- Top oder Flop? -

Dr. A. Heinze, TLL Jena

26. April 2018, Groschwitz

Ausgangssituation:

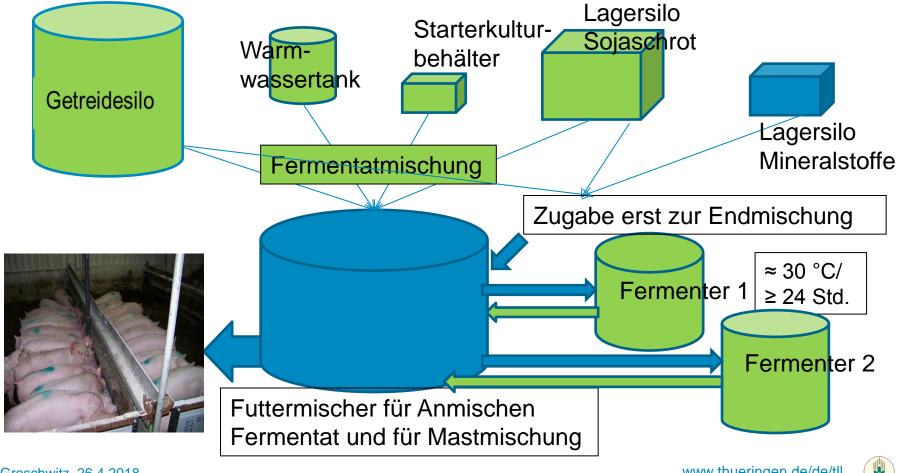
- Schweinefütterung über Leistung hinaus Einfluss auf Tiergesundheit (Antibiotikaeinsatz), Nährstoffverwertung (N-, P-Ausscheidung) und Wohlbefinden nehmen
- Eine Maßnahmen kann der mikrobielle Futteraufschluss, die

→ Futterfermentation sein

- Fermentation Silage, Vormägen Wiederkäuer, Dickdarm Schweine
- Fachliche Grundlagen liegen vor, zuerst in DK und NL erarbeitet, später in D, aktuell auch in D Praxisumsetzung
- Futterfermentation bietet wichtige positive Effekte

Vorzüge der Schweinefutterfermentation

- Nährstoffe werden z. T. durch höhere Verdaulichkeit besser verwertet bzw. anteilig eingespart – Ressourcenschonung/ Senkung Nährstoffausscheidung
- Verbesserung Futter- und Fütterungshygienestatus/ Reduzierung unerwünschte Keimflora im Futter
- Verbesserung der Darmgesundheit und folglich Senkung Antibiotikaaufwand/ gesellschaftl. Anforderung
- ➤ Fermentfließfutter ist homogener, Vorteil bei Futteraustrag und im Trog, höhere TM-Gehalte möglich
- gute Futterakzeptanz, Futteraufnahme und Futteraufwand
- Einspareffekt durch Verzicht auf Futtersäuren, P



Was spricht gegen Futterfermentation?

- nur geeignet in Kombination mit Flüssigfütterung
- zusätzliche Ausrüstungstechnik / Kosten
- zusätzlicher Kontrollzeitaufwand / Kosten
- nichts für Technikmuffel

Eingliederung Fermenter in Fütterungsanlage

SCHAUMALAC FEED PROTECT XP G Mat.-Nr. 233912-0025

VORMISCHUNG aus Silierzusatzstoffen

Gefriergetrocknetes Bakterienkonzentrat auf der Basis hochaktiver, natürlicher Milchsäurebakterien zur gezielten Steuerung des Fermentationsprozesses. In Granulatform, auf Trägerstoff gebunden.

Zusammensetzung:

1k2079 Lactobacillus plantarum, 1k2103 Pediococcus pentosaceus und 1k2082 Lactococcus lactis.

Wirksame Inhaltsstoffe:

4.0 x 1011 KBE selektierte homofermentative Milchsäurebakterien pro kg

Dosierung:

500 g SCHAUMALAC FEED PROTECT XP G in einer Tonne Sillergut gleichmäßig verteilen.

