,86	5,28′	54,1	82,8	59,6
	2	32,8	36,1	57,1	21,1	17,2	33,5	4,11	3,60	5,07	43,9	30,2	84,0
	${oldsymbol \Sigma}$	71,0	83,1	108,0	45,5	41,4	56,9				98,0	113,0	143,6
9 (41/02)	1	48,8	47,5	40,7	35,3	23,9	20,3	3,43	5,84	5,34	53,5	69,3	54,2
	2	37,8	29,8	44,0	23,5	15,8	28,2	2,73	2,80	5,09	32,2	22,5	71,9
	$\mathcal{\Sigma}$	86,6	77,2	84,7	58,8	39,7	48,5				<i>85,7</i>	91,8	126,1
10 (31/02)	1	57,0	45,3	43,5	37,6	22,6	20,0	3,42	6,24	6,60	63,3	69,3	66,0
,	2	38,8	33,4	47,9	23,7	15,6	28,3	2,39	4,24	5,75	28,0	33,1	81,5
	${\it \Sigma}$	95,8	78,7	91,4	61,3	38,2	48,3				91,3	102,4	147,5
GD t, 5 %	1	16,3	6,5	7,6	11,4	3,0	3,8	1,10	1,08	1,39	20,0	15,5	17,6
_	2	9,4	5,7	7,1	5,5	2,6	4,4	0,65	0,88	1,16	9,4	8,7	15,6

Fazit: Innerhalb der Prüfglieder sind einige Mutanten, die ihre hohen Farbstoffgehalte und -erträge in allen Versuchsjahren bestätigen. Es ist also von einer genetischen Bedingtheit auszugehen. Diese könnten den Grundstock für eine weiterführende Züchtung liefern.

Herbizidversuch Färberknöterich Versuchsnummer: 501 732

<u>Versuchsfrage:</u> Herbizidverträglichkeit von Färberknöterich (Lückenindikation)

Tabelle 2.3.1/4: Herbizidverträglichkeit von Färberknöterich VS Dornburg 2004

		g 2004							
Versuch: Herbizidv	ergleich				Kultur: Färbe	erknöterich			
Versuchsort:			Dornburg		Versuchsbet	reuer: Frau	Ormerod		
Sorte:			Wildauslese		Bodenart/-za	ahl:			Lehm/76
Vorfrucht:			Sommerger	ste	N-Düngung:				100 kg/ha
Aussaat:			22.04.2004		Ernte:				-
Variante	An	wendung	V	ó)	Phytotox in %				
	l/ha Datum ES		CHEAL	THLAR	SOLNI	POLSS	CIRAR	GESAMT /HERBA	
1 UK	-	-	20	27	19	8	22	96/10	
2 Bandur	2,0	27.04./VA	100	100	0	0	0	20	100
3 Basta	3,0	03.05./VA	80	20	20	80	5	20	12
4 Afalon	1,5	27.04./VA	100	100	100	90	0	80	100
5 Aventhis Etho	2,0	29.05./14	35	20	90	0	0	15	7
6 Goltix 700 SC	3x1,0	18.05./12 29.05/14 09.06./16	0	100	100	20	0	20	35
Targa Super 2,0 09.06./16							100 Sommer- gerste	0	
HERBA: GALAP, VER	SS; LAM	AM; ARAPS; S	TEME; FUMC	F; CAPBF	; Ringelblum	e			

Fazit: Durch die kühle Frühjahrswitterung lief der Knöterich zögerlich auf und entwickelte sich nur langsam weiter. Dies ermöglichte dem Unkraut ein optimales Wachstum. Bandur wies, im Gegensatz zum Vorjahr, eine noch höhere Phytotoxizität auf und auch Afalon bestätigte das gute Ergebnis aus 2003 nicht. Beide Varianten führten zu einem Totalausfall. Ebenfalls ungeeignet für die Kultur ist die Variante Goltix 700 SC, die sowohl eine schlechte Wirkung als auch eine hohe Phytotoxizität aufwies. Die Variante Basta reduzierte den Unkrautdruck, reichte aber nicht in der Dauerwirkung aus. Aventhis Etho erwies sich als beste Variante. Leichte Wuchsdepressionen überwuchsen sich. Die Schwäche gegen die anderen Knötericharten führte hier zu einer stärkeren Verunkrautung. In Kombination jedoch mit Basta könnte hier eine sinnvolle Bekämpfungsvariante ergeben. Targa Super als Graminizid war in der Kultur gut verträglich und wirkungssicher.

Tabelle 2.3.1/5: Herbizidverträglichkeit von Färberknöterich VS Dornburg 2005

		uig Zo	_						
Versuch: Herbizid	vergleic	h Färbe	erknöteric	h		Kultur:			
Versuchsort:		VS Do	ornburg			Versuchsl	oetreuer:	Frau Orm	erod
Sorte:		Wilda	uslese			Bodenart,	/-zahl:	Lehm/60	
Vorfrucht:		Winte	rraps			N-Düngu	ng:	161 kg/ha	
Aussaat:		28.04	.05			Ernte:		-	
Variante	Anwen	dung	V	Virkungsg	grad in %	(UK = De	ckungsgrad i	n %)	Phytotox
	1/1			3 0	Boni	,	in %		
	l/ha [Datum	CHEAL	POLLA	FUMOF	THLAR	HERBA	GESAMT	
	,	ES							
1 UK	-	-	40	10	15	25	10	100	
2 Bandur	3,5	28.04	100	100	100	100	100		100 A, Totalschaden
		VA							100 A, Totalschaden
3 SF Basta	3,0	19.05	80	80	80	80	80		
Ethofumesat	2,0	VA							5 A, 80/40 WD
	1	13.06.							5 A, 30/40 WD
		27-29							
4 Ethofumesat	2,0	30.05.	30	30	30	30	30		15 A, 95/45 WD
12-14									15 A, 95/45 WD
HERBA: SOLNI; STE	ME; GA	ALAP							

Fazit: Bedingt durch die Frühjahrswitterung lief der Versuch nur zögerlich und sehr ungleichmäßig auf. Der Unkrautdruck kam erst spät, dann aber sehr massiv. Vor allem der Weiße Gänsefuß entwickelte sich zu einem Problem. Die Varianten 2 und 4 konnten nicht überzeugen, zum einen durch Totalausfall, zum anderen durch zu geringe Wirkung. Die Variante 3 als Spritzfolge brachte die besten Ergebnisse. Das Unkraut war deutlich reduziert und im Wuchs gehemmt. Im kommenden Jahr ist eine Kombination mit einer mechanischen Pflegemaßnahme (Hacken) geplant.

Dies könnte zu einem noch besseren Ergebnis führen.

2.3.2 Färberwau

Färberwau ist die traditionelle Pflanze zum Gelbfärben in Europa. Sie enthält die Farbstoffe in der gesamten oberirdischen Masse.

Herkunftsprüfung Färberwau

Versuchsnummer: 515 700

Versuchsfrage: Leistungsfähigkeit unterschiedlicher Färberwau-Herkünfte

Tabelle 2.3.2/1: Ertrag, Farbstoffgehalt und -ertrag von Färberwau-Herkünften VS Dornburg 2002, 2003 und 2005

Herkunft-Nr.		TM-Ertrag	-	F	arbstoffgeha	l+	F	arbstoffertra	σ
TICIKUIIICIVI.		(dt/ha)			(% i. d. TM)			(kg/ha)	6
	2002	2003	2005	2002 1)	2003 ²⁾	2005 ²⁾	2002	2003	2005
1	35,2	47,1	24,3	2,70	6,13	8,39	95,0	284,6	204,2
2	52,2	47,2	32,0	2,22	6,23	6,22	115,5	283,6	196,1
3	49,7	50,4	30,9	2,20	6,20	8,97	109,3	311,7	292,4
4	57,0	32,8	37,2	2,45	6,30	5,80	139,9	205,3	216,6
5	50,3	55,7	27,4	2,46	5,68	7,32	123,3	316,2	200,0
6	41,5	53,5	36,7	2,40	6,15	7,27	99,6	329,3	272,8
7	58,5	42,4	26,1	2,11	6,17	6,43	124,0	260,8	168,7
8	56,0	50,6	38,8	1,93	6,22	6,90	108,2	314,0	263,4
9	50,4	46,6	37,6	1,63	5,98	6,47	83,0	279,2	246,0
10	50,7	-		1,04		-	54,0		-
11		53,6	37,6		5,40	6,53		289,7	246,2
12	62,0	50,4	25,3	1,57	6,25	6,30	99,1	309,5	160,9
13	45,9	50,1	29,8	1,68	5,94	5,96	78,3	298,4	178,5
14	53,0	59,5	29,1	1,98	5,99	7,50	102,2	356,8	218,0
15	35,5	47,8	47,7	2,14	6,02	7,25	76,4	285,2	345,7
GD t, 5 %	11,5	10,3		0,52	0,43	1,09	32,1	53,4	74,7

¹⁾ Farbstoffbestimmung mit HPLC

<u>Fazit:</u> Sowohl hinsichtlich des Ertrages wie auch des Farbstoffgehaltes sind deutliche Unterschiede erkennbar. Einige Herkünfte erreichten in allen Versuchsjahren TM-Erträge, die deutlich über dem Jahresmittel lagen. Für eine Sortenzulassung sind vor allem Herkünfte mit mittlerem Ertrag und hohem Farbstoffgehalt interessant.

2.3.3 Färberhundskamille

Der Blütenfarbstoff der Färberhundskamille liefert von allen gelbfärbenden Pflanzenarten die brillantesten Farbtöne, die insbesondere auf pflanzlichen Fasern hohe Gebrauchsechtheiten aufweisen.

Herkunftsprüfung Färberhundskamille

Versuchsnummer: 527 800

<u>Versuchsfrage:</u> Leistungsfähigkeit unterschiedlicher Färberhundskamille-Herkünfte

²⁾ Farbstoffbestimmung photometrisch gegen Rutin

Tabelle 2.3.3/1: Blütenertrag, Farbstoffgehalt und -ertrag unterschiedlicher Färberhundskamille-Herkünfte VS Dornburg 2002 bis 2004

11	V3 D0	rnburg 2002 l	713 2004	-		l ₊		- a ub a t c ££	
Herkunft		Blütenertrag (dt TM/ha)		ŀ	arbstoffgeha (% i. d. TM)		ŀ	Farbstoffertra	g
	2002	2003	2004	2002	2003	2004	2002	(kg/ha) 2003	2004
1 (A2)	17,1	15,8	21,4	6,15	5,73	6,21	104,7	89,9	132,7
. ()	13,2	7,5	10,4	4,92	4,21	n. b.	64,9	31,5	- ,,-,,
Σ	30,3	23,3	31,7	1	1		169,7	121,4	
2 (A3)	17,6	14,7	17,9	6,11	5,90	6,77	107,8	86,4	121,2
	10,6	9,4	11,5	5,56	4,74	n. b.	59,3	44,6]
${oldsymbol{arSigma}}$	28,2	24,1	29,4]		167,0	131,0	
3 (A4)	19,4	16,8	18,9	6,09	5,68	6,94	117,9	95,2	130,9
	10,4	11,0	12,2	4,96	4,48	n. b.	52,1	49,5	
Σ	29,8	27,8	31,1	1			170,0	144,7	
4 (A5)	19,7	13,9	15,7	6,37	5,98	6,78	126,0	82,5	106,2
	11,6	11,5	13,6	4,92	4,58	n. b.	57,0	53,0	
$\sum_{(A,C)}$	31,3	25,4	29,3	ļ <u>-</u>			183,0	135,5	
5 (A6)	15,1	16,0	17,7	6,91	6,30	6,97	104,3	100,2	123,6
	11,3	9,7	12,0	5,32	4,60	n. b.	60,3	44,6	
<u>Σ</u> 6 (A8)	26,4	25,6	29,7	6,6		6.15	<i>164,6</i>	144,8	100.0
6 (A6)	16,5 10,3	17,2 8,9	16,8 8,3	4,871	5,72 4,75	6,15 n. b.	109,1 <u>5</u> 0,4	98,2 42,3	102,0
Σ	26,8	26, 1	25,0	14'57'] _ 4 2/ <u></u> 2		159,5	140,5	
7 (A9)	15,4	12,7	18,3	6,77	6,16	6,54	103,3	78,1	120,3
7 (7.9)	11,2	10,4	13,1	5,91	4,32	n. b.	65,5	42,0	120,5
Σ	26,6	23,1	31,4	† <i></i>	<u>'-</u>		168,8	123,1	
8 (A10)	19,2	16,8	21,3	6,57	5,92	6,18	125,3	99,2	131,7
	10,9	9,4	10,0	5,91	4,30	n. b.	64,9	40,2	
$oldsymbol{arSigma}$	30,1	26,2	<i>32,3</i>]		190,2	139,4	
9 (A 11)	16,4	14,7	17,1	6,62	6,23	6,88	108,4	91,3	117,0
	10,2	9,6	14,5	5,77	4 <u>,</u> 74	n. b.	58,8	45,6	
Σ	26,6	24,1	31,6	↓			167,1	136,9	
10 (A13)	15,6	15,9	18,3	6,61	5,90	6,66	102,6	91,9	122,1
	9,9	9,0	8,5	5,32	4,39	n. b.	52,6	39,3	
$\sum_{(A \in C)}$	<i>25,5</i>	24,9	26,8	ļ 			155,2	131,2	
11 (A16)	16,0	17,9	19,7	6,84	5,67	6,80	109,3	101,3	133,7
Σ	9,2	9,7 27,6	14,7	5,98	4,43	n. b.	54,6 1 63,9	42,9	
12 (A19)	25,2	15,0	34,4	6,58	6,17	6,57	100,8	144,2	98,3
12 (719)	15,3 11,1	9,5	14,9 11,7	5,41	4,23	n. b.	60,0	91,9 40,2	30,3
\sum_{i}	26,4	24,5	26,6	+ 2'2":	ـ ـ ـ ـــــــــــــــــــــــــــــــ		160,8	132,1	
13 (A20)	14,6	12,5	18,4	6,03	6,19	6,09	88,7	77,0	112,1
) (:)	10,5	11,3	11,9	5,17	4,25	n. b.	54,4	48,1	
Σ	25,1	23,8	30,3	† <i>-</i>			143,1	125,1	
14 (A22)	17,6	13,8	17,5	6,00	5,89	6,62	106,0	80,8	114,5
lJ	11,7	10,0	8,7	4,64	4,34	n. b.	54,1	43,5	
Σ	29,3	23,9	26,2				160,1	124,3	
15 (A23)	17,6	14,3	16,2	5,61	6,46	6,31	99,0	91,6	102,3
	10,8	9,5	12,4	5,69	4,43	n. b.	61,7	42,0	
Σ	28,4	23,8	28,6	 			160,7	133,7	
16 (A26)	17,8	18,6	20,4	5,96	5,82	6,17	107,0	107,6	124,8
	10,3	8,2	9,8	5,34	4,54	n. b.	55,0	37,3	
Σ	28,1	26,8	<i>30,2</i>				162,0	144,9	-6.0
GD t, 5 %	2,6	3,3	2,8	0,51	0,35	0,45	16,4	16,9	16,8
	1,8	2,0	2,7	0,47	0,23		10,3	9,1]

Fazit: Hinsichtlich morphologischer Merkmale, wie Blütenfarbe, Blütengröße und Einheitlichkeit des Blühhorizontes, treten bei Färberhundskamille deutliche Unterschiede zwischen den eruierten Herkünften auf. Diese Differenzen setzen sich auch in Ertrag und Farbstoffgehalt fort.

2.3.4 Kanadische Goldrute

Kanadische Goldrute ist die gebräuchlichste Gelbfarbstoffpflanze in Nord- und Mittelamerika. Sie enthält den Farbstoff in der gesamten Pflanze und zeichnet sich durch hohe Erträge aus. Für die Nutzung als Farbstoffpflanze eignen sich besonders kurzstängelige, frühreife Ziersorten mit hohem Blütenanteil.

Stammprüfung Kanadische Goldrute ,Goldkind' Versi

Versuchsnummer: 518 700

Versuchsnummer:

512 800/2

Versuchsfrage: Leistungsfähigkeit von Klonen der Goldrutensorte, Goldkind'

 Tabelle 2.3.4/1:
 Ganzpflanzenertrag, Farbstoffgehalt und -ertrag von Klonen der Goldrutensorte ,Goldkind' (1 Wdh.)

VS Dornburg 2003 bis 2005 (4. bis 6. Standjahr)

Herkunft		Ertrag (dt TM/ha)	7 (1	F	arbstoffgeha (% i. d. TM)	lt	F	arbstoffertra (kg/ha)	g
	2003	2004	2005	2003	2004	2005	2003	2004	2005
GK 2	64,4	76,1	41,4	3,70	3,05	5,23	238,3	231,9	216,9
GK 4	46,8	46,0	34,4	4,59	5,75	8,36	214,8	264,6	287,8
GK 8	54,7	78,8	43,6	4,01	3,87	5,07	219,3	304,8	221,4
GK 13	45,4	53,3	24,4	4,89	5,55	5,80	222,0	295,6	141,3
GK 15	65,3	95,0	51,7	4,37	3,47	4,06	285,4	329,8	210,2
GK 19	61,8	86,2	48,9	3,32	3,81	3,30	205,2	328,7	161,2
GK 21	45,8	60,2	43,4	4,82	5,78	4,83	220,8	347,8	209,5
GK 23	36,9	53,6	35,4	3,64	3,37	3,56	134,3	180,4	126,0
GK 24	48,4	54,6	40,1	4,95	4,14	4,09	239,6	226,0	164,2
GK 25	66,0	59,6	35,9	4,25	5,31	3,57	280,5	316,6	128,1
GK 26	56,1	59,5	35,3	4,57	2,72	4,02	256,4	161,8	142,0
GK 27	56,2	63,7	38,2	3,80	3,67	3,73	213,6	233,9	142,6
GK 30	84,8	74,6	47,6	3,38	3,37	3,56	286,6	251,0	169,6
GK 31	48,5	54,1	35,2	3,16	3,32	4,92	153,3	179,4	173,4
GK 34	15,8	29,2	22,8	4,46	4,57	4,77	70,5	133,6	108,8
GK 35	65,4	58,1	31,2	3,29	3,68	5,23	215,2	213,8	163,2
GK 36	52,4	60,3	44,1	4,44	3,03	4,91	232,6	182,8	216,8
GK 37	63,0	47,4	23,3	4,66	3,80	6,80	293,6	180,3	158,4
GK 43	67,2	66,6	37,4	3,23	3,03	4,74	217,1	202,1	177,2

<u>Fazit:</u> Die Klone weisen deutliche Unterschiede im Ertragsniveau und auch im Farbstoffgehalt auf. Einige Klone, wie z. B. GK 4, 8, 21 und 25, bestätigten dabei ihre hohen Farbstoffgehalte und erträge in allen Versuchsjahren.

2.3.5 Waid

Waid, traditionell zur Gewinnung von Indigofarbstoff in Thüringen angebaut, wird heute zur Herstellung von Holz- und Bautenschutzmitteln verwendet.

Stammprüfung Waid

Versuchsfrage: Leistungsfähigkeit selektierter Zuchtstämme

Tabelle 2.3.5/1: Ertrag (dt TM/ha) ausgewählter Waidstämme im Vergleich zum Thüringer Waid VS Dornburg 2003 bis 2005

Stamm- Nr.	Herkunft		20	03			20	04			20	05	
		1. Schnitt	2. Schnitt	3. Schnitt	Σ	1. Schnitt	2. Schnitt	3. Schnitt	Σ	1. Schnitt	2. Schnitt	3. Schnitt	Σ
Standard	Thüringer Waid	7,3	12,0	7,9	27,2	4,2	7,6	5,6	17,4	11,0	8,2	5,9	25,1
2	Bordeaux	11,2	16,2	9,3	36,7	9,3	8,2	6,7	24,2	13,7	10,0	7,9	31,6
3	Montreal	10,7	13,4	9,1	33,2	6,0	6,8	4,7	17,5	13,8	10,5	8,1	32,4
4	Lausanne	6,7	10,4	6,7	23,8	9,0	8,2	6,3	23,4	10,9	8,8	7,0	26,7
5	Bordeaux	9,0	15,1	8,9	33,0	7,2	8,5	6,1	21,8	16,4	11,7	9,2	37,3
6	Chateau de Magrin	9,4	13,6	8,0	31,0	9,8	9,4	6,0	25,2	13,9	8,8	7,1	29,8
7	Frankfurt a. M.	9,2	16,3	9,7	35,2	7,8	6,0	5,5	19,4	14,0	10,0	8,3	32,3
8	Heidelberg	8,7	16,0	7,4	32,1	10,0	8,8	5,8	24,5	11,6	8,9	6,9	27,4
9	Kiel	6,5	15,8	9,2	31,5	10,8	7,6	5,9	24,4	14,2	11,2	8,8	34,2
10	Jena	9,8	17,0	11,6	38,4	10,5	9,2	6,4	26,1	13,2	10,4	8,0	31,6
11	Bristol	4,0	9,8	5,2	19,0				-		-		
12	Isatis indigotica	5,8	7,4	4,4	17,6		-						-
13	Pisa	2,3	11,8	6,5	20,7	6,7	5,7	3,8	16,2	-	-		•
GD t, 5%		3,0	3,1	2,1	7,3	2,5	1,8	1,3	4,8	2,3	1,4	1,6	4,2

<u>Fazit:</u> In allen Prüfungsjahren bestätigten die Stämme 2 und 10 ihre Ertragsüberlegenheit gegenüber dem Thüringer Waid.