Anwendung:

Zur Silierung von flüssigen Nebenprodukten und Kompakt-TMR. Fördert die Futterhygiene in Lagerbehältern und Flüssigfütterungsanlagen. Futterverluste durch mikrobiellen Verderb werden reduziert Die Fermentation unterstützt und stabilisiert die Magen- und Darmfunktion

Lagerung: Kühl und trocken, vor direkter Sonneneinstrahlung schutzen

Nicht über 20°C lagern

Mind. haltbar bis: 28 01 2019
Nettomasse: 25 kg

D: H. Wilhelm Schaumann GmbH, An der Mühlenau 4, 25421 Pinneberg Tel.: 04101/218-2000. Fax: -2299.

www.schaumann.de, info@schaumann.de, a DE ST 100004

AT: H. Wilhelm Schaumann GmbH & Co.KG, Jakob Fuchs-Gasse 25 - 27, 2345 Brunn am Gebirge, Tel. 02236/31641-0, Fax: 02236/31641-49, www.schaumann at, info@schaumann at,

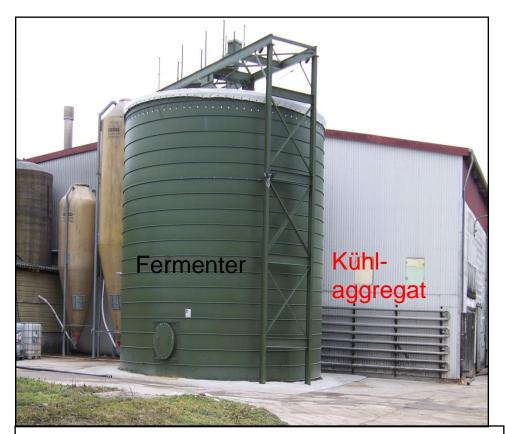
CH: H. Wilhelm Schaumann AG, Murgenthalstraße 67b, 4900 Langenthal Tel.: 062-9191020, Fax: 062-9191029, www.schaumann.ch, info@schaumann.ch

a AT 6020, www.bonsilage.de

Kann in der ökologischen/biologischen Produktion gemäß den Verordnungen (EG) Nr. 834/2007 und (EG) Nr. 889/2008 verwendet werden. AT-BIO-301.

Die Kulturen, die bei der Herstellung des Produktes verwendet wurden, bleiben ausschließliches Eigentum der Firma H. Wilhelm Schaumann GmbH und dürfen nicht reproduziert werden. SCHAUMANN garantiert, dass das Erzeugnis den Angaben auf dem Etikett entspricht. Im Übrigen beschränkt sich die Haftung des Herstellers oder Verkäufers auf den Kaufpreis des Produktes.

Beispiel für MSB-Starterkultur mit Deklaration



Blick in Dosierer der Starterkultur

Praxis-Fütterungsversuche bei Mastschweinen

Fermenter (400 m³) mit vorgelagerter Hygienisierung in SM-Betrieb FLESIMA/LWD

Fermenter für TLL-Fütterungsversuche mit je 5,5 m³ Volumen (Innovationsförderung TH)

Groschwitz 26.4.2018 www.thueringen.de/de/tll

Blick in Fermenter

Fermenterbehälter mit Futterverteilung

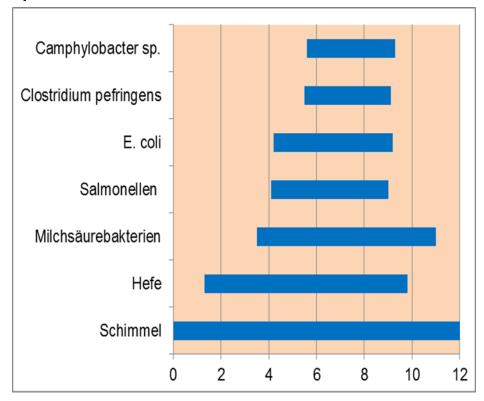
Eigene Themenbearbeitung mit 3 Schwerpunkten als Projektaufgabe in 2011 -2013

Laboruntersuchungen in TLL Verdauungsversuch mit LfULG/Köllitsch Praxisfütterungsversuche in FLESIMA

Kontrollierte (gerichtete) Fermentation

Zugabe von Milchsäurebakterien(MSB)

- Futtermittelrechtliche Anerkennung
- Homofermentative Wirkung
- Gefriergetrocknete Konzentrate
- Eingesetzte MSB SCHAUMALAC…
- Gemisch aus 3 MSB-Stämmen
- Einsatzmenge 0,1 g/10 l Futterbrei
- Gearbeitet mit Vorverdünnung zur schnelleren und homogeneren Verteilung



Ergebnisse aus Laboruntersuchungen (Mikrobiologie)

Einfluss kontrollierter vs. unkontrollierter Fermentation auf Keimbesatz

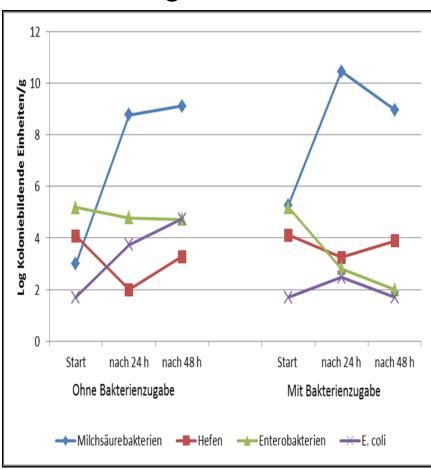
pH-Bereich für Keime im Futter*

^{*} nach P. Brocks, 2007

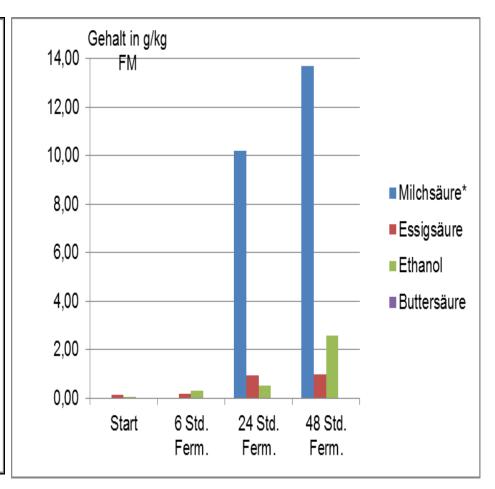
Ergebnisse: ph-Werte (22°C)

MSB	Start	24 Std.	48 Std.
ohne	5,8	4,8	3,9
mit	5,8	3,9	3,6

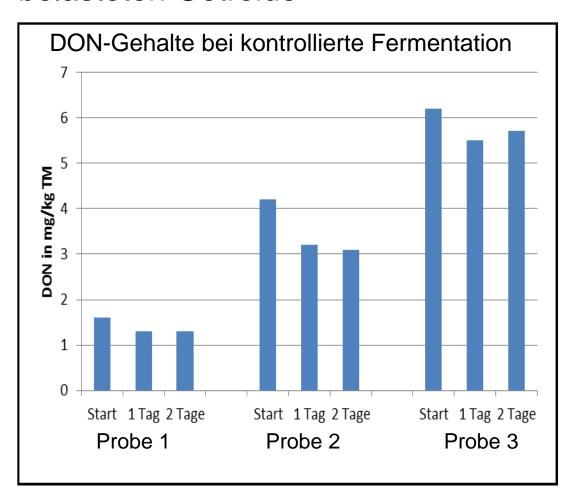
MSB→ Veränderung in KBE/g


MSB	Start	24 Std.	48 Std.
ohne	10^3	10^8	10^9
mit	10^5	10^10	10^8

Problem Hefen 48 Std. auch bei MSB+



Mikrobiologie mit MSB


Gärsäurebildung mit MSB

Laborversuche / Einfluss Fermentation auf DON-Gehalt in belasteten Getreide

Ergebnisse:

- DON-Veränderungen nicht signifikant
- Kein Nachweis von DOM1 (de-epoxy-DON) in allen Proben vor und nach Ferm.
- Mikrobiologische Effekte durch Reduzierung KBE Pilzkeime dar. Fusarien um ≥ 10² Einheiten
- Zugleich geprüfte unkontrollierte Fermentation mit Trend zum leichten DON↑ bzw. nur mäßiger Keimreduzierung

Verdauungsversuch

- Konzipierung und Bau einer Versuchseinrichtung zur Fermentatherstellung
- 2. Bewirtschaftungsablauf festlegen u. a. eintägige Fermentation der Getreide-/RES/Süßmolke –Mischung als absetziges Verfahren (Batchmethode) bei 26-30°C
- 3. Prüfung des Fermentationsergebnisses

Merkmal	Einheit	Vor Fermentation	Nach Fermentation
pH-Wert	-	5,97	3,63
Milchsäure	g/l	< 0,5	15,4
Essigsäure	mmol/l	3,47	27,5
Milchs.bakterien	KBE/g	6,7 * 10^4	5,9 * 10^8

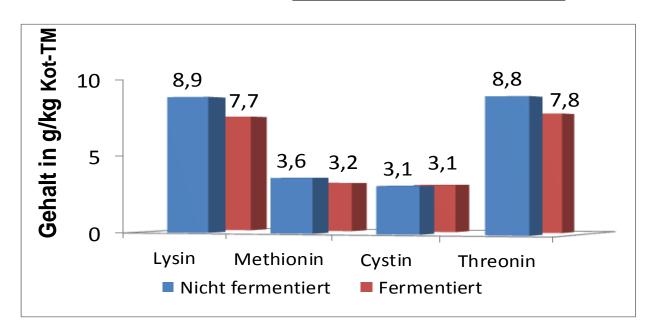
www.thueringen.de/de/tll

Übersicht zu Rohprotein- und Phosphorgehalt sowie deren Verdaulichkeit (VQ)/Gehalte in % bei 88% TM

Futter- mittel	Rohprotein Gehalt VQ		Phosphor Gehalt VQ		Phytin-P
Gerste	10,5	73	0,35	45	65
Weizen	12,3	90	0,33	60	73
Körnermais	9,2	82	0,29	20	75
Sojaex.schrot	44,0	82	0,64	40	56
Rapsex.schrot	35,0	77	1,07	40	67
Ackerbohnen	26,4	77	0,48	40	68
Erbsen	20,0	79	0,41	50	65

P-Aufnahme/ MS = 1,15 kg davon ca. 25 %, mineralischer P ≙ 0,3 kg

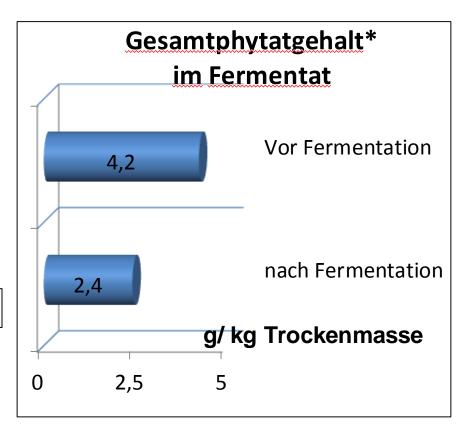
P-Ausscheidung/ MS = 0,68 kg (DLG-2014)


www.thueringen.de/de/tll

Ergebnisse zur Proteinverdaulichkeit

Variante	Tiere	Rohproteinverdaulichkeit %		
Nicht fermentiert	4	75,76 ^a ± 2,45		
Fermentiert	4	81,30 ^b ± 2,78		
		+ 5 % Anstieg XP-VQ		

→ Niedrigere Aminosäurengehalte nach Fermentatfütterung im Kot der Versuchstiere



Ergebnisse zur Phosphorverdaulichkeit

Variante	Tiere	Phosphor- verdaulichkeit %
Nicht fermentiert	4	$35,64^a \pm 7,11$
Fermentiert	4	$47,18^{b} \pm 3,77$