Herbizidversuch Waid (Lückenindikation)

Versuchsnummer: 512 732

Versuchsfrage: Wirkung und Verträglichkeit von Herbiziden bei Waid

Tabelle 2.3.5/2: Herbizidverträglichkeit von Waid

VS Dornburg 2004

Versuch: Herbizidver	gleich	Kultur: Wa	id						
Versuchsort:	Dornburg	Versuchsb	etreuer:		Frau Orm	ierod			
Sorte:	Wildauslese	Bodenart/	zahl:		Lehm/84				
Vorfrucht:	Sommergerste	N-Düngun	ıg:		120 kg/ha	l			
Aussaat:	30.03.2004	Ernte:			-				
Variante	Anwend				Bonitur:	JK = Deckun 25.06.2004	-	·	Phytotox
	l/ha	Datum	CHEAL	POLSS	LAMAM	AGRE/SG	HERBA	GESAMT	in %
1 UK	-	-	50	5	23	93	0		
2 Treflan	2,0								
3 Butisan	2,0	18.05.	80	80	60		40		0
4 Starane 180	0,5	18.05.	0	100	100		90		0
5 Goltix 700 SC	3 x 1,0	18.05. 29.05. 09.06.	60	80	90		45		0
6 Fusilade Max	1,0	18.05.				100			0
7 TM Butisan + Starane 180 + Goltix 700 SC	1,5 0,2 1,5	18.05.	95	95	100		78		0
8 Lontrel 100	1,2	04.05.	0	0	0	0	0		0
Herba: GALAP; STEME	; CAPBP; THLAR	; VERSS; CI	RAR						

Fazit: Der Versuch lief zügig auf und entwickelte sich, trotz der kühlen Witterung, gut. Es bildete sich eine gleichmäßige Mischverunkrautung aus. Nesterweise traten Disteln auf, so dass eine Behandlung des gesamten Versuches mit Lontrel 100 notwendig wurde. Die einzelnen Varianten konnten bis auf die Vorsaateinarbeitung mit Treflan keine ausreichende Wirkung aufweisen. Auch Goltix 700 SC erreichte im Splittingverfahren keine befriedigende Wirkung. Phytotoxische Schäden verwuchsen sich und konnten zur Abschlussbonitur nicht mehr festgestellt werden. Als beste Variante stellte sich erneut, wie in den vergangenen Jahren, die Tankmischung (Variante 7) heraus. Besonders erwähnenswert ist, dass Goltix in der Tankmischung Lentagran ersetzen kann. Somit ist es möglich, nach der dreijährigen Versuchsserie die Varianten Treflan und die Tankmischung potenziellen Anbauern zu empfehlen.

Tabelle 2.3.5/3: Herbizidverträglichkeit von Waid VS Dornburg 2005

,	יוווטע כיי	ourg 2005								
Versuch: Herbizid	vergleich			Kultur: Wa	id					
Versuchsort:		Dornburg		Versuchsb	etreuer:		Frau C	Ormero	d/Frau Sc	hütze
Sorte:		Wildauslese		Bodenart/-	zahl:		Lehm	/67		
Vorfrucht:		Winterraps		N-Düngun	g:		115 kg	/ha		
Aussaat:		04.04.05		Ernte:			-			
Variante		Anwendung		Wirkungs		(UK = Decl 3.06.05/23		d in %)		Phytotox in %
	I/ha Datum ES				POLCO	FUMOF	THLAR	HER- BA	GE- SAMT	
1 UK	-	-	14 20	31 54	5 9	5 5	4	9 7		0
2 Treflan	2,0	04.04./ VSE	0	0	20 20	0	0	o 5		0
3 Goltix 700 SC	3x1,0 19.05./14-18 Goltix 700 SC 30.05./kl. Rosette 13.06./gr. Rosette				14 80	0	82 -	20 10		0
4 TM Butisan + Starane 180 + Goltix 700 SC	2,0 0,2 0,8	13.06./ gr. Rosette	40 0	68 45	5 60	20 0	100 0	40 40		100/20 BD (Löffelbil- dung
Herba: EUPSS; STEN	ЛЕ; САРЕ	BP; SOLNI; GALAP					•			

Fazit: Aufgrund des späten und trockenen Frühjahrs liefen die Kultur und die Unkräuter sehr zögerlich auf und es kam zu einem sehr lückigen und ungleichmäßigen Bestand. Besonders breitete sich der Ampferblättrige Knöterich auf der Versuchsfläche aus.

Treflan erzielte als Vorsaateinarbeitung in diesem Jahr keine gute Wirkung, da durch den stark verzögerten Auflauf der Unkräuter die Wirkung später nicht mehr ausreichte. Auch Goltix 700 SC erreichte im Splittingverfahren wie schon 2004 keine befriedigende Wirkung. Als beste Variante zeigte sich die Tankmischung Butisan + Starane + Goltix 700 SC, obwohl die Wirkung 2005 etwas schlechter als im Vorjahr war. Anfängliche phytotoxische Schäden verwuchsen sich und konnten zur Abschlussbonitur nicht festgestellt werden.

2.4 Faserpflanzen

2.4.1 Hanf-Parzellenversuche

Sortenversuch Hanf Versuchsnummer: 523 800

Versuchsfrage: Ertragspotenzial ausgewählter Hanfsorten

Tabelle 2.4.1/1: Stängelertrag (dt TM/ha; Grünstroh) geprüfter Sorten von Faserhanf

VS Bad Salzungen, VS Burkersdorf, VS Dornburg, VS Kirchengel, VS Großenstein 2003 bis 2005

Sorte	Bad	Salzun	gen		Oornbur	g	K	ircheng	el	Gr	oßenste	ein	Ві	ırkersdo	orf
	2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005
Chamaeleon		-	105,0	-	-	98,2	-		75,3			111,9	-	-	53,8
Futura	89,7	150,4	128,2	106,2	123,9	108,3	60,6	86,9	99,0	125,5	173,1	119,5	57,8	109,6	86,2
Fedora	78,4	111,2	90,2	91,8	110,2	96,8	52,1	69,5	85,0	102,7	129,4	130,6	47,8	103,4	71,7
Felina 34		113,4	87,0		117,3	96,5		66,7	85,8]	142,2	116,1		96,6	68,3
Juso	70,6			71,2	87,1		43,0]]	59,8			38,8	81,5	-
Beniko	80,3	136,0	94,8	100,8	93,5	101,4	51,4	80,0	86,2	114,3	150,4	109,8	48,5	100,4	72,6
Bialobrzeskie	79,9	112,0	93,3	95,2	112,7	94,0	58,0	78,8	90,3	90,3	134,2	141,5	51,4	101,9	68,9
GD t, 5 %	9,3	22,5	17,6	10,2	11,4	6,9	6,8	18,3	11,4	12,8	23,2	19,7	5,5	7,2	10,8

Tabelle 2.4.1/2: Fasergehalt (%) geprüfter Sorten von Faserhanf (Grünstroh)

VS Bad Salzungen, VS Burkersdorf, VS Dornburg, VS Kirchengel, VS Großenstein 2003 bis 2005

Sorte	Bac	l Salzun	gen		Dornbur	g	K	irchenge	el	Gr	oßenste	in	Burkersdorf	
	2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005	2004	2005
Chamaeleon			24,7			22,4			25,2		-	23,6		19,8
Futura	18,5	20,1	16,6	22,1	22,4	17,4	20,1	22,9	19,7	19,8	21,4	20,5	20,6	19,1
Fedora	17,1	19,6	16,0	17,4	20,6	16,3	20,6	21,6	20,0	18,1	22,5	18,2	19,4	18,5
Felina 34		19,1	16,2		21,6	17,4		23,1	23,2		21,9	19,7	21,8	18,3
Juso	23,2	-	-		26,1		24,0			23,6			25,4	
Beniko	24,4	27,5	23,3	26,7	28,3	24,9	25,2	29,7	25,8	25,1	26,9	26,4	28,0	24,9
Bialobrzeskie	22,9	23,6	20,5	23,4	26,4	21,1	24,5	26,6	25,9	22,7.	25,6	22,3	22,4	21,6

Tabelle 2.4.1/3: Faserertrag (dt/ha) geprüfter Sorten von Faserhanf (Grünstroh)

VS Bad Salzungen, VS Burkersdorf, VS Dornburg, VS Kirchengel, VS Großenstein 2003 bis 2005

Sorte	Bac	l Salzun	gen	[Dornbur	g	K	irchenge	el	Gi	roßenste	ein	Burkersdorf	
	2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005	2004	2005
Chamaeleon		-	26,0	-	-	22,0		-	18,9	-	-	26,4		10,6
Futura	16,6	30,2	21,3	23,4	27,8	18,9	12,2	19,9	19,5	24,8	37,0	24,5	22,6	17,1
Fedora	13,4	21,8	14,4	16,0	22,6	15,7	10,7	15,0	17,0	18,5	29,1	23,8	20,0	14,2
Felina 34		21,6	14,1		25,3	16,8		15,4	19,9		31,1	22,9	21,1	13,5
Juso	16,4		[] - []	16,8	22,7		10,3		I -	14,1]		20,7	
Beniko	19,6	37,3	22,1	26,9	26,4	25,3	13,0	23,8	22,3	28,7	40,5	29,0	28,1	14,4
Bialobrzeskie	18,3	26,4	19,1	22,2	29,7	19,8	14,2	20,9	23,4	20,5	34,3	31,5	22,8	13,6
GD t, 5 %	1,9	5,3	4,1	3,5	2,7	1,4	1,6	4,7	2,8	3,0	5,4	4,4	1,6	2,2

<u>Fazit:</u> Zwischen den Standorten und Sorten sind erhebliche Ertragsunterschiede feststellbar. Besonders geeignet sind die Sorten "Futura", "Beniko" und "Bialobrzeskie". Insbesondere die polnische Sorte "Beniko" zeichnet sich durch überdurchschnittlich hohe Fasergehalte aus, was in Verbindung mit mittleren Erträge stets zu sehr guten Fasererträgen je Flächeneinheit führte. Die im Jahr 2005 erstmalig geprüfte Sorte "Chamaeleon" erreichte durchschnittliche Erträge, dürfte jedoch, aufgrund des hohen Anteils männlicher Pflanzen, in Fasergehalt und –ertrag hinter den o. g. Sorten zurückbleiben.

Anbauversuch Hanf Versuchsnummer: 523 740 60

Versuchsfrage: Einfluss der Saatzeit auf Ertrag und Qualität zweier Hanfsorten (Ernte zur Vollblüte)

Tabelle 2.4.1/4: Einfluss der Saatzeit auf den Stängelertrag (dt TM/ha) von Faserhanf VS Burkersdorf, VS Dornburg und VS Großenstein 2003 bis 2005

Sorte	Saatzeit	l i i				Dornburg		Großenstein			
		2003	2004	2005	2003	2004	2005	2003	2004	2005	
Juso 14	früh	74,8	-	-	71,5	-	-	55,0	-	-	
	normal	65,6	-	-	67,7	-	-	53,0	-	-	
Beniko	früh	79,3	133,5	79,9	124,8	126,5	108,7	98,1	126,1	102,1	
	normal	72,6	123,2	72,0	106,3	111,8	93,4	89,4	157,1	121,3	
Bialobrzeski	früh	-	-	-	-	134,4	-	-	-	-	
	normal	-	-		-	113,9	-	-	· -	-	
Futura	früh	-	-	88,3	-	-	117,0	-	176,0	123,3	
	normal	-	-	76,2	-	-	112,9	-	190,7	123,8	
GD t, 5 %		9,0	17,6	15,6	5,8	10,8	8,3	7,0	16,6	18,4	

Tabelle 2.4.1/5: Einfluss der Saatzeit auf den Fasergehalt (%) von Faserhanf VS Dornburg, Burkersdorf und Großenstein 2003 bis 2005

Sorte	Saatzeit		Dornburg		Burke	rsdorf	Großenstein	
		2003	2004	2005	2004	2005	2004	2005
Juso 14	früh	22,2	-	-	-	-	-	-
	normal	25,2	-	-	-	-	-	-
Beniko	früh	26,3	27,5	22,1	26,3	16,6	28,1	23,9
	normal	26,8	28,1	25,0	28,1	23,2	29,8	25,1
Bialobrzeski	früh	-	26,0	-	-	-	-	-
	normal	-	24,5	-	-	-	-	-
Futura	früh	-	-	17,7	-	17,1	22,1	21,3
	normal	-	-	19,7	-	20,7	23,5	19,5

Tabelle 2.4.1/6: Einfluss der Saatzeit auf den Faserertrag (dt/ha) von Faserhanf VS Dornburg Burkersdorf und Großenstein 2003 bis 2005

Sorte	Saatzeit		Dornburg	_	Burke	rsdorf	Große	nstein
		2003	2004	2005	2004	2005	2004	2005
Juso 14	früh	22,2	-	-	-	-	-	-
	normal	25,2	-	-	-	-	-	-
Beniko	früh	26,3	34,7	24,0	35,1	13,3	35,4	24,4
	normal	26,8	31,4	23,3	34,6	16,7	46,8	30,4
Bialobrzeski	früh	-	34,9	-	-	-	-	-
	normal	-	27,9	-	-	-	-	-
Futura	früh	-	-	20,7	-	15,1	38,9	26,2
	normal	-	-	22,7	-	15,8	44,8	24,1
GD t, 5 %		n. b.	3,9	1,7	4,8	3,5	5,9	4,1

Tabelle 2.4.1/7: Einfluss der Saatzeit auf die Faserqualität von Faserhanf VS Dornburg 2003 bis 2005

	* * * * * * * * * * * * * * * * * * * *	Dombu	16 200	5 DIS 20										_			
Sorte	Saatzeit		Feinhei	t		Dehnung			Kraft			feinheitsbez. Kraft			Modul/Endwert		
			(tex)		(%	(% korrigiert)		(cN)			(cN/tex)			(cN/tex))	
		2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005	
Juso 14	früh	12,7	-	-	1,11	-	-	558	-	-	43,4	-	-	3.936	-	-	
	normal	13,2		-	1,26	-	-	653	-	-	51,5	-	-	4.068	-	-	
Beniko	früh	12,1	14,4	16,7	1,09	0,97	1,09	547	561	612	44,2	39,9	38,4	4.072	4.122	3.530	
	normal	10,1	14,2	16,9	1,07	1,23	1,06	485	702	639	46,0	50,2	37,0	4.317	4.108	3.516	
Bialobrzeski	früh	-	14,5	-	-	1,17	-	-	698	-	-	46,1	-	-	3.952	-	
	normal	-	13,9	-		1,11	-	-	672	-	-	50,0	-	-	4.497	-	
Futura	früh	-	-	13,1	-	-	1,03	-	-	559	-	-	45,0	-	-	4.256	
	normal			14,8		-	1,01	T -	I -	596	-	T	4,02	-	-	3.976	

<u>Fazit:</u> Es zeigte sich, dass bei früherer Aussaat an den Standorten Dornburg und Burkersdorf immer Mehrerträge erzielt wurden, die teilweise auch signifikant waren. Am Standort Großenstein dagegen unterschieden sich beide Saatzeiten nicht bzw. die Normalsaat war der Frühsaat überlegen. Dies könnte in der ausgeprägten Frühjahrstrockenheit und den damit verbundenen schlechten Feldaufgangsbedingungen dieser Region begründet sein. Ein Einfluss auf den Fasergehalt und die Qualität war nicht zu verzeichnen.

Anbauversuch Hanf

Versuchsnummer: 523 740

Versuchsfrage: Einfluss der Einzelkornsaat auf Ertrag und Qualität bei Hanf

Tabelle 2.4.1/8: Pflanzenzahl, Stängeldurchmesser und Wuchshöhe zweier Hanfsorten in Abhängigkeit von der Saatstärke bei Einzelkornsaat

VS Großenstein und VS Dornburg 2005

Sorte	Saatstärke	Pflanz	Pflanzen/m²		Wuchshöhe		shöhe	Stänge	ldurch-	Stängelertrag	
	(Kö./m²)			(Cr	(cm)) (cm)	messei	r (mm)	(dt TM/ha)	
		Großen-	Dorn-	Großen-	Dorn-	Großen-	Dorn-	Großen-	Dorn-	Großen-	Dorn-
		stein	burg	stein	burg	stein	burg	stein	burg	stein	burg
Beniko	167	72	91	266	249	215	203	7,9	7,6	96,5	84,8
	217	122	138	268	253	219	210	7,3	7,8	105,0	81,6
Futura	167	103	123	270	259	220	222	7,1	7,2	117,4	100,8
	217	118	123	255	271	208	233	5,7	7,9	106,3	99,7
GD t, 5 %				12,9	9,6	8,3	11,5	1,0	1,1	8,6	7,1

Es ist ersichtlich, dass es mit der Versuchstechnik nicht gelungen ist, die vorgesehene Sollpflanzenzahl je m² zu etablieren. Trotz der geringen Saatstärke wurden ansprechende Erträge erzielt. Als problematisch stellt sich jedoch der hohe Stängeldurchmesser dar, der für die Verarbeitung ungünstig ist. Der Versuch wird bei veränderter Einstellung der Versuchstechnik wiederholt.

Anbauversuch Hanf

Versuchsnummer: keine

Versuchsnummer:

keine

Versuchsfrage: Einfluss der Feldröste auf Ertrag und Qualität von Hanf

Tabelle 2.4.1/9: Einfluss der Feldliegezeit auf Ertrag und Qualität von Hanf, 2002 und 2004 Sorte 'Futura' und 2003 'Juso 14' VS Dornburg 2002 bis 2004

Р	Probenahme C		Ganzp	Ganzpflanzenertrag			TS-Gehalt			Masseverlust			Fasergehalt			Faserertrag		
			(dt TM/ha)			(%)			(%)			(% TM)			(dt/ha)			
2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004	
21.08.	30.07.*	16.08.*	140,4	129,7	158,8	36,4	34,8	31,0	0	0	0	19,4	21,8	22,4	27,2	28,2	33,6	
28.08.	06.08.	23.08.	120,1	124,3	145,4	69,3	87,7	72,1	14,4	3,7	8,4	20,9	18,7	18,8	25,0	23,2	27,3	
04.09.	13.08.	30.08.	101,9	119,6	136,2	83,7	91,6	75,9	27,4	7,5	14,3	22,7	20,0	16,3	23,1	23,9	22,2	
11.09.	20.08.	06.09.	92,6	109,7	132,8	36,6	86,1	91,4	34,0	14,9	16,4	22,3	20,1	22,0	20,6	22,1	29,1	
18.09.	27.08.	13.09.	87,2	108,5	125,5	87,6	87,7	89,2	37,9	16,0	21,0	24,1	20,2	19,9	21,0	21,9	24,9	
25.09.	02.09.	-	84,9	90,7	-	56,6	72,4	-	39,5	30,1	-	19,6	19,7	-	16,6	17,8	-	
	GD t, 5 %	6	n. b.	25,8	9,6	n. b.	n. b.	n. b.	n. b.	n. b.	n. b.	n. b.	n. b.	n. b.	n. b.	5,1	12,1	

^{*} Ernte zur Vollblüte

Tabelle 2.4.1/10: Einfluss der Feldliegezeit auf die Faserqualität von Hanf, 2002 und 2004 Sorte 'Futura' und 2003 'Juso 14' VS Dornburg 2002 bis 2004

Pr	obenah	ıme	Feinheit		Dehnung			Kraft			feinheitsbez. Kraft			Modul/Endwert			
	(tex)			_	(% korrigiert)			(cN)			(cN/tex)			(cN/tex)			
2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004	2002	2003	2004
21.08.	30.07.	16.08.*	11,1	13,1		1,02	1,21	-	457	632		40,2	49,2		3.972	4.067	-
28.08.	06.08.	23.08.	14,1	11,7	17,7	1,31	1,21	1,29	661	592	728	48,4	50,1	40,6	3.699	4.157	3.157
04.09.	13.08.	30.08.	10,2	12,9	12,0	1,29	1,33	1,15	551	682	558	51,9	52,4	46,1	4.043	3.944	4.049
11.09.	20.08.	06.09.	7,8	10,7	11,6	1,16	1,18	1,28	410	551	606	52,8	51,7	52,0	4.571	4.385	4.065
18.09.	27.08.	13.09.	7,2	12,3	13,0	1,19	1,12	1,33	408	557	634	56,6	45,4	50,4	4.772	4.075	3.800
25.09.	02.09.	-	7,8	11,5	-	1,15	1,26	-	398	596	-	51,7	50,7	-	4.495	4.015	-

<u>Fazit:</u> Die Feldliegezeit sollte 2 bis 3 Wochen nicht überschreiten, da sonst ein gravierender Masseverlust zu befürchten ist. Bei einer frühen Ernte bis Ende August bestehen gute Chancen, das Röststroh auf die geforderten 17 % Restfeuchte zurückzutrocknen. Die optimale Faserausbeute wurde in den Jahren 2002 und 2004 bis zur 4. Woche, im Jahr 2003 bis zur 3. Woche erreicht. Danach sanken Fasergehalt und -ertrag ab. Die Qualität der Faser nahm ab der 3. Woche Feldliegezeit zu.