+ 11% Anstieg P-VQ

^{*} Analytik nach Holand and Oberleas, 1986

Energieverwertung

Verdaulichkeit im Kot (%) in Abhängigkeit von Fermentation bei Gerste und Weizen (Sholly u. a., 2011)

Merkmal	Gerste nicht ferm.	Gerste fermen- tiert	Weizen nicht ferm.	Weizen fermen- tiert	<u>Si</u> +/- Ferm ¹	gnifikanz Getr.x +/- Ferm²
Organische Masse	81	83	89	90	0,001	0,045
Rohprotein	71	80	84	88	0,001	0,002
Rohfett	32	45	38	46	0,001	0,006
Kohlen- hydrate	85	86	92	92	0,111	0,450
NSP ³	60	57	68	69	0,243	0,233
Cellulose	17	20	46	51	0,341	0,819

¹ Behandlungseffekt,

² Interaktion Getreideart x Behandlung

³ Summe Nichtstärkepolysaccharide

Mastfütterungsversuch

Ergebnisse Fermentat-Mastversuch/Leistungen

Variante	Ausw. Tiere	Einstall- gewicht kg	MTZ g	MFA %	Speck- Maß mm	FuA kg/kg
Fermentat	251	24,04	863ª	55,61 ^a	17,24 ^a	2,67ª
Flüssigfutter	260	23,90	857ª	56,20 ^b	16,39 ^b	2,72ª
♂-Ferm.Fu	146	24,08	880ª	54,92 ^a	18,08 ^a	2,69ª
♂- Flü.Fu	141	23,61	883ª	55,13 ^b	17,65 ^a	2,74 ^b
♀- Ferm.Fu	105	23,97	834ª	56,57 ^a	16,06 ^a	2,64ª
♀-Flü.Fu	119	24,25	827 ^a	57,47 ^b	14,90 ^b	2,70a

abweichende Buchstaben im jeweiligen Block für Signifikanz bei P< 0,05

- → Futteraufwand nach Fermentatfütterung bei Kastraten günstiger
- → bei ansonsten ausgeglichenen Daten gesichert niedriger MFA nach Ferm.Fütt. durch höhere Speckmaße/ AS-Absicherung nachprüfen?

Groschwitz, 26.4.2018 www.thueringen.de/de/tll

Weitere, die Futtereffizienz beeinflussende Fermentationseffekte

- Fermentatfuttermischungen bieten auch bei längerer Trogstandzeit noch eine homoge Durchmischungszone gegenüber alleinigem Getreideflüssigfutter. Damit besser pumpfähig und homogenere Trogfüllung/ Stabilisierung Tierleistungen
- Milchsäurebildung verbessert Geschmack und erhöht Futteraufnahme
- > pH-Wert-Absenkung ermöglicht Verzicht auf teure Futtersäurezulage

Nährstoffverwertung

Aminosäureverlust durch Bildung biogener Amine

- bei Fermentation Risiko für Aminosäurenverlust über
 Decarboxylierung durch E. coli mit Bildung schädlicher biogenen Amine
- vorrangig bei kristalline Lysinzulagen mit Bildung Cadaverin
- Auftreten besonders bei Fermentation mit heterofermentativen MS-Bakterien
- mit ausgewählten homofermentativen MSB-Stämmen zu vermeiden (Niven u. a. ,2006)

Cadaverinbildung bei Fermentation (Niven u. a., 2006)

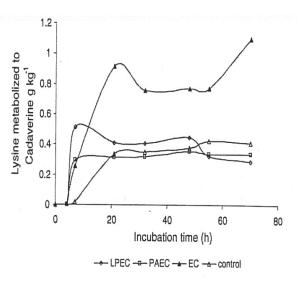
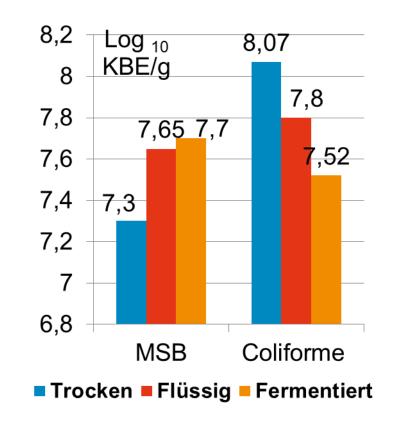


Fig. 3. The amount of lysine metabolized to cadaverine (g/kg) in liquid feed inoculated with *E. coli* (EC), *Lb. plantarum* plus *E. coli* (LPEC), *P. acidilactici* plus *E. coli* (PAEC), or uninoculated (Control); incubated for 72 h at 35 °C. Statistical analysis was conducted using a general linear model. Time × treatment interaction: P<0.001 S.E.M. = 0.032.