Anbauversuch Hanf

Versuchsfrage: Einfluss des Erntetermins auf Ertrag und Qualität von Hanf

Tabelle 2.4.1/11: Einfluss des Erntetermins auf Stängelertrag, Fasergehalt und Faserertrag von Hanf, Sorte "Juso 14' (2003), Sorte "Futura" (2004 und 2005)

VS Dornburg 2003 bis 2005

	Erntetermin					ag)	F	asergeha (% TM)	lt	Faserertrag (dt/ha)			
2003 2004 2005				2003	2004	2005	2003	2004	2005	2003	2004	2005	
Blühbeginn	30.06.	03.08.	05.08.	44,2	123,0	103,9	20,7	22,1	19,8	9,1	27,1	20,5	
Vollblüte	14.07.	11.08.	11.08.	70,0	106,1	104,2	21,4	21,3	21,0	15,0	22,6	21,9	
Blühende	30.07.	20.08.	18.08.	90,5	115,5	113,2	21,8	20,0	18,3	19,7	23,0	20,7	
Beginn	13.08.	30.08.	25.08.	74,3	110,9	136,2	23,9	20,6	18,0	17,7	22,8	24,5	
Samenreife	amenreife												
GD t, 5 %				17,8	33,3		n. b.	n. b.	n.b.	3,9	7,0	5,1	

Tabelle 2.4.1/12: Einfluss des Erntetermins auf die Faserqualität von Hanf, Sorte ,Juso 14' (2003), Sorte ,Futura' (2004 und

VS Dornburg 2003 bis 2005

Erntetermin		Feinheit		Dehnung			Kraft			feinh	eitsbez.	Kraft	Modul/Endwert			
		(tex)			(% korrigiert)			(cN)			(cN/tex)			(cN/tex)		
	2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005	
Blühbeginn	11,3	13,7	12,2	1,04	1,20	0,94	481	654	508	45,2	49,9	43,2	4.339	4.262	4.602	
Vollblüte	12,2	12,9	13,0	1,06	1,10	0,95	521	606	505	43,9	45,8	41,4	4.130	4.208	4.376	
Blühende	13,1	12,4	13,8	1,21	1,00	0,96	632	543	549	49,2	44,5	40,6	4.067	4.379	4.252	
Beginn	11,6	10,9	11,3	1,15	1,00	0,92	557	478	456	48,9	44,5	41,0	4.271	4.471	4.449	
Samenreife																

Fazit: Bei der frühen Sorte 'Juso' wurden die höchsten Stängelerträge zu Blühende erreicht. Da sich der Fasergehalt während der Erntespanne nicht wesentlich änderte, waren zu diesem Termin auch die höchsten Fasererträge zu verzeichnen. Bei der Wiederholung des Versuchs mit der ertragreicheren späteren Sorte 'Futura' zeigte sich im Jahr 2004 keine signifikante Änderung des Ertrages zu den einzelnen Terminen. Dagegen stieg der Ertrag im Jahr 2005 bis zum letzten Erntetermin stetig an. Trotzdem sollte die Hanfernte zur Minimierung des Risikos bis ca. 20. August vorgenommen werden. Spätere Erntetermine können unter Thüringer Bedingungen in eine Periode ungünstiger Witterungsbedingungen fallen, die das Trocknen des Strohs und die nachfolgende Bergung stark behindern.

Versuchsnummer:

523 745

Anbauversuch Hanf

<u>Versuchsfrage:</u> Vorfruchtwirkung von Hanf im Vergleich zu Körnererbsen und Sommerweizen

Tabelle 2.4.1/13: Erträge der Vor- und Nachfrüchte im Vorfruchtversuch Hanf VS Dornburg 2003 bis 2005

Vari-	Vorfrucht	1. Nach-	2. Nach-				Ertrag		
ante		frucht	frucht				(dt TM/ha)		_
					Vorfruch	t	1. Nacl	hfrucht	2. Nachfrucht
				2003	2004	2005	2004	2005	2005
							Winter	weizen	Winterweizen
1.1	Hanf	WiWeizen	WiWeizen	116,4	153,8	187,5	87,1	85,4	61,4
1.2	SoWeizen	WiWeizen	WiWeizen	52,2	71,4	55,3	81,5	65,3	56,7
1.3	KöErbse	WiWeizen	WiWeizen	35,6	48,9	36,0	83,9	83,2	59,9
GD t, 5	5 %						5,1	6,4	6,5
							Somme	ergerste	Winterweizen
2.1	Hanf	SoGerste	WiWeizen	117,9	146,4	163,5	71,5	61,6	73,9
2.2	SoWeizen	SoGerste	WiWeizen	51,1	70,3	55,3	68,3	45,6	69,6
2.3	KöErbse	SoGerste	WiWeizen	32,5	45,3	41,8	74,7	60,0	76,3
GD t, 5	5%						4,5	5,4	3,1

<u>Fazit:</u> Es ist ersichtlich, dass sich der Hanf hinsichtlich seines Vorfruchtwertes auf etwa dem gleichen Niveau wie die Körnererbse bewegt und Sommergetreide deutlich übertrifft. Dies gilt sowohl für die Nachfrucht Winterweizen als auch für Sommergerste. Die positive Wirkung des Hanfs ist dabei, nach bisher einjährigen Ergebnissen, auch noch in der 2. Nachfrucht feststellbar.

2.4.2 Hanf-Praxisversuche

Faserhanfanbau in der Praxis (in Zusammenarbeit mit den Kreisbauernverbänden Altenburg und Zeulenroda)

Versuchsfrage: Praxistauglichkeit des Anbauverfahrens Faserhanf

Tabelle 2.4.2/1: Versuchsdaten und Ergebnisse des Faserhanfanbaus in Thüringen 2004

. abone ziqiz/	v ci su ci isu	aten ana Engebiniss	c acs . as	cilialilaliba	us III I I I I I I	11116011 2004			
Anbaugebiet/ Anzahl Betriebe	Anbau- fläche	Sorten	E	3oniturdate	n (Anfang	Juli)	Röststroh- ertrag	Faser- gehalt	Faser- ertrag
	(ha)		1	nöhe (cm) technisch	Pfl./m²	Ø Stängel (mm)	(dt/ha)	(%)	(dt/ha)
Altenb. Land/ 20	126,5	Bialobrzeskie, Beniko	242	215	161	7,4	77,3	24,8	19,2
Zeulenroda/ 6	63,8	Bialobrzeskie, Beniko	190	174	294	4,6	61,4*	24,8	15,2*

^{*} unter Ausschluss des Betriebes mit dem extrem niedrigen Ertrag

Tabelle 2.4.2/2: Versuchsdaten und Ergebnisse des Faserhanfanbaus in Thüringen 2005

		0			0				
Anbaugebiet/	Anbau-			Boniturdate	en (Mitte	Juli)	Röststroh-	Faser-	Faser-
Anzahl Betriebe	fläche	Sorten		(Mittel aus	11 Betrieb	pen)	ertrag	gehalt	ertrag
	(ha)		Wuchsł	nöhe (cm)	Pfl./m²	Ø Stängel	(dt/ha)	(%)	(dt/ha)
			gesamt	technisch		(mm)			
Altenb. Land/	433,9	Bialobrzeskie,	219	172	108	5,7	97,6	25,0	24,7
32		Beniko							
Zeulenroda/	47,0	Bialobrzeskie,	217	196	111	6,7	83,0	28,8	24,1
5		Beniko, Juso							

<u>Fazit:</u> Die Ergebnisse zeigen, dass der Hanf auch unter Praxisbedingungen hohe Erträge erzielen kann und somit für den Landwirt eine interessante Anbaualternative darstellt. Die alleinige Nutzung des Hanfstrohs hat sich dabei bisher immer als vorteilhaft gegenüber einer kombinierten Nutzung von Korn und Stroh erwiesen.

2.5 Energiepflanzen

2.5.1 Energiegetreide

Anbauversuch perennierender Hybridroggen

Versuchsnummer: keine

<u>Versuchsfrage:</u> Ertragsleistung von perennierendem Hybridroggen zur Nutzung als Energiepflanze

Tabelle 2.5.1/1: Ertragsleistung von perennierendem Hybridroggen, Stamm KM 50, im Vergleich zu einjährigem Hybridroggen, Sorte 'Picasso' in Abhängigkeit vom Erntezeitpunkt

VS Dornburg 2003

Sorte	Variante	Ernte- datum	Wuchshöhe (cm)	Lager (1 - 9)	TS-Gehalt (%)		Ertrag t TM/ha)		Ernteverluste Mähdrusch zu GP-Ernte (%)
			, ,	, ,,	, ,	Ganzpflanze	Korn	Stroh	, ,
KM 50	GP-Ernte zur Gelbreife	14.07.	147	3	55,3	133,2			
	GP-Ernte zur Vollreife	22.07.	147	4	73,4	121,4			
	Mähdrusch	22.07.	147	3	67,4	109,5	45,8	63,7	9,4
Picasso	GP-Ernte zur Gelbreife	14.07.	138	1	56,5	145,5			
	GP-Ernte zur Vollreife	22.07.	133	2	88,3	130,7			
	Mähdrusch	22.07.	133	2	83,3	117,5	55,8	61,7	10,5
GD t, 5 %						22,5	8,8	19,9	

Tabelle 2.5.1/2: Ertragsleistung von perennierendem Hybridroggen, Stamm KM 50, im ersten und zweiten Standjahr in Abhängigkeit vom Erntezeitpunkt
VS Dornburg 2004

	V3 Dolliburg 2004							
Standjahr	Variante	Erntedatum	Wuchshöhe	Lager	TS-Gehalt		Ertrag	
			(cm)	(1 - 9)	(%)	(di	t TM/ha)	
						Ganzpflanze	Korn	Stroh
1.	GP-Ernte zur Gelbreife	03.08.	153	8	53,9	140,7		
	GP-Ernte zur Vollreife	11.08.	153	8	61,8	121,6		
	Mähdrusch	11.08.	153	8	72,8	135,7	57,8	77,9
2.	GP-Ernte zur Gelbreife	03.08.	150	8	61,1	132,6		
	GP-Ernte zur Vollreife	11.08.	150	8	64,1	108,2		
	Mähdrusch	11.08.	150	8	74,6	117,0	44,1	73,8
GD t, 5 %						21,4		

Tabelle 2.5.1/3: Ertragsleistung von perennierendem Hybridroggen, Stamm KM 50, im ersten und zweiten Standjahr in Abhängigkeit vom Erntezeitpunkt VS Dornburg 2005

Standjahr	Variante	Erntedatum	Wuchshöhe	Lager	TS-Gehalt		Ertrag	
			(cm)	(1 - 9)	(%)	(c	lt TM/ha)	
						Ganzpflanze	Korn	Stroh
1.0	GP-Ernte zur Gelbreife	28.08.	135	2	61,4	95,4		
	GP-Ernte zur Vollreife	12.08.	135	2	69,2	85,6		
	Mähdrusch	19.08.	136	6	82,8	77,3	35,0	42,3
2.	GP-Ernte zur Gelbreife	28.08.	138	2	61,8	83,7		
	GP-Ernte zur Vollreife	12.08.	137	2	67,1	94,0		
	Mähdrusch	19.08.	139	2	77,0	69,3	40,7	63,7
GD t, 5 %						8,3		

Fazit: Im Ergebnis des Versuches ist festzustellen, dass der perennierende Hybridroggen in ertraglicher Hinsicht nicht überzeugen konnte. Insbesondere im 2. Anbaujahr fiel der Ertrag deutlich ab. Dies ist in der geringen Wiederaustriebsrate der Pflanzen begründet, die im Mittel lediglich 15 % betrug. Ein Teil der ausgefallenen Körner keimte ebenfalls. Dadurch entwickelten sich lückige, ungleichmäßige Bestände mit sehr starkem Unkrautbesatz. Auch bei dem für Energiegetreide wesentlichen Kriterium TS-Gehalt konnte der geprüfte Roggen die Anforderungen nicht erfüllen. Insgesamt ist einzuschätzen, dass der perennierende Hybridroggen ,KM 50' keine Vorteile gegenüber einjährigem Roggen in Hinblick auf die Nutzung als Energiepflanze besitzt.

2.5.2 Großgräser

Ertragsleistung Großgräser

Versuchsnummer: 513 456

<u>Versuchsfrage:</u> Leistungsfähigkeit verschiedener Großgräser (Switchgras, Blaustängelgras, Miscanthus) als Energiepflanzen unter Thüringer Standortbedingungen

Tabelle 2.5.2/1: TM-Ertrag (dt/ha), Stängelzahl pro Pflanze und Pflanzenhöhe (cm) von Großgräsern (Pflanzung 06/94) VS Burkersdorf 1995 bis 2004

TM-Ertrag (dt/ha) Art/Sorte 1996 1997 1998 2001 2002 2003 1995 1999 2000 2004 Panicum Strain C 57,1 112,1 96,5 101,3 107,9 42,2 41,5 29,1 18,3 Andropogon EE 38,7 Lager 24,4 95,2 65,3 80,8 Misc. Silberfeder 111,9 80,9 98,5 65,0 24,0 73,1 115,9 74,7 59,9 126,4 M. Malepartus 41,9 122,9 119,1 127,5 72,1 70,0 42,6 55,0 160,4 M. giganteus 36 60,3 202,1 49,4 167,8 92,0 115,4 99,6 76,3 55,7 108,5 Misc. Goliath 89,8 117,8 68,4 34,5 99,0 55,0 31,6 73,5 Misc. Goliath 78,6 127,2 111,8 78,2 68,9 28,7 63,4 56,2 75,5 30,7 28,7 88,3 Misc. giganteus 16,2 39,8 48,8 67,0 37,0 44,9 51,0 60,2 Misc. gig. Rhiz. 14,8 23,8 47,6 29,8 23,4 31,3 30,1 30,1 Neupflanzung 1997 22,3 M. Goliath 101 24,0 26,2 57,6 31,1 38,7 40,6 Misc. gig. Alant Neupflanzung 1997 18,1 39,8 64,0 47,0 28,9 50,5 35,7

Tabelle 2.5.2/2: TM-Ertrag (dt/ha), Stängelzahl pro Pflanze und Pflanzenhöhe (cm) von Großgräsern (Pflanzung 06/94) VS Friemar 1996 bis 2004

	1141 1990 01	2004							
Art/Sorte					TM-Ertrag (dt/ha)				
	1996	1997	1998	1999	2000	2001	2002	2003	2004
Panicum Strain K	41,3	44,2	89,2	126,5	120,4	104,4	101,6	76,4	77,1
Panicum Strain C	117,5	152,2	124,4	129,6	107,1	101,6	75,2	71,8	80,0
Andropogon 1	87,0	100,0	126,5	126,8	87,0	111,3	99,2	94,0	57,7
Andropogon Sig. EE	79,9	100,9	87,3	145,5	90,3	102,2	96,8	85,6	74,4
Miscanthus Silberfeder	82,3	114,5	136,9	135,2	139,6	156,0	177,2	129,0	158,9
Miscanthus Malepartus	95,4	107,7	134,2	125,2	120,2	127,8	111,3	93,5	120,6
Miscanthus gig. 36	88,9	148,1	137,6	234,0	219,0	245,6	259,2	211,1	228,5
Miscanthus Goliath	94,5	145,6	144,8	165,5	149,8	150,0	143,1	121,8	128,2
Miscanthus Goliath	57,1	79,7	112,1	132,8	158,2	158,9	145,7	126,4	135,0
Miscanthus Giganteus	78,0	134,5	153,6	243,7	252,9	256,7	277,0	216,5	263,9
Misc. sin. 500	Neu	pflanzung	1997	80,3	131,8	147,3	145,1	126,1	145,8
Misc. gig. Alant	Neu	pflanzung	1997	152,7	189,6	209,1	258,2	221,4	263,5

Tabelle 2.5.2/3: TM-Ertrag (dt/ha), Stängelzahl pro Pflanze und Pflanzenhöhe (cm) von Großgräsern (Pflanzung 06/94) VS Kirchengel 1995 bis 2004

	VS Kirchei	1gel 1995 b	IS 2004									
Art/Sorte					TM-E	rtrag						
					(dt	/ha)						
	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004		
Panicum Strain C	25,1	65,8	55,9	60,8	61,2	79,5	67,3	117,2	82,1	87,3		
Panicum Strain A	15,9	20,7	9,4	11,4	13,4	12,4	8,3	14,5	9,5	15,9		
Andropogon 1	12,2	28,2	29,4	Lager	Lager	45,7	63,9	46,1	51,2	-		
Andropogon EE	13,1	25,8	21,8	23,6	Lager	Lager	64,9	52,7	44,5	-		
Misc. Silberfeder	3,6	39,3	41,0	25,2	39,1	62,1	81,5	89,0	87,9	119,4		
M. Malepartus	6,8	34,1	50,6	40,7	41,4	53,3	53,7	62,4	41,2	42,6		
Misc. gig. 36	9,2	46,8	64,6	49,2	85,7	103,9	121,0	146,9	99,0	132,3		
Misc. Goliath	9,9	51,5	76,0	47,0	0	74,0	83,3	76,3	72,0	81,8		
Misc. Goliath	3,7	26,8	44,8	36,4	34,8	47,2	54,2	53,3	50,3	58,2		
Misc. Giganteus	0	31,2	50,5	38,9	65,8	73,9	86,1	104,5	84,7	176,0		
M. Goliath 101	N	Neupflanzung 1997, erste Ernte 2000 3,4 24,5 14,2 18,4 24,7										

Tabelle 2.5.2/4: TM-Ertrag (dt/ha), Stängelzahl pro Pflanze und Pflanzenhöhe (cm) von Großgräsern (Pflanzung 06/94) VF Rohrbach 1995 bis 2004

VI	Konibach	1995 bis 20	J04							
Art/Sorte					TM-E	Ertrag				
					(dt	/ha) ¯				
	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Panicum Strain K	49,6	53,0	146,9	170,2	228,9	252,5	188,9	182,4	116,6	Umbruch
Panicum Strain C	50,4	100,9	176,4	123,2	155,9	149,0	120,6	87,7	75,3	ш
Panicum Strain A	31,1	3,0	36,3	63,5	108,0	140,8	120,7	118,6	61,8	ш
Andropogon 1	37,4	61,6	97,9	84,9	127,4	77,3	129,2	84,1	89,8	u
Andropogon EE	34,2	58,2	100,4	119,2	116,1	80,5	96,5	78,8	72,7	u
Andropogon K	28,0	31,4	79,1	75,0	103,7	77,5	65,2	63,6	64,5	ш
Andropogon P	24,9	27,7	65,2	82,1	86,0	81,9	82,2	62,0	61,3	и
Andropogon 22	3,2	15,3	52,8	51,0	84,6	69,2	71,5	87,1	65,3	ш
Andropogon 41	17,1	46,4	118,3	81,5	88,8	72,1	72,7	77,8	55,8	ш
Misc. Silberfeder	20,7	57,7	118,9	121,9	138,7	144,9	172,6	129,2	119,4	ш
Misc. Malepartus	46,9	78,2	130,8	137,6	143,4	131,7	127,3	88,8	108,4	159,3
Miscanthus Goliath	36,0	64,8	168,6	178,1	204,3	242,8	200,9	198,8	204,2	188,3
Misc. Giganteus	84,9	90,1	236,3	199,2	267,8	280,5	237,0	252,5	176,4	207,4
Misc. Goliath 101	Neu	pflanzung	1997	82,3	165,9	211,6	175,2	149,9	159,1	192,2
Misc. sin. 500	Neupflanzung 1997			72,9	146,7	178,7	148,7	139,4	144,2	176,3
Misc. gig. Alant	Neu	pflanzung	1997	83,2	206,6	233,1	176,1	206,6	148,5	217,1

Tabelle 2.5.2/5: Mineralstoffgehalte ausgewählter Großgräser VS Rohrbach 2003

			,											
Stamm	Ra	Nt	Р	K	Mg	Ca	Cl	S	Corg	Na	Mn	Fe	Cu	Zn
				(% TM)						(n	ng/kg TN	J)		
Panicum C	2,69	0,60	0,06	0,28	0,16	0,30	0,091	0,074	47,9	72,1	36,3	240,0	3,00	7,13
Androp. EE	3,15	0,49	0,05	0,24	0,11	0,30	0,072	0,060	48,0	79,4	57,2	422,5	3,23	11,1
Misc. Gig.	2,65	0,54	0,05	0,52	0,10	0,21	0,362	0,064	47,8	63,1	57,0	177,5	2,38	8,33

Tabelle 2.5.2/6: Mineralstoffgehalte ausgewählter Großgräser VS Friemar 2003 und 2004

			j	114 2004										
							20	03						
Stamm	Ra	Nt	Р	K	Mg	Ca	Cl	S	Corg	Na	Mn	Fe	Cu	Zn
				(% TM)						(n	ng/kg TN	Л)		
Panicum C	2,95	0,53	0,048	0,160	0,180	0,40	0,065	0,065	46,6	63,4	33,0	151,3	3,45	5,13
Androp. EE	3,07	0,32	0,045	0,233	0,103	0,30	0,040	0,043	46,4	78,0	35,6	354,8	3,03	9,45
Misc. Gig.	1,65	0,38	0,033	0,033	0,085	0,12	0,260	0,040	46,9	< 35	32,4	96,0	2,23	3,30
							20	04						
Stamm	Ra	Nt	Р	K	Mg	Ca	Cl	S	Corg	Na	Mn	Fe	Cu	Zn
				(% TM)						(n	ng/kg TN	Л)		
Panicum C	4,01	0,71	0,07	0,194	0,189	0,45	0,030	0,074	47,1	40,5	40,8	164,5	4,33	8,45
Androp. EE	5,49	0,68	0,088	0,331	0,125	0,37	0,047	0,064	46,2	0,064	60,4	531,3	4,25	14,55
Misc. Gig.	2,46	0,51	0,044	0,437	0,100	0,14	0,312	0,049	46,9	< 35	28,5	65,3	2,80	5,28

Tabelle 2.5.2/7: Mineralstoffgehalte ausgewählter Großgräser VS Kirchengel 2003 und 2004

			0 .	,										
							20	003						
Stamm	Ra	Nt	Р	K	Mg	Ca	Cl	S	Corg	Na	Mn	Fe	Cu	Zn
				(% TM)						(n	ng/kg TN	Л)		
Panicum C	3,63	0,52	0,088	0,417	0,129	0,408	0,072	0,076	47,4	112,9	36,8	163,8	4,30	11,4
Misc. Gig.	2,98	0,32	0,080	0,621	0,053	0,213	0,152	0,052	47,5	102,7	40,3	244,2	2,45	13,1
							20	004						
Stamm	Ra	Nt	Р	K	Mg	Ca	Cl	S	Corg	Na	Mn	Fe	Cu	Zn
				(% TM)						(n	ng/kg TN	Л)		
Panicum C	2,55	0,430	0,059	0,187	0,091	0,311	0,026	0,052	47,8	77,0	21,1	94,1	3,70	9,48
Misc. Gig.	2,40 0,348 0,073 0,750 0,045 0,096 0,111 0,051 48,0 39,8 23,5 52,6 2,63 7,05													

<u>Fazit:</u> An vier Thüringer Standorten wurde das Anwuchsverhalten und die Ertragsleistung von drei Arten Großgräsern in verschiedenen Stämmen und Sorten untersucht. Die volle Ertragsleistung wurde bei Miscanthus in Abhängigkeit von Standort und Stamm erst im 3. bis 6. Standjahr erreicht. Miscanthus sin. giganteus und Miscanthus 'Goliath' erzielten jährlich den höchsten Biomassezuwachs, der jedoch in Abhängigkeit von Standort und Vegetationsjahr stark

schwankt. Panicum erreicht nicht die avisierten Erträge von > 20 t TM/ha, mit Ausnahme des Standortes Rohrbach. Die Andropogon-Stämme enttäuschten insgesamt. In Kirchengel (Trockenstandort) und Burkersdorf waren über alle Jahre total unbefriedigende Erträge zu verzeichnen. Die Mineralstoffzusammensetzung bescheinigt allen Großgräsern eine gute Verbrennungseignung.

Anwuchsverhalten Großgräser

Versuchsnummer: 513 456

<u>Versuchsfrage:</u> Anwuchsverhalten und Ertragsleistung von Miscanthus (dänische Stämme)

Tabelle 2.5.2/8: Anwuchsrate und Ertragsleistung von Miscanthus (Pflanzung 06/92)

VF Rohrbach 1993 bis 2003

C:			1 1995 01.									
Stamm	Anwuchs-						Ertraş	3				
	rate (%)			_	_	_	(dt TM/	ha)	_		_	_
	1993	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
2-90	100	30,6	69,7	116,0	87,6	111,9	123,1	166,4	194,6	191,3	185,5	133,2
3-90	87	14,2	84,4	96,0	82,5	101,2	136,2	168,0	151,4	187,9	180,1	193,8
104-88	93	13,5	67,4	124,4	125,4	136,8	155,4	171,4	160,6	160,6	133,1	135,1
101-88	100	17,2	102,4	161,6	144,8	130,9	154,9	153,9	152,0	164,0	151,7	154,6
110-88	100	11,9	83,6	168,8	184,2	248,2	181,7	211,4	235,3	206,2	190,7	171,3
111-88	80	11,9	69,1	101,1	104,9	121,0	145,2	162,8	238,7	138,1	145,8	140,9
Gr. Font.	87	7,3	44,4	123,8	109,7	155,0	162,2	217,5	244,3	233,3	220,3	218,4
Goliat	93	23,9	104,9	75,4	142,9	211,4	201,4	232,1	262,7	238,3	216,5	215,2

Fazit: Nach Totalausfällen bei Pflanzungen Anfang der 90er Jahre wurde mit verschiedenen Miscanthusstämmen 1992 eine Prüfung hinsichtlich des Anwuchsverhaltens begonnen. Bezüglich dieses Prüfmerkmals und frühzeitig hoher Ertragsleistung fielen der dänische Stamm 110-88 sowie die Sorten "Goliat" und "Große Fontaine" positiv auf. Nach fünf Vegetationsjahren erzielen sie über 20 t TM/ha. Nach der Ernte im Winter 2003/2004 wurde der Versuch umgebrochen.

Winterhärte Großgräser

Versuchsnummer: 513 456/2.2

<u>Versuchsfrage:</u> Winterhärte und Ertragsleistung verschiedener Miscanthus-Stämme (Herkunft Fellner)

Tabelle 2.5.2/9: Überwinterungsrate (% Sollpflanzenzahl) von Miscanthus-Stämmen (Pflanzung 06/94) VF Rohrbach 1995 bis 2004

Stamm	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
В	96	100	100	100	100	100	100	100	100	100
B 12	100	100	100	100	100	100	100	100	100	100
C	96	100	100	100	100	100	100	100	100	100
E 400	100	100	100	100	100	100	100	100	100	100
F	100	100	100	100	100	100	100	100	100	100
G	96	96	96	96	96	96	96	96	96	96
T	100	96	100	100	92	96	100	92	92	96
101	96	96	96	96	96	96	96	96	96	96
204	92	96	96	96	96	96	96	96	96	96
212	100	100	100	100		Verwa	ichsen		100	100
901	84	84	83	83	88	88	88	88	88	92
902	92	92	92	92	92	92	92	88	88	92
904	88	88	88	92	96	96	96	96	96	96
905	96	96	96	96	96	96	96	96	96	96
910	100	100	100	100	100	100	96	96	96	96

Tabelle 2.5.2/10: Überwinterungsrate (% Sollpflanzenzahl) von Miscanthus-Stämmen (Pflanzung 06/94) VS Burkersdorf 1996 bis 2004

Stamm	1996	1997	1998	1999	2000	2001	2002	2003	2004
В	92	88	96	96	96	100	96	96	96
B 12	70	62	79	79	79	62	79	79	79
С	70	96	88	88	83	92	88	88	88
E 400	88	88	96	92	92	92	92	92	92
F	42	50	50	50	46	50	50	67	50
G	92	100	100	100	100	100	100	100	100
T	70	66	71	71	71	71	75	75	71
101	88	92	92	92	92	92	92	92	92
204	92	92	92	92	92	100	96	100	96
212	92	92				Verwachsen			
901	92	92	92	88	92	83	92	92	88
902	100	100	88	88	88	88	88	92	88
904	58	58	58	58	58	58	58	58	58
905	88	92	92	92	92	92	92	92	92
910	88	70	71	71	71	71	71	71	71

Tabelle 2.5.2/11: Ertrag (dt TM/ha) von Miscanthus-Stämmen VF Rohrbach 1995 bis 2004

Stamm	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
В	32,0	35,7	158,3	187,5	246,1	268,0	217,4	219,0	170,2	203,2
B 12	46,7	39,5	158,2	162,1	226,3	217,8	196,9	206,3	179,7	200,6
C	69,0	65,3	175,4	161,4	228,1	195,0	169,4	180,7	158,8	180,0
E 400	57,2	64,2	189,4	194,4	234,3	241,5	185,0	191,1	157,1	173,1
F	83,6	77,5	177,0	147,7	212,3	172,8	211,2	211,3	162,7	175,7
G	55,2	90,7	174,3	170,9	225,8	227,6	193,0	206,0	161,0	159,7
Т	59,5	64,8	167,8	166,1	214,9	194,1	182,0	185,0	157,9	160,0
101	78,5	110,9	218,7	168,6	171,0	142,5	121,7	123,4	116,8	122,9
204	24,6	63,9	147,7	130,3	138,2	118,1	103,8	94,2	80,5	82,9
212	34,9	78,4	121,9	137,0	218,7	152,8	123,4	120,1	92,7	108,8
901	29,1	72,0	133,8	141,7	129,0	124,1	109,9	136,3	101,2	129,4
902	21,5	78,0	149,2	166,6	163,4	173,3	150,9	167,1	122,8	134,4
904	36,3	82,9	163,5	176,2	187,9	202,5	161,4	183,7	128,7	174,1
905	25,1	44,9	152,3	139,8	159,4	172,7	136,6	132,4	107,6	161,9
910	51,0	89,6	162,6	176,9	204,2	211,1	168,4	180,6	147,9	149,8

Tabelle 2.5.2/12: Ertrag (dt TM/ha) von Miscanthus-Stämmen VS Burkersdorf 1995 bis 2004

	3 Durkersu	011 1993 015	2004							
Stamm	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
В	36,5	55,1	83,6	105,4	103,2	73,5	70,6	69,6	41,7	38,4
B 12	22,1	7,8	24,1	45,0	66,8	36,5	51,7	49,5	34,0	31,6
C	27,0	15,4	45,6	65,7	85,8	46,5	56,2	50,9	33,5	31,0
E 400	32,0	20,0	57,1	95,0	122,9	73,4	73,5	50,4	35,0	36,0
F	16,7	6,7	20,6	50,8	60,8	34,0	41,6	34,5	22,9	27,8
G	32,6	50,4	97,6	125,3	148,1	87,6	92,6	81,1	57,1	68,3
Т	31,9	12,0	43,9	86,4	103,7	67,2	64,0	56,7	43,2	45,5
101	30,9	75,0	101,8	139,8	127,7	86,9	89,9	76,1	64,2	45,1
204	14,8	36,2	68,6	94,4	93,9	76,1	70,1	63,1	50,6	45,0
212	24,2	52,0	51,2	65,8	87,8	44,4	52,6	39,2	22,6	33,1
901	14,0	53,7	95,1	126,8	131,4	103,6	96,5	99,1	89,6	77,4
902	15,6	47,1	102,0	147,3	138,5	94,1	111,4	86,2	69,4	87,5
904	10,0	24,4	56,9	88,5	76,4	62,1	48,5	55,8	43,0	31,0
905	6,3	4,5	34,4	78,4	87,6	44,0	42,8	52,1	42,2	52,2
910	9,5	16,9	45,0	75,7	75,7	64,5	58,0	52,8	51,8	52,3

Fazit: 1994 wurde mit der Prüfung von Stämmen eines dänischen Anbieters begonnen. Bis auf die Stämme B 12, F, T, 901 und 904 war ein gutes Anwuchs- und Überwinterungsverhalten vorhanden. Ab dem zweiten Vegetationsjahr blieb der Pflanzenbestand weitestgehend konstant.

Am Standort Burkersdorf lagen die Erträge weit unter den Erwartungen.

In Rohrbach lag das Ertragsniveau bedeutend höher. Die Stämme B und B12 konnten ab dem 5. Standjahr Erträge über 20 t/ha wiederholt bestätigen. Weitere 7 Stämme (C, E400, F, G, T, 904, 910) erreichten ebenfalls akzeptable Aufwüchse. Unter den trockneren Bedingungen des Jahres

2003 wurde in allen Beständen eine geringere Wuchshöhe festgestellt, was einen niedrigeren Ertrag zur Folge hatte.

2.5.3 Topinambur

Proberodung Topinambur

Versuchsnummer: 510 860

<u>Versuchsfrage:</u> Bestimmung des optimalen Erntezeitpunktes von Topinambur (Kraut und Knolle) für die Silierung

Tabelle 2.5.3/1: Ertragsdaten von Topinambur zu verschiedenen Erntezeitpunkten VS Dornburg 2003 bis 2005

P.G. Frittermin Sorte Wuchshöhe

DC	-			03 bis 2005		- انتمامه انت			\	
PG		rntetermi	rı	Sorte		Wuchshöhe	!	F	Anzahl Trieb	е
	2003	2004	2005		2003	(cm) 2004	2005	2003	2004	2005
-				1 -1-			,		2004	
1	22.09.	27.09	19.09.	Lola Waldspindel	256	303	257	51	35	17
					304	331	296	32	26	49
				Rote Zonenk. Bianka	246	294	-	41	23	-
					-	-		-	-	-
				Gute Gelbe			286			32
2	29. 09.	04.10.	26.09.	Lola	239	294	267	49	27	21
				Waldspindel	304	323	309	33	46	36
				Rote Zonenk. Bianka	249	294	258	27	39	28
				Gute Gelbe	-	236	- 000	-	26	-
							286			36
3	06.10.	11.10.	04.10.	Lola	243	291	288	48	24	31
				Waldspindel	304	324	312	29	36	33
				Rote Zonenk.	244	294	264	25	46	25
				Bianka	-	230	-	-	18	-
				Gute Gelbe			300		-	48
4	13.10.	18.10.	10.10.	Lola	241	281	273	43	38	23
				Waldspindel	282	322	320	31	27	32
				Rote Zonenk.	219	291	281	29	25	31
				Bianka	-	240	-	-	20	-
 			 	Gute Gelbe			301			26
5	20.10.	25.10.	17.10.	Lola	239	280	285	56	18	18
				Waldspindel	290	305	315	34	53	32
				Rote Zonenk.	230	282	285	27	47	27
				Bianka	-	253	-	-	26	-
 		 	 	Gute Gelbe			299			30
6	28.10.	01.11.	24.10.	Lola	226	278	283	43	20	22
				Waldspindel	282	310	321	38	29	32
				Rote Zonenk.	238	280	290	22	15	29
				Bianka	-	212	-	-	17	-
<u> </u>			L	Gute Gelbe		-	311			28
7	03.11.	08.11.	01.11.	Lola	230	269	279	30	38	24
				Waldspindel	288	303	330	40	32	25
				Rote Zonenk.	206	268	272	53	32	31
				Bianka	-	228	-	-	29	-
L			L	Gute Gelbe			310			27
8	11.11.	15.11.	07.11.	Lola	212	276	274	46	30	21
				Waldspindel	264	288	317	29	33	27
				Rote Zonenk.	211	261	-	25	35	-
				Bianka	-	-	-	-	-	-
		L	L	Gute Gelbe			294	-		27
9	18.11.			Lola	202	-		46		
1				Waldspindel	267	-	-	37	-	-
		L	L	Rote Zonenk.	195		[34		
10	24.11.	[T	Lola	200	-	[39	-	
	i i			Waldspindel	262	-	-	34	-	-
				Rote Zonenk.	200	-	-	32	-	-
				1						

Tabelle 2.5.3/2: Ertragsdaten von Topinamburkraut und -knolle zu verschiedenen Erntezeitpunkten VS Dornburg 2003 bis 2005

	VS		rg 2003 l										
PG	Sorte		(rautertra		TS-	Gehalt Kı	aut		nollenertr		TS-0	Gehalt Kn	iolle
1		(dt TM/ha	ı)		(%)	•	(dt TM/ha)		(%)	.
		2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005
1	Lola	162,6	179,6	75,6	36,8	31,7	29,0	31,5	43,1	17,6	22,7	19,8	24,4
	Waldspindel	180,0	158,1	99,8	41,7	31,7	30,9	59,7	52,2	26,6	28,1	24,0	25,0
	Rote Zonenk.	141,5	133,9	-	37,0	30,7	-	39,9	30,0	29,0	23,5	20,3	-
1	Gute Gelbe			128,6	-		31,1	<u> </u>		-		-	23,8
2	Lola	140,0	150,9	77,5	35,2	31,7	30,4	49,1	44,4	23,3	24,8	19,1	24,2
	Waldspindel	120,0	173,3	100,2	38,4	32,2	34,0	79,6	82,4	23,8	30,5	25,3	26,5
	Rote Zonenk.	143,0	155,1	95,5	37,6	31,1	33,1	53,3	29,9	24,9	26,5	20,7	25,7
	Bianka	-	127,5	-	-	34,1	-	-	75,9	-	-	22,7	-
	Gute Gelbe	. <u> </u>		132,3			33,6			28,5			24,4
3	Lola	136,0	118,2	88,4	36,0	33,1	30,0	60,5	48,2	33,9	22,0	20,8	21,2
	Waldspindel	113,0	109,1	121,5	40,0	35,0	33,0	91,2	76,0	71,7	26,6	27,0	25,2
	Rote Zonenk.	130,0	137,7	60,8	37,7	33,3	27,0	61,3	42,2	27,5	22,8	21,2	20,0
	Bianka	-	51,9	-	-	34,9	-	-	63,9	-	-	27,9	-
	Gute Gelbe			141,1	-		30,0			45,7		-	21,8
4	Lola	129,0	118,9	120,3	36,5	34,4	36,0	713	76,2	42,1	24,0	22,8	22,3
	Waldspindel	107,0	81,4	148,9	42,0	37,8	36,0	90,8	72,7	80,3	29,1	31,3	27,0
	Rote Zonenk.	115,0	106,5	104,0	37,8	37,6	34,0	80,2	50,9	42,0	24,6	22,5	23,3
	Bianka	-	63,4	-	-	44,8	-	-	62,6	-	-	26,8	-
	Gute Gelbe			126,9			32,0			39,6			21,7
5	Lola	125,1	93,4	103,1	36,8	37,5	35,0	91,2	66,2	51,4	23,7	24,6	22,0
	Waldspindel	99,2	96,5	84,1	44,3	41,6	33,0	107,2	108,9	58,0	28,2	31,7	27,3
	Rote Zonenk.	102,0	149,0	84,1	37,9	38,1	28,0	75,2	82,3	57,0	23,5	25,5	22,0
	Bianka	-	75,7	-	-	47,3	-	-	119,1	-	-	28,4	-
	Gute Gelbe			110,7			31,0	<u>-</u>	:	60,4			23,7
6	Lola	80,9	98,5	85,8	44,7	37,0	39,9	92,4	81,3	78,2	24,0	23,1	30,5
	Waldspindel	72,1	79,4	82,5	47,1	43,8	40,5	110,6	86,1	79,5	28,5	30,0	33,2
	Rote Zonenk.	82,4	68,0	85,9	41,6	41,4	36,1	84,7	50,3	79,6	24,9	23,0	30,1
	Binka	-	53,8	-	-	59,4	-	-	60,6	-	-	31,3	-
	Gute Gelbe			133,6			38,6			105,1			29,8
7	Lola	99,8	102,7	67,6	51,2	41,2	37,3	92,7	116,8	82,9	25,2	25,1	26,8
	Waldspindel	73,8	98,6	67,5	54,3	69,6	47,7	105,6	91,7	71,9	27,8	30,2	28,8
	Rote Zonenk.	75,1	85,9	85,1	44,2	52,3	42,3	87,1	76,6	50,3	25,4	27,3	25,3
	Bianka	-	65,2	-	-	63,9		-	75,6	-	-	34,0	-
	Gute Gelbe			82,5		⁻	41,6	-	:	94,9	L		27,4
8	Lola	93,7	64,1	64,4	50,9	39,0	45,5	93,3	90,2	71,7	25,7	23,1	26,9
	Waldspindel	55,4	78,8	75,1	49,0	63,2	63,1	92,0	98,3	68,7	27,8	26,7	30,2
1	Rote Zonenk.	78,3	70,5	-	50,2	42,9	-	74,3	99,0	-	23,8	28,2	-
	Gute Gelbe			79,0		⁻	39,9		:	87,6			26,7
9	Lola	79,0	-	-	55,6	-	-	85,1	-	-	24,6	-	-
	Waldspindel	72,3	-	-	64,0	-	-	112,9	-	-	27,6	-	-
	Rote Zonenk.	70,3			56,2		<i>-</i>	75,3			23,3		
10	Lola	81,7	-	-	60,1	-	-	80,2	-	-	25,7	-	-
	Waldspindel	50,7	-	-	71,6	-	-	110,5	-	-	27,7	-	-
	Rote Zonenk.	58,3	-	-	58,8	-	-	91,8	-		24,5	-	-