Einfluss auf Mikrobiologie im Verdauungstrakt (Demeckova u. a. 2002, GB)

Untersuchung an Sauen und Saugferkeln mit Fütterung: trocken, flüssig bzw. fermentiert Ergebnisse u. a.:

- **Obwohl MSB-Population nicht** sign. beeinflusst, im Kot von Sauen mit Fermentatgabe hochsign. weniger Coliforme
- Ferkeleinfluss (Grafik)
- Kolostrum von Sauen mit Fermentatgabe sign. höhere Zellteilungsaktivität bei Abwehrzellen

Ferkelkotanalyse 7. Lebenstag

Aktuelles Thür. Innovationsprojekt mit Thema "Kofermentation zur Aufbereitung von Schweinefutter"

- Projektträger Van Asten Uthlebener Qualitätsschweine GmbH und Co. KG
- Zielsetzung: Vorrangige Prüfung heimischer eiweißreicher FM und Nebenprodukte als Koferment zu Getreide und Rationskomponente in Schweinefütterung (Sauen, Ferkelaufzucht, Mast)
- 3-stufige Bearbeitung (Laborversuche, großtechnische Versuche, Applikationsversuche in Praxis)
- Laufzeit 01/2017 08/2018
- TLL ist assoziierter Kooperationspartner

Wirtschaftliche Bewertung der Fermentation

Grundsatz: Keine für alle Anwender einheitliche Bewertung mgl.

- ➤ Die Kosten richten sich nach betriebsspezifischen Voraussetzungen (mit/ ohne Futtermischer; Nutzung Biogasabwärme; neue/ gebrauchte Fermentationsbehälter, Starterkultur, Bauausführung)
- Die Leistungseinfluss abhängig von Tiergesundheit, Leistungshöhe und Rohstoffen

<u>Investitions- + Bewirtschaftungskosten:</u>

- Schnippe (2013) 1,25 /MS³,43 €/Mastplatz und Jahr
- Pecher (2014) 2,57 4,92 €/Mastplatz und Jahr
- Herrmann (2018) 3,23 €/Mastplatz u. Jahr Abschreibung/ 2,63 €
 Futtersäure/ Mastplatz und Jahr
- Muth-Köhne (2018) Kosten Fermentation/kg Futter 1,10-1,50 €/dt

www.thueringen.de/de/tll (

Schlussfolgerungen: Schweinefutterfermentation ...

- ➢ sollte als kontrollierte Fermentation mit eintägiger Dauer bei ca. 30° C als diskontinuierliches Verfahren (Batchmethode) erfolgen
- ➤ reduziert durch pH-Wert-Absenkung und Anstieg Milchsäurebildung Risikokeimbesatz und bietet Grundlage für bessere Darmgesundheit, (keine Salmonellen, Reduzierung E. coli, Anstieg Immunglobuline)
- bietet Möglichkeit zur Reduzierung der N- und P-Ausscheidung durch bessere Verdauung
- ermöglicht durch Verzicht auf mineralischen P-Zugabe Ressourcenschonung und niedrigeren P-Austrag
- ➤ führt betriebsbezogen zu differenzierten wirtschaftlich positiven Effekten in Abhängigkeit von der Ausgangssituation
- Infos zu Fermentation unter www.thueringen.de/th9/tll

Antwort zu Themenfragestellung: Top oder Flop? Jeder Zuhörer sollte sich seine eigene Meinung bilden

Danke für die Aufmerksamkeit!

und hoffentlich war es nicht allzu einschläfernd!