Tabelle 2.5.3/3 Inhaltsstoffe (% TM) von Topinamburkraut zu verschiedenen Ernteterminen VS Dornburg 2003 bis 2005

					05 013														
Vari-	Sorte	R	ohascl	1e	Ro	hprote	ein	R	ohfase	er		Rohfet	t	Ges	amtzu	cker	N-fre	ie Extr	aktst.
ante																			
03/04		2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005
- / 1	Lola	-	6,60	n. b.	-	7,9	n. b.	-	4,76	n. b.	-	0,87	n. b.	-	12,4	n. b.	-	60,5	n. b.
	Waldsp.	-	5,82		-	9,85		-	4,71		-	0,75		-	13,3		-	53,9	
	R. Zon.	L	4,70			8,73			3,32	L		0,77	l		16,0			54,4	
2/3	Lola	7,28	5,7	n. b.	4,79	9,44	n. b.	25,3	4,23	n. b.	1,12	0,87	n. b.	16,3	19,4	n. b.	61,5	56,8	п. Ь.
	Waldsp.	6,22	5,27		3,45	10,6		28,6	3,91		1,02	0,54		19,5	10,8		60,7	48,2	
1	R. Zon.	6,29	5,0	L	4,80	8,07	L	19,0	3,55	L	1,12	0,65	l	20,0	12,3	l	68,8	52,6	
5/5	Lola	9,89	5,1	n. b.	3,47	9,71	n. b.	30,0	3,97	n. b.	1,12	0,88	n. b.	3,06	18,8	n. b.	55,5	56,8	п. Б.
	Waldsp.	10,1	5,3		4,14	11,3		38,8	3,94		1,21	1,01		0,74	2,4		45,8	44,3	
	R. Zon.	10,0	6,69		5,51	9,33		28,4	4,23		1,53	1,19		7,45	7,63		54,5	48,2	
10 / 7	Lola	8,18	4,9	n. b.	4,58	10,0	n. b.	28,9	4,12	п. Ь.	1,32	1,22	п. Ь.	16,3	9,48	n. b.	57,0	49,0	n. b.
	Waldsp.	3,56	5,0		6,08	10,6		48,6	3,79		1,13	0,87		9,37	0,76		40,6	37,4	
	R.Zon.	7,38	4,7		4,69	9,28		30,1	3,69		1,43	0,78		21,4	1,87		56,4	41,1	

Tabelle 2.5.3/3 Inhaltsstoffe (% TM) von Topinamburknollen zu verschiedenen Ernteterminen VS Dornburg 2003 bis 2005

				ing zoo															
Vari-	Sorte	R	ohascl	1e	Ro	hprote	ein	R	ohfase	er		Rohfet	t	Ges	amtzu	cker	N-fre	ie Extr	aktst.
ante																			
03/04		2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005	2003	2004	2005
- / 1	Lola	-	6,56	n. b.	-	7,9	n. b.	-	4,76	n. b.	-	0,87	n. b.	-	41,4	n. b.	-	79,9	n. b.
-	Waldsp.	-	5,82		-	9,85		-	4,71		-	0,75		-	27,3		-	78,9	
	R. Zon.		4,66	L	L	8,73			3,32			0,77			40,8			82,5	
2/3	Lola	-	5,7	n. b.	5,37	9,44	n. b.	4,85	4,23	n. b.	0,72	0,87	n. b.	31,7	40,0	n. b.	82,8	79,8	п. Ь.
	Waldsp.	-	5,28		5,51	10,6		4,08	3,91		0,71	0,54		28,9	28,7		84,4	79,6	
	R. Zon.	L	4,96	L	6,12	8,07		3,84	3,55		0,83	0,65		32,9	34,5		83,4	82,8	
5/5	Lola	-	5,14	n. b.	5,89	9,71	n. b.	3,89	3,97	n. b.	0,95	0,88	n. b.	42,3	54,9	n. b.	85,0	80,3	n. b.
	Waldsp.	-	5,3		6,75	11,3		4,50	3,94		0,86	1,01		41,6	43,2		83,7	78,5	
	R. Zon.	<u> </u>	6,69		6,96	9,33		4,50	4,23		0,94	1,19		50,5	39,5		84,1	78,6	
10 / 7	Lola	-	4,89	n. b.	5,01	10,0	n. b.	4,90	4,12	n. b.	1,09	1,22	n. b.	68,7	54,8	n. b.	84,4	79,7	n. b.
	Waldsp.	-	5,0		6,39	10,6		4,44	3,79		0,97	0,87		68,3	50,2		83,7	79,7	
	R.Zon.	-	4,72		5,92	9,28		4,73	3,69		1,08	0,78		66,8	51,9		83,4	81,5	

Fazit: Der höchste Krautertrag von 14 bis 18 t TM/ha ist Ende September zu verzeichnen bei einem TS-Gehalt von 30 bis 33 %. Mit zunehmenden Absterben des Krautes Mitte bis Ende Oktober steigt der TS-Gehalt über 40 % an, der Krautertrag sinkt auf 5 bis 8 t TM/ha. Die im September noch sehr kleinen Knollen erreichen nur 20 bis 40 dt TM/ha. Mit zunehmendem Absterben der oberirdischen Masse erzielen sie im November 80 bis 100 dt TM/ha. Der TS-Gehalt der Knollen liegt bei 20 bis 30 %. Einen optimalen Termin zur Nutzung von Kraut und Knolle gibt es nicht. Als Kompromiss kann Mitte Oktober geerntet werden, bevor durch das Krautabsterben Masse verloren geht und die Knollen schon weitgehend ausgebildet sind.

Die niedrige Sorte 'Bianka' bildet zu wenig Kraut. Die frühreifende 'Waldspindel' kann bei einer gestaffelten Nutzung zuerst geerntet werden, da ihr Kraut als erstes abstirbt.

Herbizidversuch Topinambur (Lückenindikation)

Versuchsnummer: 510 732

Versuchsfrage: Herbizidverträglichkeit von Topinambur

Tabelle 2.5.3/5 Wirkung und Verträglichkeit von Herbiziden in Topinambur VS Dornburg 2005

V3 D01110416 200)										
Versuch: Herbizidverg	leich				Kultur: T	opinambur				
Versuchsort:	Ve	rsuchsstation [Oornburg		Versuchs	sbetreuer:	Frau Ormero	d		
Sorte:	Gι	ite Gelbe			Bodenar	t/-zahl:	Lehm/62			
Vorfrucht:	So	mmergerste			N-Düngı	ung:	145 kg/ha			
Pflanzung:	06	.04./12.05.			Ernte:		-			
Variante	Α	nwendung		Wirkung	gsgrad in '	% (UK = De	ckungsgrad in	%)	Phytotox	
		-			В	onitur: 13.0	5.	,	in %	
Ĺ	l/ha	Datum/ES	POLSS	CHEAL	THLAR	FUMOF	HERBA/SG	GESAMT	,	
1 UK	-	-	11	2	5	2	11	31		
2 Treflan	2,0	05.04/VSE	0	0	60	13	33			
3 SF	3,0	09.05/VA	60	100	80	100	80			
Basta + Stomp SC	3,0	31.05/20								
4 Kontakt 320 SC	2,0	31.05./20	0	0	0	0	0			
5 Callant Sunar	1.0	23.05./22								
5 Gallant Super	1,0	31.05./20					90			
HERBA: VIOSS										

Fazit: Nach der Pflanzung im April entwickelte sich der Topinambur nur sehr zögerlich. Dies lag wahrscheinlich an der kühlen, trockenen Witterung. Nur ganz vereinzelt liefen Pflanzen auf, so dass am 12.05. entschieden wurde, die fehlenden Knollen nachzulegen. Trotzdem blieb es bei der sehr unterschiedlichen Entwicklung der Pflanzen. Durch das Nachpflanzen wurde jedoch der Spritzfilm von Basta zerstört. Die Wirkung war daraufhin nicht ausreichend. Trotz diesen Umstandes war die Wirkung der Spritzfolge in Variante 3 zufriedenstellend. Kontakt 320 SC und Treflan konnten als Solo-Varianten (auch dem langen Zeitraum durch das doppelte Legen geschuldet) nicht überzeugen. Gallant Super wirkte erwartungsgemäß. Phytotoxizität trat an der Kultur nicht auf. Der Versuch sollte im kommenden Jahr wiederholt werden.

2.5.4 Energieholz

Anbauversuch Energieholz

Versuchsnummer: 514 456/1

<u>Versuchsfrage:</u> Eignung schnellwachsender Baumarten als Energiepflanzen

Tabelle 2.5.4/1: TM-Ertrag (dt/ha) verschiedener Energieholzarten und -sorten bei einjähriger Umtriebszeit (Pflanzung 1993),

VS Dornburg 1995 bis 2003

Art/Sorte	1995	1996	1997	1998	1999	2000	2001	2002	2003
Pappel			•		•			•	
Muhle L.	36,4	8,1	22,1	31,2	35,5	26,2	24,7	40,3	33,1
Androsc.	46,0	15,7	10,0	6,4	10,0	8,4	11,0	21,8	15,9
Max 1,3,4	75,8	25,9	53,8	74,5	80,0	77,2	63,2	97,6	91,3
Max 2	50,5	15,5	52,5	50,9	56,3	44,2	38,6	47,6	58,7
Unal	27,7	16,1	57,0	69,0	60,3	30,3	19,8	30,8	14,0
Raspalje	74,0	21,3	9,6	15,7	14,7	10,4	12,1	15,7	20,0
Beaupre	43,2	57,8	108,0	112,4	77,5	21,5	14,1	17,1	5,1
Donk	110,4	65,9	91,6	72,6	39,5	6,6	3,6	12,2	3,5
Weide									
Salix viminalis	68,8	97,5	120,5	100,6	78,8	60,7	33,1	44,2	45,4
Salix alba Barmen	35,3	20,4	45,3	30,6	28,5	26,9	27,4	32,5	38,0

Tabelle 2.5.4/2: TM-Ertrag (dt/ha) verschiedener Energieholzarten und -sorten bei einjähriger Umtriebszeit (Pflanzung 1993),

VS Langenwetzendorf 1995 bis 2003

	- 0		, ,						
Art/Sorte	1995	1996	1997	1998	1999	2000	2001	2002	2003
Pappel									
Muhle L.	109,2	27,2	19,3	32,1	40,0	31,4	49,8	38,2	13,5
Androsc.	116,3	39,0	25,4	45,0	51,8	48,3	57,2	55,8	22,3
Max 1,3,4	125,8	44,2	23,7	92,9	72,3	57,8	81,3	85,9	43,1
Max 2	145,1	41,7	20,1	48,2	55,3	38,7	54,4	55,4	35,0
Unal	19,5	22,8	10,3	28,9	26,9	25,9	25,5	25,1	9,8
Boelare	19,6	10,7	6,5	13,4	21,5	18,1	21,2	27,9	9,8
Beaupre	65,5	49,9	27,4	53,1	45,3	25,9	34,1	37,1	10,1
Donk	67,3	41,2	14,0	27,7	27,1	10,0	25,0	16,0	4,7
Weide									
Salix viminalis	56,5	86,7	47,3	66,8	88,6	61,8	53,6	31,6	23,4
Salix alba Barmen	19,1	15,2	4,8	14,9	21,2	16,0	13,2	6,7	-1)

¹⁾ Prüfglied nicht beerntet, Wuchshöhe 30 bis 50 cm

Tabelle 2.5.4/3: TM-Ertrag (dt/ha) verschiedener Energieholzarten und -sorten bei dreijähriger Umtriebszeit VS Dornburg 1994 bis 2005

	vs Domburg	1994 DIS 2005						
Art/Sorte	1994	- 1996	1997	- 1999	2000	- 2002	2003	- 2005
,	Gesamter-	Ertrag/Jahr	Gesamter-	Ertrag/Jahr	Gesamter-	Ertrag/Jahr	Gesamter-	Ertrag/Jahr
	trag		trag		trag		trag	
Pappel								
Muhle Larsen	222,4	74,1	283,5	94,5	126,4	42,1	279,7	93,2
Androscoggin	147,3	49,1	249,3	83,1	240,7	80,2	312,4	104,1
Max 1,3,4	186,7	62,2	338,5	112,8	405,7	135,2	642,0	214,0
Max 2	163,5	54,5	312,2	104,1	357,0	119,0	538,4	179,5
Unal	67,4	22,5	232,7	77,6	135,5	45,2	1656	55,2
Raspale	189,1	63,0	222,8	74,3	267,8	89,3	416,1	138,7
Boelare		[[-	-		-	
Beaupre	190,0	63,3	422,2	140,7	146,6	48,9	122,5	40,8
Donk	271,6	90,5	464,7	154,9	129,9	43,3	113,1	37,7
Weide								
Salix viminalis	128,1	42,7	322,0	107,3	227,2	75,7	292,8	97,6
Salix alba	81,0	27,0	215,9	72,0	205,6	68,5	327,2	109,1

Tabelle 2.5.4/4 TM-Ertrag (dt/ha) verschiedener Energieholzarten und -sorten bei dreijähriger Umtriebszeit VS Langenwetzendorf 1994 bis 2005

Art/Sorte	1994	- 1996	1997	- 1999	2000	- 2002	2003	- 2005
	Gesamter-	Ertrag/Jahr	Gesamter-	Ertrag/Jahr	Gesamter-	Ertrag/Jahr	Gesamter-	Ertrag/Jahr
	trag		trag		trag		trag	
Pappel								
Muhle Larsen	99,6	33,2	138,3	46,2	139,7	46,6	115,5	38,5
Androscoggin	155,0	51,7	267,2	89,4	249,7	83,2	217,9	72,6
Max 1,3,4	147,1	49,0	297,0	98,5	296,3	98,8	305,9	102,0
Max 2	152,0	50,7	240,8	80,3	266,0	88,7	305,7	101,9
Unal	87,3	29,1	114,4	38,8	106,5	35,5	133,4*	44,5
Raspale				-		-		
Boelare	44,1	14,7	79,0	26,9	109,5	36,5	121,4*	40,5
Beaupre	105,5	35,2	228,2	76,3	169,2	56,4	176,6	58,9
Donk	103,1	34,4	194,6	64,5	193,2	64,4	177,6	59,2
Weide								
Salix viminalis	125,9	42,0	270,1	89,7	257,2	85,7	138,3*	46,1
Salix alba	46,8	15,6	121,8	40,6	167,5	55,8	40,8	13,6

^{*}Mittelwert 3 Wiederholungen

Tabelle 2.5.4/5: TM-Ertrag (dt/ha) verschiedener Energieholzarten und -sorten bei fünfjähriger Umtriebszeit VS Dornburg und VS Langenwetzendorf, 1. Aufwuchs 1994 bis 1998, 2. Aufwuchs 1999 bis 2003

V3 D	offibulg und	V3 Langenwe	tzendon, n. F	turwuchs 199	4 013 1990, 2.	Autwactis 19	199 013 2003			
		Dorr	nburg			Langenw	etzendorf			
Art/Sorte	1994	- 1998	1999	- 2003	1994	- 1998	1999	- 2003		
	Gesamter-	Ertrag/Jahr	Gesamter-	Ertrag/Jahr	Gesamter-	Ertrag/Jahr	Gesamter-	Ertrag/Jahr		
	trag		trag		trag		trag			
Pappel										
Muhle Larsen	122,7	24,5	323,1	64,6	373,4	74,7	522,8	104,6		
Androscoggin	164,9	33,0	538,0	107,6	539,1	107,8	675,7	135,1		
Max 1,3,4	200,7	40,1	643,9	128,8	545,6	109,1	863,5	172,7		
Max 2	200,8	40,2	642,8	128,6	550,1	110,0	807,3	161,5		
Unal	146,4	29,3	388,8	77,8	316,3	63,3	564,0	112,8		
Raspale	223,4	44,7	509,6	101,9	461,0	92,2	469,3	93,9		
Robinia pseudoacacia	734,5	146,9	965,4	193,1		nicht g	geprüft			
Alnus glutinosa		nicht g	geprüft		260,6 52,1 315,0 63,0					
Betula verrucosa	228,7	45,7	204,6	40,9	269,1	53,8	241,9	48,4		

Tabelle 2.5.4/6: Mineralstoffgehalte verschiedener Energieholzarten und -sorten bei fünfjähriger Umtriebszeit VS Dornburg 2003

	VS Dorn	burg 2003									
Art/Sorte	Ra	N _.	Р	K	Mg	Ca	Cl	C	S	Н	Si
			•		•	(% TM)			•	•	•
Pappel											
Muhle L.		0,46	0,071	0,19	0,042	0,50	< 0,001	48,3	0,017	6,38	0,0063
Androscoggin		0,35	0,055	0,15	0,054	0,49	< 0,001	48,6	0,018	6,44	0,0053
Max 1,3,4		0,43	0,088	0,28	0,053	0,76	0,0010	49,0	0,025	6,43	0,0073
Max 2		0,46	0,081	0,26	0,054	0,74	0,0013	48,8	0,025	6,43	0,0160
Unal		0,32	0,060	0,19	0,067	0,68	< 0,001	48,2	0,022	6,38	0,0057
Raspale		0,45	0,068	0,24	0,051	0,60	0,0010	48,5	0,021	6,45	0,0067
Robinia		0,65	0,053	0,20	0,038	0,48	0,0127	48,0	0,039	6,38	0,0067
Betula		0,42	0,056	0,11	0,037	0,34	0,0047	49,3	0,024	6,56	0,0060

Tabelle 2.5.4/7:Mineralstoffgehalte verschiedener Energieholzarten und -sorten bei fünfjähriger Umtriebszeit VS Dornburg 2003

	42 D	ornburg	2003											
Art/Sorte	Na	Cu	Zn	Mn	Fe	Al	Br	Sr	Cr	Hg	As	Cd	РЬ	TI
		-				-	(m	g/kg TM	1)	_				
Pappel														
Muhle L.	< 35	2,5	36,8	9,5	6,7	< 7	< 1	20,9	0,20	0,0030	0,036	0,40	0,11	0,68
Androscoggin	< 35	2,1	24,2	9,4	4,5	< 7	< 1	17,9	0,22	0,0028	0,027	0,15	0,11	0,38
Max 1,3,4	< 35	3,0	38,0	7,9	10,8	< 7	< 1	26,5	0,26	0,0030	0,035	0,30	0,12	0,41
Max 2	< 35	2,9	36,6	12,5	19,2	< 7	< 1	25,7	0,43	0,00332	0,031	0,22	0,13	0,58
Unal	< 35	2,4	25,4	13,8	6,5	< 7	< 1	23,7	0,22	0,0029	0,030	0,27	0,11	0,51
Raspale	< 35	2,4	29,8	10,0	9,9	< 7	< 1	23,8	0,22	0,0036	0,029	0,23	0,13	0,69
Robinia	< 35	2,5	4,3	6,3	8,0	< 7	< 1	21,2	0,26	0,0012	0,026	0,009	0,12	1,62
Betula	35	2,7	42,2	13,1	9,9	< 7	< 1	16,3	0,61	0,0029	0,026	0,041	0,15	1,02

Mineralstoffgehalte verschiedener Energieholzarten und -sorten bei fünfjähriger Umtriebszeit Tabelle 2.5.4/8: VS Langenwetzendorf 2002

	V J Lung	CITTO	2003								
Art/Sorte	Ra	N _.	Р	K	Mg	Ca	Cl	C	S	Н	Si
•			•	•	_	(% TM)		- We	•		•
Pappel											
Muhle L.		0,52	0,084	0,25	0,048	0,40	0,0010	49,0	0,022	6,37	0,0057
Androscoggin		0,41	0,060	0,18	0,059	0,40	0,0010	48,3	0,022	6,39	0,0067
Max 1,3,4		0,59	0,093	0,29	0,051	0,52	0,0023	49,2	0,029	6,36	0,0080
Max 2		0,55	0,091	0,29	0,052	0,61	0,0020	49,0	0,031	6,38	0,0080
Unal		0,38	0,075	0,28	0,071	0,54	0,0013	48,4	0,027	6,34	0,0063
Raspale		0,32	0,064	0,27	0,069	0,50	0,0013	48,3	0,023	6,35	0,0040
Alnus		0,62	0,068	0,23	0,043	0,33	0,0067	49,0	0,036	6,41	0,0090
Betula		0,50	0,056	0,13	0,039	0,28	0,0080	49,4	0,028	6,54	0,0100

Mineralstoffgehalte verschiedener Energieholzarten und -sorten bei fünfjähriger Umtriebszeit Tabelle 2.5.4/9:

	V J La	vs Langeriweizeridori 2003													
Art/Sorte	Na	Cu	Zn	Mn	Fe	Αl	Brl	Sr	Cr	Hg	As	Cd	Pb	TI	
						-	(r	ng/kg T	M)	·	•	-			
Pappel															
Muhle L.	< 35	2,5	41,1	16,5	7,1	< 7	< 1	37,4	0,15	0,0036	0,017	0,31	0,11	0,78	
Androscoggin	< 35	2,1	26,8	22,1	12,7	10	< 1	26,7	0,17	0,0032	0,016	0,24	0,14	0,71	
Max 1,3,4	< 35	2,7	38,2	15,7	14,8	9	< 1	46,9	0,15	0,0029	0,016	0,32	0,16	0,92	
Max 2	< 35	2,9	41,5	16,3	16,5	9	< 1	43,6	0,17	0,0033	0,017	0,30	0,17	0,95	
Unal	35	2,9	32,8	16,4	10,0	13	< 1	39,5	0,17	0,0033	0,015	0,32	0,11	0,98	
Raspale	35	1,9	26,1	11,9	4,8	< 7	< 1	35,6	0,14	0,0034	< 0,015	0,32	0,11	0,71	
Alnus	< 35	4,1	21,8	62,8	22,2	11	< 1	36,0	0,23	0,0029	0,015	0,041	0,44	1,02	
Betula	38	2,8	48,4	41,5	20,1	20	< 1	21,6	0,43	0,0033	0,016	0,062	0,33	1,16	

1993 kam in Dornburg und Langenwetzendorf je ein Versuch mit 8 Pappel- und 2 Weidenklonen Fazit: sowie Robinie, Schwarzerle und Birke zur Anlage, um das Anwuchsverhalten, die Wüchsigkeit, den Biomasseertrag und die Regenerationsfähigkeit im ein-, drei- und fünfjährigen Umtrieb zu ermitteln. Im einjährigen Umtrieb konnte keiner der Klone über Jahre den Zielertrag von 8 t TM/ha erreichen. Der Biomasseaufwuchs ist in den einzelnen Jahren sehr unterschiedlich und teilweise rückläufig, so dass der einjährige Umtrieb 2005 umgebrochen wurde. Beim dreijährigen Umtrieb dagegen übertrafen die Klone ,Max 1, 3, 4' und ,Max 2' bei der 2. bis 4. Ernte in Dornburg und Langenwetzendorf den Zielertrag. Auch 'Androscoggin', 'Raspale' sowie Salix viminalis schnitten gut ab. Die Ernte des fünfjährigen Umtriebes erfolgte erstmalig im März 1999. Die einstämmigen Bäume erreichten Wuchshöhen von durchschnittlich 5,4 m in Dornburg und 6,4 m in Langenwetzendorf. Der jährliche Zuwachs lag bei einigen Pappelklonen in Langenwetzendorf deutlich über dem Zielwert. Der Biomasseaufwuchs der zweiten Ernte des fünfjährigen Umtriebs 2003 war wesentlich höher. Insgesamt schnitt der fünfjährige Umtrieb ertragsmäßig am besten ab. Birke und Schwarzerle hatten auf den Versuchsstandorten zu geringe Zuwachsraten. Insbesondere die Klone ,Max 1, 2, 3 und 4' können aufgrund der bisherigen Ergebnisse für einen Anbau in Kurzumtriebsplantagen empfohlen werden. In Bezug auf die Inhaltsstoffzusammensetzung weisen Pappeln und Weiden eine gute Verbrennungseignung auf.

Anbauversuch Energieholz

Versuchsnummer: 514 456/2

Versuchsfrage: Eignung schnellwachsender Baumarten als Energiepflanzen

Tabelle 2.5.4/10: Ertrag schnellwachsender Energieholzarten bei dreijähriger Umtriebszeit (Pflanzung 1995)
VS Bad Salzungen, 1. Aufwuchs 1995 bis 1998, 2. Aufwuchs 1999 bis 2001 und 3. Aufwuchs 2002 bis 2004

		, , , , , , , , , , , , , , , , , , , ,	, ,,,	,,,		
Art/Stamm		Ertrag			Ertrag/Jahr	
		(dt TM/ha)			(dt TM/ha*a)	
	1998	2001	2004	1995 bis 1998	1999 bis 2001	2002 bis 2004
Pappel						
Max 1	233	330	354	77,7	110,0	118
Max 3	242	326	393	80,7	108,7	131
Androscoggin	193	296	312	64,3	98,7	104
NE 42	201	343	307	67,0	114,0	102
Schwarza	125	292	288	41,7	97,3	96
J 105	223	229	297	74,3	76,3	99
Weide `Tora`	231	487	490	77,0	162,3	163

Tabelle 2.5.4/11: Mineralstoffgehalte schnellwachsender Energieholzarten bei dreijähriger Umtriebszeit

	۷٥ ۵	au Saizu	ingen 200	<u>'4</u>											
	Ra	Ν	Р	K	Mg	Ca	Cl	S	С	Н	Na				
						(% 7	ГМ)								
Pappel															
Мах 1	2,4	0,70	0,10	0,35	0,057	0,59	0,0032	0,032	49,4	6,4	38,0				
Max 3	2,2	0,72	0,11	0,35	0,059	0,52	0,0027	0,030	49,2	6,4	37,7				
Androscoggin	1,6	0,53	0,08	0,24	0,059	0,38	0,0016	0,026	49,0	6,4	38,0				
NE 42	1,6	0,54	0,08	0,23	0,065	0,40	0,0023	0,026	49,1	6,3	47,0				
Schwarza	2,2	0,559	0,11	0,43	0,079	0,48	0,0043	0,036	48,6	6,4	42,3				
J 105	2,6	0,73	0,11	0,39	0,057	0,66	0,0029	0,036	49,3	6,4	39,3				
Weide `Tora`	1,6	0,39	0,09	0,22	0,042	0,41	0,0063	0,029	48,8	6,4	63,3				

Tabelle 2.5.4/12: Mineralstoffgehalte schnellwachsender Energieholzarten bei dreijähriger Umtriebszeit VS Bad Salzungen 2004

		Jaizangen								
	Cd	Pb	TI	Hg	As	Cr	Cu	Zn	Mn	Fe
			•	•	(mg/k	g TM)	•	•		
Pappel										
Max 1	0,32	0,14	0,0012	0,0029	0,029	0,43	0,43	46,4	18,0	16,0
Max 3	0,24	0,12	0,0008	0,0027	0,029	0,39	0,39	45,3	16,4	15,3
Androscoggin	0,29	0,14	0,0006	0,0026	0,033	0,39	0,39	43,0	30,8	15,0
NE 42	0,26	0,13	0,0007	0,0029	0,028	0,38	0,38	43,6	28,5	13,6
Schwarza	0,38	0,12	0,0015	0,0030	0,032	0,26	0,26	40,6	27,2	12,8
J 105	0,33	0,14	0,0009	0,0040	0,023	0,32	0,31	48,8	17,2	18,1
Weide `Tora`	0,63	0,09	0,0005	0,0022	0,021	0,25	0,25	57,2	57,3	9,7

Fazit: In Bad Salzungen wurde ein höherer jährlicher Biomassezuwachs erreicht als in Dornburg und Langenwetzendorf. Die 'Max-Klone' konnten sich als die ertragreichsten bestätigen. Die Weide 'Tora' mit 4 bis 7 kräftigen Trieben erreichte noch höhere jährliche Zuwachsraten von 16 t TM/ha.

Anbauversuch Energieholz

<u>Versuchsfrage:</u> Ertrag von Energieholz auf schwermetallbelasteten Flächen

Tabelle 2.5.4/13: Ertrag schnellwachsender Energieholzarten bei dreijähriger Umtriebszeit auf schwermetallbelasteten Flächen (Pflanzung 2002)

Versuchsnummer:

514 482

Hainichen. 1. Aufwuchs 2002 bis 2004

Art/Stamm	Anwuchsrate und jährlicher Rioma	assezuwachs, Aufwuchs 2002 - 2004
AityStamm	Anwachsrate (%)	Ertrag/Jahr (dt TM/ha*a)
Populus		
Max 1	79,5	85,2
Max 3	82,6	97,0
J 105	81,3	73,2
Androscoggin	75,0	65,8
Beaupre	75,8	65,6
Salix viminalis	29,4	41,2

Tabelle 2.5.4/14: Mineralstoffgehalte schnellwachsender Energieholzarten bei dreijähriger Umtriebszeit auf schwermetallbelasteten Flächen

Hainichen 2004 Ra Ν Mg Ca Cl Na (% TM) Populus Max 1 2,13 0,70 0,11 0,36 0,074 0,59 0,0021 0,045 6,54 < <u>35</u> 0,012 49,4 Max 3 6,58 0,067 1,83 0,0015 0,008 0,77 0,11 0,31 0,45 0,042 49,3 < <u>35</u> 6,62 0,11 J 105 1,91 0,76 0,35 0,064 0,49 0,020 0,044 49,4 < 35 0,007 0,08 Androsc. 48,4 6,60 1,54 0,55 0,26 0,074 0,39 0,0015 0,036 < <u>35</u> 0,013 6,53 Beaupre 0,08 1,81 0,0037 0,50 0,073 0,030 48,6 < 35 0,29 0,47 0,007 Salix vim. 0,09 6,78 <<u>35</u> 0,44 0,0041 0.007 1,49 0,72 0,20 0,071 0,042 49,4

Tabelle 2.5.4/15: Mineralstoffgehalte schnellwachsender Energieholzarten bei dreijähriger Umtriebszeit auf schwermetallbelasteten Flächen
Hainichen 2004

		Паппспе	11 2004										
	Cu	Mn	Zn	Fe	Br	Al	Sr	Cr	Hg	As	Cd	Pb	Tl
			·		-		(mg/kg	TM)	·	·	·		•
Populus													
Max 1	3,7	9,6	58,3	18,0	< 1	7	33,7	0,58	0,0036	0,015	25,8	0,19	0,0017
Max 3	3,5	8,0	53,0	13,9	< 1	< 7	28,5	0,69	0,0029	0,018	26,2	0,14	0,0018
J 105	3,9	7,8	55,2	11,1	< 1	< 7	33,3	0,29	0,0032	0,020	29,9	0,15	0,0017
Androsc.	3,3	9,6	41,1	17,8	< 1	20	27,9	0,70	0,0033	0,019	61,2	0,16	0,0014
Beaupre	3,5	7,8	28,3	13,2	< 1	< 7	31,3	0,62	0,0029	< 0,015	31,2	0,11	0,0013
Salix vim.	2,8	17,0	43,3	14,3	< 1	< 7	24,7	0,46	0,0022	< 0,015	39,9	0,12	0,0012

<u>Fazit:</u> Die Weide musste aufgrund der sehr niedrigen Bestandesdichte in zwei von vier Parzellen umgebrochen werden. Die zwei Ernteparzellen hatten nur einen Bestand von 30 % der Sollpflanzenzahl, demgegenüber die Pappeln zur Ernte ca. 80 % aufwiesen. Die vielen dünnen Triebe der Weide ließen sich sehr schwer ernten. Die Pappeln erreichten im ersten Umtrieb einen jährlichen Zuwachs von 65 bis 97 dt TM/ha.

Auf der mit Cd verseuchten Fläche beträgt der Cd-Gehalt des Erntegutes das 100fache gegenüber unbelasteten Flächen.

Anwuchsrate von Energieholz in Abhängigkeit von Pflanztermin und Lagerung

Versuchsnummer:

514 481

Anbauversuch Energieholz

Versuchsfrage:

Tabelle 2.5.4/16: Anwuchsrate von Energieholz in Abhängigkeit von Pflanztermin und Lagerung, Bonitur am 14. Juni 2005 VS Dornburg 2005

Lagerung / Art, Sorte	Pflanzenbestand (%)	Pflanzen >10 cm (%)	Pflanzen >20cm (%)
Schneiden und Stecken im Januar			
Populus: Androscoggin	94	76	18
Populus: Max 2	100	82	6
Salix viminalis	100	100	100
Schneiden im Januar, Bodeneinschlag, Stec	ken im März		
Populus: Androscoggin	100	76	35
Populus: Max 2	100	100	59
Salix viminalis	100	100	88
Schneiden im Januar, Kellerlager, Stecken ir	n März		
Populus: Androscoggin	0	0	0
Populus: Max 2	35	0	0
Salix viminalis	100	100	76
Schneiden im März, Stecken im März	<u>.</u>		
Populus: Androscoggin	100	94	29
Populus: Max 2	100	76	24
Salix viminalis	100	100	47

Fazit: Am schlechtesten schnitt die Variante Kellerlagerung ab, was in den ungünstigen Bedingungen bei der Lagerung zu begründen ist. Der Kellerraum war zu warm und zu trocken. Die anderen drei Varianten zeigten sehr gute Anwuchsraten. Die im Boden eingeschlagenen und im März

2.5.5 Energiepflanzen zur Biogasgewinnung

Anbauversuch Energiepflanzen

Versuchsnummer: 500 760

Versuchsfrage: Eignung verschiedener Energiepflanzen zur Biogasgewinnung

Tabelle 2.5.5/1: TM-Ertrag unterschiedlicher Energiepflanzen in Abhängigkeit vom Erntetermin VS Dornburg und VS Heßberg 2004 und 2005, VS Burkersdorf 2005

Art/Sorte	Probe-		<u> </u>	Erntetermi	n				M-Ertra		
	ernte	_				1 5 1 1 6	_		t TM/h		l n ı
			iburg	Heßb		Burkersdorf		burg		berg	Burk.
1 / 1/1 - 1-		2004	2005	2004	2005	2005	2004	2005	2004	2005	2005
Luzerne-/ Kleegras *	1.	26.07.	02.06.	09.08.	02.06.	Ansaatjahr	93,3	76,0	87,2	64,0	-
		30.08.	13.07.	10.09.	26.07.	Keine Ernte	45,7	52,4	84,3	67,3	
		06.07	19.08.		13.10.			37,9	07.0	27,0	{
	2.	26.07.	02.06.	09.08.	02.06.		93,3	76,0	87,2	62,2	-
		20.09.	10.08.	13.10.	10.08.		39,6	74,0	100,4	58,4	
		26.07	13.10.		13.10. 02.06.			26,7		14,4	{
	3.	26.07.	-	-			93,3	-	-	57,0	-
Topinambur	1.	13.10. 30.08.	10.10.		01.09.	10.00	43,4	12,1		52,1	25.2
einjährig, Knolle						19.09.	15,4		-		25,3
emjanng, knone	2.	20.09.	10.10.			19.09.	22,5	16,9	-		<u>57,7</u>
	<u> 3</u> .	12.10.	10.10.			19.09.	65,3	28,3	}̄		76,7
T:	4.	0	10.10.	-	-	-	-	59,4	-	-	
Topinambur	1	30.08.	24.08.			09.09.	139,3	96,0			89,7
einjährig, Kraut	2.	20.09.	07.09.			04.10.	170,5	125,1	-		101,8
	3	12.10.	21.09.	:		18.10	135,3	144,2			86,9
	4.	-	10.10.	-	-	-	-	127,0	-	-	-
Topinambur	1.	30.08.	25.08.	20.09.	15.09.	L	134,4	162,8	125,0	232,8	<u>-</u> -
mehrjährig, Kraut	2.	20.09.	07.09.	04.10.	29.09.		132,3	147,6	96,3	187,6	{ = =
	3.	12.10.	13.09.	25.10.	11.10.	-	85,1	170,3	80,1	270,5	-
Durchwachsene	1.		25.08.		15.09.			188,6		184,3	_
Silphie	2.		07.09.		28.09.			228,9	<u> </u>	139,2	<u> </u>
	3.	-	13.09.	-	11.10	-	-	204,5	-	176,0	-
Sudangras ,Susu'	1.	16.09.	24.08.	11.10.	26.09.	08.09.	114,2	131,2	86,2	147,3	48,7
	2.	13.10.	07.09.	25.10.	11.10.	04.10	132,1	186,3	88,3	159,7	80,3
	3.	28.10.	21.09.	-	17.10.	18.10.	106,5	170,1	-	157,7	100,6
Zuckerhirse	1.	16.09.	24.08.	:		08.09.	157,7	115,7			52,2
,SuperSile 20'	2.	13.10.	07.09.			04.10	145,3	175,8			88,4
	3.	28.10.	21.09.	-	-	18.10.	121,1	170,8	-	-	110,0
Zuckerhirse ,SS 15'	1.	-	24.08.	-	-	-	-	95,2	-	-	-
Zuckerhirse ,SS 18'	2.	-	07.09.	-	-	-	-	219,2	-	-	-
Zuckerhirse	1.	16.09.	24.08.	-	-	08.09.	121,2	80,4	-	-	41,7
,Friggo'	2.	13.10.	07.09.	-		04.10	116,5	94,0		-	49,6
	3.	28.10.	21.09.	-	-	18.10.	101,3	87,8		-	69,8
Mais ,Doge'	1.	16.09.	24.08.	11.10.	06.10.	08.09.	183,9	146,6	117,2	133,6	100,4
-	2.	13.10.	07.09.	04.11.	17.10	04.10	131,4	206,1	102,3	134,4	123,7
	3.	28.10.	10.10.			18.10.	128,5	226,7	i		153,1
Mais ,PR38F53'	1.	16.09.	24.08.	11.10.	06.10.	08.09.	131,4	173,0	121,4	168,9	80,1
	2.	13.10.	07.09.	04.11.	17.10	04.10		183,0	115,0	153,8	104,9
	3.	28.10.	13.09.			18.10.	-	170,2			127,6
GD t, 5 %	J.		<i>y - y</i> .			121	n. b.	42,2	n. b.	40,7	37,6
* Dornburg und Burke	1 (1	· .	1 01 1/1		1	1	····		•	T - 1/	21,1-

^{*} Dornburg und Burkersdorf Luzernegras, Heßberg Kleegras

Tabelle 2.5.5/2: TS- Gehalt unterschiedlicher Energiepflanzen in Abhängigkeit vom Erntetermin VS Dornburg und VS Heßberg 2004 und 2005, VS Burkersdorf 2005

Art/Sorte	Probeernte			rntetermin	Barkersaori	200)		7	ΓS-Geha	lt	
				•					(%)		
		Dorr	burg	Heß	berg	Burk.		burg		berg	Burk.
		2004	2005	2004	2005	2005	2004	2005	2004	2005	2005
Luzerne-/ Kleegras *	1.	26.07.	02.06.	09.08.	02.06.	Ansaat-	19,3	23,5	19,9	16,2	-
		30.08.	13.07.	10.09.	26.07.	jahr	23,4	25,1	27,8	25,6	
			19.08.		13.10.			31,3		24,6	<u> </u>
	2	26.07.	02.06.	09.08.	02.06.		19,3	23,5	19,9	15,7	-
		20.09.	10.08.	13.10.	10.08.		26,4	35,1	21,9	28,3	
			13.10.		13.10.			30,9		24,1	
	3⋅	26.07.	-	-	02.06.		19,3	-	-	14,9	-
		13.10.			01.09.		29,6			43,6	
Topinambur	1.	30.08.	10.10.			19.09.	24,0	23,6			21,2
einjährig, Knolle	2	20.09.	10.10.	<u> </u>		19.09.	23,0	23,8	<u> </u>		22,3
	3.	12.10.	10.10.			19.09.	23,2	24,3		-	25,1
	4.	-	10.10.	-	-	-	-	24,6	-	-	-
Topinambur	1.	30.08.	24.08.			09.09.	29,5	18,0		-	27,6
einjährig, Kraut	2.	20.09.	07.09.			04.10.	35,2	22,9		-	28,3
	3.	12.10.	21.09.			18.10	26,0	27,2		-	31,3
	4.	-	10.10.	-	-	-	-	28,7	-	-	
Topinambur	1.	30.08.	25.08.	20.09.	15.09.	-	24,7	35,4	22,6	31,1	-
mehrjährig, Kraut	2.	20.09.	07.09.	04.10.	29.09.		33,5	37,4	22,3	31,0	
-	3.	12.10.	13.09.	25.10.	11.10.	-	38,8	41,9	27,6	33,5	
Durchwachsene	1.	-	25.08.	-	15.09.	-	-	25,0	-	22,8	-
Silphie	2.	-	07.09.		28.09.		-	30,9		25,0	[
·	3.	-	13.09.		11.10		-	27,6	-	31,5	[·
Sudangras	1.	16.09.	24.08.	11.10.	26.09.	08.09.	24,6	22,9	18,6	21,8	21,6
,Susu'	2.	13.10.	07.09.	25.10.	11.10.	04.10	28,2	32,4	19,7	24,1	25,6
,	3.	28.10.	21.09.		17.10.	18.10.	28,4	28,0		28,3	29,5
Zuckerhirse	1.	16.09.	24.08.	-	-	08.09.	26,2	26,0	-	-	19,1
,SuperSile 20'	2.	13.10.	07.09.		-	04.10	29,4	26,0		-	20,8
, 1	3.	28.10.	21.09.		-	18.10.	29,4	23,4		-	25,5
Zuckerhirse ,SS 15'	1.		24.08.	_	_	-		19,2		-	
Zuckerhirse ,SS 18'	2.	_	07.09.	-	_	-		30,6		-	_
Zuckerhirse	1.	16.09.	24.08.	_	_	08.09.	26,0	22,5	-	-	25,7
,Friggo'	2.	13.10.	07.09.			04.10	30,0	24,7			23,8
,66~	3.	28.10.	21.09.			18.10.	32,4	25,4			27,4
Mais ,Doge'	1.	16.09.	24.08.	11.10.	06.10.	08.09.	28,9	18,3	16,0	18,9	17,6
	2.	13.10.	07.09.	04.11.	17.10	04.10	25,2	22,7	19,4	17,7	16,0
		28.10.	10.10.		'2.'\	18.10.			<u>'</u> '2 <u>'</u> 4	_ '/_/	. – – – .
Mais ,PR38F53'	3. 1.	16.09.		11.10.	06.10.	08.09.	27,5	25,2 28,2	20,2	26,5	21,2 18,8
IVIAIS ,F 1301 53			24.08.				25,4		((
	2.	13.10.	07.09.	04.11.	17.10	04.10	26,3	29,7	25,0	30,1	21,8
	3.	28.10.	13.09.	-	-	18.10.	27,2	28,4	-	-	28,2

^{*} Dornburg und Burkersdorf Luzernegras, Heßberg Kleegras

Tabelle 2.5.5/3: Wuchshöhe (cm) unterschiedlicher Energiepflanzen in Abhängigkeit vom Erntetermin VS Dornburg und VS Heßberg 2004 und 2005. VS Burkersdorf 2005.

Art/Sorte	Dornburg und Probeernte	VSTICIBLE		rntetermin	Burkersdori	2005		W	'uchshö	he	
,									(cm)		
		Dorr	iburg	Heß	berg	Burk.	Dorr	burg	,	berg	Burk.
		2004	2005	2004	2005	2005	2004	2005	2004	2005	2005
Topinambur	1.	30.08.	24.08.	-	-	09.09.	-	195	-	-	160
einjährig, Kraut	2.	20.09.	07.09.			04.10.	286	248			187
	3.	12.10.	21.09.			18.10	289	274		-	198
	4.	-	10.10.	-	-	-	-	298	-	-	-
Topinambur	1.	30.08.	25.08.	20.09.	15.09.			200	243	256	
mehrjährig, Kraut	2.	20.09.	07.09.	04.10.	29.09.		256	226	263	274	
	3.	12.10.	13.09.	25.10.	11.10.	-	265	211	264	281	-
Durchwachsene	1.		25.08.		15.09.			248		177	
Silphie	2.		07.09.		28.09.			255		177	
	3.	-	13.09.	-	11.10	-	-	259	-	180	-
Sudangras	1.	16.09.	24.08.	11.10.	26.09.	08.09.	194	209	179	283	116
,Susu'	2.	13.10.	07.09.	25.10.	11.10.	04.10	211	225	186	262	154
	3.	28.10.	21.09.	-	17.10.	18.10.	210	242	-	259	173
Zuckerhirse	1.	16.09.	24.08.			08.09.	172	202		-	88
,SuperSile 20'	2.	13.10.	07.09.			04.10	195	202		-	143
	3.	28.10.	21.09.	-	-	18.10.	186	224	-	-	142
Zuckerhirse ,SS 15'	1.	-	24.08.		-	-	-	130	-	-	-
Zuckerhirse ,SS 18'	2.	-	07.09.		-	-	-	179	-	-	-
Zuckerhirse	1.	16.09.	24.08.			08.09.	104	101			74
,Friggo'	2.	13.10.	07.09.			04.10	106	106			84
	3.	28.10.	21.09.	-	-	18.10.	105	105	-	-	86
Mais ,Doge'	1.	16.09.	24.08.	11.10.	06.10.	08.09.	298	261	336	313	229
	2.	13.10.	07.09.	04.11.	17.10	04.10	309	306	333	316	247
	3.	28.10.	10.10.	-	-	18.10.	308	325	-	-	262
Mais ,PR38F53'	1.	16.09.	24.08.	11.10.	06.10.	08.09.	268	262	286	247	209
	2.	13.10.	07.09.	04.11.	17.10	04.10	279	249	289	249	207
	3.	Wildsch.	13.09.	-	-	18.10.	-	250	-	-	210

^{*} Dornburg und Burkersdorf Luzernegras, Heßberg Kleegras

<u>Fazit:</u> Die bisherigen Ergebnisse deuten darauf hin, dass Sudangras, ertragsreiche Zuckerhirsesorten, Topinambur und Durchwachsende Silphie in der Ackerebene durchaus eine Alternative zum Silomais als Koferment in der Biogasanlage darstellen können. Insbesondere die beiden letztgenannten Arten scheinen auch für einen Anbau in Vorgebirgslagen geeignet zu sein.

Herbizidversuch Durchwachsene Silphie (Lückenindikation) Versuchsnummer: 639 732

Versuchsfrage: Herbizidverträglichkeit von Durchwachsender Silphie

Tabelle 2.5.5/4: Wirkung und Verträglichkeit von Herbiziden in Durchwachsener Silphie

Versuch: Herbizidvergleid	ch			Kultur: S	Silphium	-			
Versuchsort:	VS Do	rnburg		Versuchs	sbetreuer:	Frau	Ormerod		
Sorte:	Fa. Jeli	tto		Bodenar	t/-zahl:	Lehm	1/48		
Vorfrucht:	Brache	!		N-Düngı	ung:	-			
Pflanzung:	06.04.	2005		Ernte:		-			
Variante	Ar	nwendung	\	Wirkungsgr	ad in % (l	JK = Deckun	gsgrad in	%)	Phytotox
					3onitur:31	.05. und 13.0	5.	,	in %
	l/ha	Datum/ES	CHEAL	POLLA	THLAR	CABPB/SG	HERBA	GESAMT	
1 UK			12	2	2		4	20	
	-	-	21	5	5	33	6	70	
2 Treflan	2,0	05.04./VSE	48	72	0	0	50		
			10	88	10		25		
3 Kontakt 320 SC	1,5	1905./ES 14	2	40	60		38		70/25 AH
			0	15	15		60		
4 SF Treflan + Stomp SC	2,0	05.04/VSE	92	98	100	93	95		
	3,0	19.05./ES 14	95	93	95		90		
5 Gallant Super	1,0	31.05./ES 20				85			
HERBA: GALAP, VERSS, UI	RTUR, E	UPSS			•		•		

Fazit: Nach der Pflanzung entwickelte sich in allen Parzellen ein sehr starker Gänsedistel- und Ackerkratzdistelbesatz. Darum wurde im Streichverfahren eine generelle Roundup-Behandlung durchgeführt. In die Parzellen 5 b und 5 d wurde zur Wirkungsbeurteilung Sommergerste eingesät. Die
Pflanzen entwickelten sich im Allgemeinen gut. Es gab witterungsbedingt nur geringe Ausfälle.
Am 06.05. wurden die Fehlstellen nachgepflanzt. Die einzelnen Solo-Varianten zeigten entsprechend ihrem Wirkungsspektrum eine ausreichende Wirkung, reichte jedoch nicht für eine Reinhaltung der Bestände aus. In Variante 4 kamen in Spritzfolge Treflan als Vorsaateinarbeitungsund Stomp SC als Nachauflaufvariante zum Einsatz. Das Ergebnis kann als gut bis sehr gut und
als durchaus praxistauglich eingeschätzt werden. Eine leichte Phytotoxizität bei Kontakt 320 SC
mit Blattaufhellungen hatte sich schnell überwachsen.

Anbauversuch Energiepflanzen

Versuchsnummer: 500 783

Versuchsfrage: Ertrag von Sudangras als Zweitfrucht im Vergleich zu Mais

 Tabelle 2.5.5/5:
 Wuchshöhe, TM-Ertrag und TS-Gehalt von Sudangras und Mais in Haupt- und Zweitfruchtstellung

VS Dornburg, VS Kirchengel und VS Heßberg 2005

Prüfglied		Wuchshöhe		0.000.8200	TM-Ertrag			TS-Gehalt	
		(cm)			(dt/ha)			(%)	
	Dornburg	Kirchengel	Heßberg	Dornburg	Kirchengel	Heßberg	Dornburg	Kirchengel	Heßberg
WZF Futterroggen	111	-	65	62,6	84,4	31,6	16,6	35,6	17,1
HF Sudangras	231	230	248	121,0	69,5	130,1	22,9	26,8	22,7
WZF Futterroggen	111	-	65	62,6	79,3	31,7	16,6	35,0	16,8
HF Mais	211	187	206	148,8	101,0	132,5	28,6	30,6	33,8
WZF Landsberger 1)	88	-	90	79,3	24,8	51,7	16,5	19,6	19,6
HF Sudangras	228	238	250	107,6	127,0	147,3	23,0	28,6	23,6
WZF Landsberger 1)	88	-	86	79,3	27,1	48,2	16,5	19,1	20,1
HF Mais	202	186	228	146,2	77,0	135,4	28,5	30,4	30,0
HF Sudangras	246	-	260	139,4	134,3	133,0	23,6	25,1	23,0
HF Mais	209	244	211	165,1	103,6	130,7	30,9	30,2	34,3
GD t, 5 % WZF	12,4	-	12,5	11,2	29,7	10,1	0,8	n. b.	1,5
HF	18,2	26,7	20,9	20,6	25,9	10,7	3,3	n. b.	5,2

¹⁾ Heßberg Futterroggen, später Erntetermin

<u>Fazit:</u> Während am Standort Dornburg der Mais sowohl in Hauptfrucht- als auch in Zweitfruchtstellung dem Sudangras überlegen war, lagen die Erträge von Sudangras und Mais in Heßberg auf etwa dem gleichen Niveau. Die Ergebnisse in Kirchengel folgten keinem Schema. Für grundlegende Aussagen ist eine Weiterführung des Versuches dringend erforderlich.

Anbauversuch Energiepflanzen

Versuchsnummer:

500 784

Versuchsfrage:

Fruchtfolgeversuch - Welche Energieerträge können unter verschiedenen Standortver-

hältnissen realisiert werden?

Straußfurt: extrem trockener Standort → Anbau Luzernegras

Heßberg: feuchter Standort \rightarrow Anbau Kleegras

 Tabelle 2.5.5/6:
 Wuchshöhe, TM-Ertrag und TS-Gehalt der Deckfrucht Sommergerste und Hafer

VF Straußfurt und VS Heßberg 2005

Prüfglied	Fruchtart	Wuc	hshöhe	TM-	Ertrag	TS-0	Gehalt
		(0	cm)	(di	t/ha)	((%)
		Heßberg	Straußfurt	Heßberg	Straußfurt	Heßberg	Straußfurt
1	DF Sommergerste	-	76,00	-	73,4	-	39,8
2	DF Sommergerste	-	75,75	-	70,2	-	40,9
3	DF Sommergerste	71,75	-	79,30	-	34,40	-
4	DF Sommergerste	64,75	-	59,30	-	33,00	-
5	DF Sommergerste	69,00	77,00	87,80	69,4	35,60	41,7
6	DF Sommergerste	63,75	77,25	60,20	66,2	33,70	39,7
7	Hafer	85,25	84,25	90,00	82,5	40,40	36,3
8	Hafer	103,00	83,25	94,00	84,8	34,60	39,4

Tabelle 2.5.5/7: Wuchshöhe, TM-Ertrag und TS-Gehalt der Untersaat Kleegras und Ackergras

VS Heßberg 2005

Prüfglied	Fruchtart	Wuchshöhe	TM-Ertrag (dt/ha)	TS-Gehalt
		(cm)	(dt/ha)	(%)
3	Kleegras	33,0	26,4	23,8
4	Kleegras	45,5	25,3	21,5
5	Ackergras	32,3	22,6	21,3
6	Ackergras	34,3	23,3	22,0

Fazit: In der Energiefruchtfolge erreichten die Hafervarianten 7 und 8 an beiden Standorten höhere Biomasseerträge als die Varianten mit Sommergerste. Während in Heßberg die Untersaaten Klee- und Ackergras bereits im Ansaatjahr einen ansprechenden Ertrag erreichten, wurde in Straußfurt aufgrund der geringen Wuchshöhe auf einen Schnitt bei Luzernegras und Ackergras verzichtet.

Anbauversuch Energiepflanzen

Versuchsnummer:

500 784 92

<u>Versuchsfrage:</u> Entwicklung und Optimierung von standortangepassten Anbausystemen für Energiepflanzen im Fruchtfolgeregime bei unterschiedlicher Intensität der Bodenbearbeitung

Tabelle 2.5.5/8: Wuchshöhe, TM-Ertrag und TS-Gehalt der einzelnen Fruchtarten in Abhängigkeit von der Bodenbearbeitung

VS Dornburg 2005

	1	Wuchs	shöhe	TM-E	rtrag	TS-Ge	ehalt
Prüfglied	Fruchtart	(m	1)	(dt/		(%	S)
		konventionell	, minimal	konventionell	['] minimal	konventionell	minimal
1	Sommergerste	0,81	0,81	99,0	98,6	36,7	39,0
2	Sudangras	2,70	2,70	186,5	173,0	28,1	26,8
3	Mais	2,30	2,30	159,0	177,8	31,9	32,7
4	Sommergerste	0,81	0,84	78,4	81,2	39,5	37,6
5	Hafersortenmischg.	0,81	0,85	98,1	87,4	48,3	45,9
6	Hafer	0,79	0,83	90,8	84,1	47,3	43,9
7	Energiemais	n. b.	2,34	159,2	198,4	32,1	36,5
8	Topinamburkraut	2,41	**	173,5	**	28,4	**

n. b.: nicht bestimmt aufgrund von Erntelager

<u>Fazit:</u> Bei den Prüfgliedern 1, 5 und 6 sind zur Ernte keine Unterschiede in der Bestandeshöhe zu erkennen. Ein gleichmäßiger Anstieg der Bestandeshöhe wurde während der Vegetationszeit bei Sudangras und Mais beobachtet. Insgesamt betrachtet, übertraf Sudangras zur Ernte in der Bestandeshöhe Mais und Topinambur. Bei der Ertragsentwicklung können zwei Trends abgeleitet werden: die Prüfglieder 1, 4, 5 und 6 sowie die Prüfglieder 2, 3, 7 und 8 liegen jeweils auf einem ähnlichen Niveau. Eine Aussage über die Wirkung der Bodenbearbeitung kann zu diesem Zeitpunkt nicht getroffen werden.

^{**:} Topinambur wurde in der Minimalbodenbearbeitungsvariante nicht angebaut

2.6 Hopfen

N-Düngung Versuchsnummer: 550 715

<u>Versuchsfrage:</u> Wirkung steigender N-Gaben (breitwürfig und als Banddüngung) auf Wachstum, Ertrag und Qualität von Hopfen

Tabelle 2.6/1: Einfluss der N-Düngung auf den Ertrag

Apolda 1998 bis 2005

Nmin + N-			_						rag							
Düngung (kg/ha)		(dt/ha) breitwürfige Düngung Banddüngung														
	1998	1999	2000	2001	2002	2003	2004	2005	1998	1999	2000	2001	2002	2003	2004	2005
120	19,7	23,4	20,3	16,5	18,6	26,5	21,0	22,6	18,9	23,9	20,2	13,5	18,8	25,4	21,7	22,8
160	19,6	24,9	20,9	16,2	18,1	25,3	22,8	22,1	19,9	25,0	19,8	14,5	18,7	25,8	20,5	23,9
200	20,8	23,8	20,6	15,8	17,4	25,5	21,6	24,2	18,8	22,4	20,8	14,4	17,1	25,6	23,6	26,2
(Kontrolle)]
235	19,8	20,6	21,1	15,2	18,5	26,3	25,8	24,3	20,6	22,5	20,6	15,3	19,2	25,9	25,2	25,1
270	18,2	23,9	23,7	16,3	18,1	25,7	25,5	24,5	20,0	24,4	20,1	14,4	17,7	24,0	24,6	25,0
GD t, 5 %	3,4	3,8	2,0	2,4	1,7	3,6	3,3	2,3	3,4	3,8	2,0	2,4	1,7	3,6	3,3	2,3

Tabelle 2.6/2: Einfluss der N-Düngung auf die Qualität Apolda 1998 bis 2005

N _{min} + N- Düngung	'		, , , , , , , , , , , , , , , , , , , ,					Alphas (% l								
(kg/ha)			brei	twürfig	e Düng	ung						Banddi	üngung			
, 5, 7	1998	1999	2000	2001	2002	2003	2004	2005	1998	1999	2000	2001	2002	2003	2004	2005
120	13,9	14,0	15,2	14,9	13,7	12,3	13,1	15,4	11,5	13,4	14,8	13,9	13,8	11,4	13,1	15,4
160	12,7	13,4	15,1	14,3	13,8	12,2	14,1	15,7	13,0	13,5	15,5	13,4	14,5	12,0	14,3	15,6
200 (Kontrolle)	12,4	13,1	15,3	13,7	14,6	11,8	14,8	15,6	12,1	13,0	15,4	13,6	13,5	11,2	15,0	15,9
235	12,6	13,1	14,9	13,8	13,1	12,4	14,1	15,0	12,6	12,8	15,2	13,9	14,2	12,6	13,1	14,8
270	12,0	12,9	14,7	13,6	13,5	12,2	14,3	14,1	12,0	13,6	16,0	13,6	14,3	11,3	13,6	15,3
GD t, 5 %	1,6	0,8	0,8	0,9	1,1	0,5	2,6	2,0	1,6	0,8	0,8	0,9	1,1	0,5	2,6	2,0

Nach den hohen, teilweise über 100 kg N/ha liegenden N_{min}-Gehalten des Jahres 2004 waren die N_{min}-Werte der wiederum im März gezogenen Bodenprobe im Versuchsjahr 2005 wesentlich niedriger. Bei der Flächenbehandlung (breitwürfige Ausbringung) betrug der N_{min}-Gehalt im Durchschnitt 60 kg/ha, bei der Streifenbehandlung (Bandstreuverfahren) durchschnittlich 90 kg N/ha. Wie aus den Tabellen ersichtlich, wurde auch im 8. Versuchsjahr weder der Ertrag noch die Qualität (Alphasäuregehalt) durch höhere, über dem N-Sollwert der Kontrolle liegende N-Mengen signifikant gesteigert.

Zusammenfassend kann festgestellt werden, dass eine Reduzierung der N-Gaben um ca. 30 % ohne Ertrags- und Qualitätsverluste möglich ist, wenn die bisher in den meisten Praxisbetrieben angewendete breitwürfige N-Ausbringung durch eine gezielte Gabe im Bandstreuverfahren ersetzt wird. Über die Weiterführung der Versuche wird noch entschieden.

Sortenversuch Versuchsnummer: 550 800

Versuchsfrage: Prüfung der für den Marktwert relevantesten Sorten der EU-Sortenliste auf Ertrag und

Qualität

Tabelle 2.6/3: Ertrag und Alphasäurengehalt des Hopfensortimentes Apolda, 1998 bis 2005

		ida, 19	<i>J</i> · -														
Sorten-	Sorte					rag								säuren			
gruppe					(dt/	'ha)							(%	lftr.)			
		1998	1999	2000	2001	2002	2003	2004	2005	1998	1999	2000	2001	2002	2003	2004	2005
Aroma-	Hal. mfr.	22,0	17,9	15,5	16,7	18,1	17,6	16,0	19,0		4,0	5,0	4,0	4,3	3,2	6,4	4,4
hopfen	Hal. Tradition	22,2	19,3	16,1	13,8	13,2	21,9	19,3	20,1	5,6	4,7	4,8	5,6	6,5	2,6	5,4	8,3
	Spalter Select	17,9	14,7	19,1	13,9	-	-	-		2,1	3,6	3,6	5,8	<u>.</u>	-		-
	Perle	18,9	25,1	17,0	13,3	17,7	20,3	19,4	22,3	7,0	8,4	7,1	7,4	8,2	2,6	7,6	7,4
	Smaragd	-		-	-	-	-	23,3	17,5		-	-	-		-	5,3	7,6
	Opal	-		-	-			15,5	20,8		-		-		-	6,5	8,7
	Saphir	-	-	-	-	-	-	20,3	23,9	-	-	-	-	-	-	5,1	4,4
Bitter	Target	23,7	31,2	-	12,6	20,7	27,1	23,1	26,3	11,8	12,0	11,4	12,3	11,7	11,3	8,2	12,2
hopfen	Nugget	21,0	31,5	29,8	14,6	23,4	21,2	22,45	25,6	7,4	9,8	12,7	8,9	10,8	6,9	9,1	11,0
	Nor. Brewer	18,4	21,5	14,5	15,2	18,7	9,8	13,9	19,5	6,9	9,3	8,6	7,2	8,1	6,2	8,1	8,0
	Hal. Magnum	21,9	27,6	20,4	18,8	17,8	22,1	22,1	21,8	12,2	13,7	17,1	12,9	14,0	11,8	16,3	15,0
	Hal. Merkur	-		20,6	17,5	17,2	19,7	20,2	17,9			15,5	12,8	12,0	9,4	15,2	13,6
	Halt. Taurus	22,2	14,2	-	-	-		-		11,6	14,5	15,7	13,8	14,3	10,6	17,3	15,1
	Herkules	-	-	-	-	-	-	29,2	30,9	-	-	-	-	-	-	16,0	17,3

<u>Fazit:</u> Die Anzahl der vom Hopfenforschungszentrum Hüll gezüchteten Aromasorten hat sich in den letzten zwei Jahren um drei weitere zugelassene Sorten vergrößert.

Saphir: hochfeine Aromasorte (Zulassung 2002) mit folgenden Eigenschaften:

- sehr gutes Aroma
- gute Resistenzeigenschaften
- gute Anbaueigenschaften
- mittlerer Ertrag und Bitterwert
- mittlere Lagerstabilität

Smaragd: hochfeine Aromasorte (Zulassung 2005) mit folgenden Eigenschaften:

- sehr gutes Aroma
- gute Resistenzeigenschaften
- gute Anbaueigenschaften
- hoher Ertrag und Bitterwert
- mittlere Lagerstabilität

Opal: feine Aromasorte (Zulassung 2001) mit folgenden Eigenschaften:

- gutes Aroma
- gute Resistenzeigenschaften
- sehr gute Anbaueigenschaften
- hoher Ertrag und Bitterwert
- mittlere Lagerstabilität

Von den in Hüll gezüchteten Hochalphasorten ist der Stamm 95/94/816 unter dem Sortennamen "Herkules" beim Sortenamt angemeldet worden. Er hat folgende Eigenschaften:

- mittleres Aroma
- gute Resistenzeigenschaften
- sehr hoher Ertrag und Bitterwert
- gute Lagerstabilität

Diese Sorte wird voraussichtlich in den nächsten Jahren aufgrund ihrer sehr hohen Bitterstoffleistung andere Sorten, wie 'Nugget', 'Hallertauer Merkur' und 'Northern Brewer' verdrängen.

Erntezeitpunkte Versuchsnummer: keine

<u>Versuchsfrage:</u> Ermittlung des optimalen Erntezeitpunktes der z. Z. wichtigsten Sorte 'Hallertauer Magnum' des Anbaugebietes Elbe/Saale

Tabelle 2.6/4: Ermittlung des optimalen Erntezeitpunktes der Sorte *Hallertauer Magnum* anhand der Entwicklung des Ertrages (dt/ha) und des Gehaltes an Alphasäure (% lftr.)

Apolda 1998 bis 2005

	tpoluu i		2005											
Alpha	Ertrag	Alpha	Ertrag	Alpha	Ertrag	Alpha	Ertrag	Alpha	Ertrag	Alpha	Ertrag	Alpha	Ertrag	Alpha
08.	24.	08.	27.	08.	30.	.08.	02.	.09.	06	.09.	10.	09.	15.	.09.
-	10,5	7,4	14,9	9,3	18,1	10,1	20,1	12,3	19,0	11,6	21,3	13,3	21,2	11,8
-	9,4	6,7	12,0	8,3	20,0	10,9	20,9	12,6	24,7	13,6	25,2	13,4	31,5	14,4
13,5	15,7	14,9	15,4	15,0	14,9	15,2	15,8	15,8	15,1	15,5	15,1	15,4	15,7	16,2
8,1	12,2	9,8	-	11,5	15,1	12,2	-	12,4	17,2	13,9	-	12,8	15,8	12,9
9,3	-	9,4	-	11,6	-	11,3	-	12,3	-	12,1	•	14,0	-	14,0
7,4	-	7,7	-	7,9	-	8,9	-	9,9	-	10,0	•	10,9	-	11,8
9,7	-	-	-	10,9	-	-	-	13,2	-	-	-	15,3	-	16,8
6,1	-	-	-	8,4	-	-	-	14,7	-	-	-	15,2	-	15,0
	Alpha 08. - 13,5 8,1 9,3 7,4 9,7	Alpha Ertrag 08. 24. - 10,5 - 9,4 13,5 15,7 8,1 12,2 9,3 - 7,4 - 9,7 -	Alpha Ertrag Alpha 08. 24.08. - 10,5 7,4 - 9,4 6,7 13,5 15,7 14,9 8,1 12,2 9,8 9,3 - 9,4 7,4 - 7,7 9,7 - -	Alpha Ertrag Alpha Ertrag 08. 24.08. 27. - 10,5 7,4 14,9 - 9,4 6,7 12,0 13,5 15,7 14,9 15,4 8,1 12,2 9,8 - 9,3 - 9,4 - 7,4 - 7,7 - 9,7 - - -	Alpha Ertrag Alpha Ertrag Alpha 08. 24.08. 27.08. - 10,5 7,4 14,9 9,3 - 9,4 6,7 12,0 8,3 13,5 15,7 14,9 15,4 15,0 8,1 12,2 9,8 - 11,5 9,3 - 9,4 - 11,6 7,4 - 7,7 - 7,9 9,7 - - 10,9	Alpha Ertrag Alpha Ertrag Alpha Ertrag 08. 24.08. 27.08. 30. - 10,5 7,4 14,9 9,3 18,1 - 9,4 6,7 12,0 8,3 20,0 13,5 15,7 14,9 15,4 15,0 14,9 8,1 12,2 9,8 - 11,5 15,1 9,3 - 9,4 - 11,6 - 7,4 - 7,7 - 7,9 - 9,7 - - 10,9 -	Alpha Ertrag Alpha Ertrag Alpha Ertrag Alpha 08. 24.08. 27.08. 30.08. - 10,5 7,4 14,9 9,3 18,1 10,1 - 9,4 6,7 12,0 8,3 20,0 10,9 13,5 15,7 14,9 15,4 15,0 14,9 15,2 8,1 12,2 9,8 - 11,5 15,1 12,2 9,3 - 9,4 - 11,6 - 11,3 7,4 - 7,7 - 7,9 - 8,9 9,7 - - 10,9 - -	Alpha Ertrag Alpha D2 D2 D2 13,5 15,7 14,9 15,4 15,0 14,9 15,2 15,8 8,1 12,2 9,8 - 11,5 15,1 12,2 - 9,3 - 9,4 - 11,6 - 11,3 - 7,4 - 7,7 - 7,9 - 8,9 - 9,7 - - - 10,9 <t< td=""><td>Alpha Ertrag Alpha D2.09 D2.0</td><td>Alpha Ertrag Alpha Ertrag Al</td><td>Alpha Ertrag Alpha Ilpha Ilpha</td><td>Alpha Ertrag Alpha Ertrag Al</td><td>Alpha Ertrag Alpha Ertrag Al</td><td>Alpha Ertrag Alpha Ertrag Al</td></t<>	Alpha Ertrag Alpha D2.09 D2.0	Alpha Ertrag Al	Alpha Ertrag Alpha Ilpha Ilpha	Alpha Ertrag Al	Alpha Ertrag Al	Alpha Ertrag Al

Fazit: Aus arbeitstechnischen Gründen konnte die Alphasäurebestimmung nur noch einmal wöchentlich erfolgen. Wie in den Vorjahren bestätigten auch die Versuchsjahre 2004 und 2005 den 2. September als frühesten Erntetermin für die Hauptsorte des Anbaugebietes Elbe-Saale, den 'Hallertauer Magnum'. Betriebe, die den Pflückbeginn in den August vorverlegen, müssen mit niedrigeren Alphasäurewerten und damit verbundenen niedrigeren Einnahmen je Hektar rechnen.

Bewässerungsversuch Hopfen

Versuchsnummer: keine

Versuchsfrage: Einfluss der Tröpfchenbewässerung von oben auf Ertrag und Qualität am Beispiel der zwei für das Anbaugebiet Elbe/Saale wichtigen Sorten `Hallertauer Magnum` und `Perle'

Tabelle 2.6/5: Einfluss der Tröpfchenbewässerung auf Ertrag und Qualität der Sorte 'Hallertauer Magnum' Kutzleben GbR und Agrar GmbH Großenehrich 2002 bis 2005

Prüfglied		Trockenho	pfenertrag			Alphasäi	uregehalt	
o			ha)				lftr.)	
	2002	2003	2004	2005	2002	2003	2004	2005
Kutzleben								
ohne Zusatzwasser	22,0	_*	18,6	20,3	13,3	-	13,3	16,5
Zusatzwasser von unten	23,1	28,6	25,1	20,3	13,8	12,6	13,9	16,4
Zusatzwasser von oben	23,9	26,4	24,2	22,5	13,7	12,6	14,5	16,4
GD t, 5 %	2,3	7,6	2,0	2,3	0,5	3,2	1,9	0,7
Großenehrich								
ohne Zusatzwasser	23,7	25,7	14,1	23,4	14,8	11,5	14,6	16,5
Zusatzwasser von unten	24,5	26,8	23,0	24,7	15,6	12,4	14,7	17,1
Zusatzwasser von oben	27,3	30,2	20,3	23,0	15,2	11,5	14,7	16,0
GD t, 5 %	2,9	2,4	2,6	2,8	1,0	0,8	1,9	0,7

^{* 2003} stand keine unbewässerte Fläche zur Verfügung

<u>Fazit:</u> Infolge der für den Hopfenbau günstigen Niederschlagsverteilung in den beiden Versuchsbetrieben konnte durch die verabreichten Zusatzwassergaben weder der Ertrag noch der Alphasäuregehalt im Vergleich zur unbewässerten Kontrollvariante erhöht werden. Die Frage nach einem vermuteten stärkeren Mehltaubefall bei der Bewässerung von oben konnte auch in den Versuchsjahren 2004 und 2005 infolge fehlenden Mehltaubefalls nicht geklärt werden.

2.7 Sonstige Versuche zu nachwachsenden Rohstoffen

2.7.1 Dauerdüngungsversuch mit Presskuchen und Asche Versuchsnummer: 999 770

<u>Versuchsfrage:</u> Verwertung von Ölpresskuchen und Asche als Düngemittel

Düngungsvarianten:

Variante	N-Düngung	P-/K-Düngung
1	N mineralisch, optimal	jährlich mineralisch auf Entzug
2	N mineralisch - 50 %	jährlich mineralisch auf Entzug
3	Presskuchen-Kopfdüngung, N = Var. 1	jährlich mineralisch auf Entzug
4	Presskuchen-Kopfdüngung, N = Var. 2	jährlich mineralisch auf Entzug
5	Presskuchen-Kopfdüngung, N = Var. 1 + 50 %	jährlich mineralisch auf Entzug
6	Presskuchen-Einarbeitung (MDÄ zu Var. 1)	jährlich mineralisch auf Entzug
7	Aschedüngung, Einarbeitung zur Aussaat	P/K Asche nach Entzug
8	Aschedüngung, Kopfdüngung	P/K Asche nach Entzug

Tabelle 2.7.1/1: Einfluss der Düngung mit Presskuchen und Asche auf den absoluten Kornertrag (dt/ha, bezogen auf die Basisfeuchte der jeweiligen Kultur) verschiedener Feldfrüchte einer Fruchtfolge VS Dornburg 1996 bis 2005

Variante	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
	SoGerste	WiGerste	WiRaps	WiWeizen	SoGerste	KöErbse	WiWeizen	WiRoggen	WiRaps	WiWeizen
1	55,6	77,6	40,3	92,7	53,0	58,4	73,4	77,9	64,5	106,1
2	50,5	61,3	33,3	81,5	45,5	56,4	73,3	64,5	63,6	93,7
3	49,7	51,7	36,1	90,5	51,0	55,5	79,7	58,0	61,4	103,5
4	47,3	46,0	32,6	77,4	46,0	55,3	72,5	53,6	61,2	98,3
55	53,3	65,5	40,8	99,1	61,3	60,0	76,1	68,6	59,6	105,0
6	51,4	56,3	37,6	92,5	57,6	59,9	77,7	57,9	56,8	105,4
7	56,8	80,4	43,5	94,1	68,5	61,8	74,2	82,5	60,2	108,6
8	48,5	83,2	42,4	94,3	68,4	60,4	70,2	82,9	62,3	106,5
GD t, 5%	8,1	5,7	4,6	3,5	4,6	4,2	4,4	3,2	2,6	3,4

Tabelle 2.7.1/2: Einfluss der Düngung mit Presskuchen und Asche auf den relativen Kornertrag (relativ zu Variante 1) verschiedener Feldfrüchte einer Fruchtfolge
VS Dornburg 1996 bis 2005

				,						
Variante	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
	SoGerste	WiGerste	WiRaps	WiWeizen	SoGerste	KöErbse	WiWeizen	WiRoggen	WiRaps	WiWeizen
1	100	100	100	100	100	100	100	100	100	100
2	91	79	83	88	86	97	100	83	99	88
3	89	67	90	98	96	95	109	74	95	98
4	85	59	81	83	87	95	99	69	95	93
5	96	84	101	107	116	103	104	88	92	99
6	92	73	93	100	109	102	106	74	88	99
7	102	104	108	102	129	106	101	106	93	102
8	87	107	105	102	129	103	96	106	97	100

Tabelle 2.7.1/3: Einfluss der Düngung mit Presskuchen und Asche auf den absoluten Strohertrag (dt TM/ha) verschiedener Feldfrüchte einer Fruchtfolge
VS Dornburg 1996 bis 2005

		Donnbarg 1		·)						
Variante	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
	SoGerste	WiGerste	WiRaps	WiWeizen	SoGerste	KöErbse	WiWeizen	WiRoggen	WiRaps	WiWeizen
1	41,2	37,3	32,2	91,5	35,4	50,6	74,5	58,8	n. b.	64,0
2	39,3	30,7	25,0	78,4	30,7	50,9	74,5	49,9	n. b.	60,3
3	36,0	30,1	31,7	81,5	35,1	45,1	78,9	49,9	n. b.	71,7
4	33,0	24,8	23,9	65,1	32,5	78,6	71,4	44,8	n. b.	72,9
55	37,1	39,6	31,2	84,0	36,0	54,0	76,6	58,6	n. b.	71,1
6	36,2	33,3	25,8	85,7	35,9	45,0	74,1	44,5	n. b.	71,3
7	42,5	50,9	38,1	90,8	44,6	48,8	80,7	62,3	n. b.	77,3
8	39,9	50,8	30,0	94,1	41,1	53,9	77,8	65,1	n. b.	73,1
GD t, 5%	5,5	5,0	5,1	6,9	3,2	17,2	6,5	5,6	•	8,1

Tabelle 2.7.1/4: Einfluss der Düngung mit Presskuchen und Asche auf den relativen Strohertrag (relativ zu Variante 1) verschiedener Feldfrüchte einer Fruchtfolge

VS Dornburg 1996 bis 2005

Variante	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
	SoGerste	WiGerste	WiRaps	WiWeizen	SoGerste	KöErbse	WiWeizen	WiRoggen	WiRaps	WiWeizen
1	100	100	100	100	100	100	100	100	n. b.	100
2	95	82	78	86	87	100	100	85	n. b.	94
33	87	81	98	89	99	89	106	85	n. b.	112
4	80	66	74	71	92	155	96	76	n. b.	114
5	90	106	97	92	102	107	103	99	n. b.	111
6	88	89	80	94	101	89	99	76	n. b.	111
7	103	136	118	99	126	96	108	106	n. b.	121
8	97	136	93	103	116	106	104	111	п. Ь.	114

Tabelle 2.7.1/5: Einfluss der Düngung mit Presskuchen und Asche auf das absolute Korn:Stroh-Verhältnis (1 zu...) verschiedener Feldfrüchte in einer Fruchtfolge
VS Dornburg 1996 bis 2005

	٧٥	Dombulg 1	990 013 200	<u>'</u>						
Variante	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
	SoGerste	WiGerste	WiRaps	WiWeizen	SoGerste	KöErbse	WiWeizen	WiRoggen	WRaps	WiWeizen
1	0,86	0,56	0,82	1,15	0,78	1,04	1,18	1,16	n. b.	0,71
2	0,90	0,58	0,83	1,12	0,78	1,01	1,18	1,15	n. b.	0,77
3	0,84	0,68	0,96	1,05	0,80	0,91	1,16	1,02	n. b.	0,82
4	0,81	0,63	0,81	0,98	0,82	1,74	1,16	1,04	n. b.	0,89
5	0,81	0,70	0,84	0,98	0,68	1,01	1,16	1,03	n. b.	0,80
6	0,82	0,69	0,75	1,08	0,73	0,84	1,10	1,10	n. b.	0,79
7	0,87	0,74	0,96	1,12	0,76	0,90	1,26	1,16	n. b.	0,83
8	0,96	0,71	0,78	1,16	0,70	1,00	1,29	1,11	n. b.	0,79
GD t, 5%	n. b.	0,06	0,16	0,10	0,08	0,30	0,18	0,08		0,09

Tabelle 2.7.1/6: Einfluss der Düngung mit Presskuchen und Asche auf das relative Korn:Stroh-Verhältnis (relativ zu Variante 1) verschiedener Feldfrüchte in einer Fruchtfolge VS Dornburg 1996 bis 2005

Variante	1996 SoGerste	1997 WiGerste	1998 WiRaps	1999 WiWeizen	2000 SoGerste	2001 KöErbse	2002 WiWeizen	2003 WiRoggen	2004 WiRaps	2005 WiWeizen
1	100	100	100	100	100	100	100	100	n. b.	100
2	105	104	101	97	100	97	100	99	n. b.	108
3	98	121	117	91	102	88	98	88	n. b.	115
44	94	112	99	85	105	167	98	90	n. b.	125
5	94	125	102	85	97	97	98	89	n. b.	113
6	95	123	91	94	94	81	93	95	n. b.	111
7	101	132	117	97	97	86	107	92	n. b.	117
8	112	127	95	101	90	96	109	96	n. b.	111

<u>Fazit:</u> Die Varianten 7 und 8 (Aschedüngung) erreichen ab dem 2. Versuchsjahr, außer 2004 (Winterraps), einen Mehrertrag zur Kontroll-Variante 1. Der Einfluss der Presskuchendüngung scheint in starkem Maße von der Jahreswitterung und der jeweiligen Kultur abzuhängen. Der Versuch wird weitergeführt.