

Thüringer Landesanstalt für Landwirtschaft

Bodendauerbeobachtung auf landwirtschaftlich genutzten Flächen

Monitoring zur Erfassung von Veränderungen wesentlicher Bodenfunktionen

Abschlußbericht

Langtitel: Bodendauerbeobachtung auf landwirtschaftlich genutzten Flächen –

Monitoring zur Erfassung von Veränderungen wesentlicher

Bodenfunktionen

Kurztitel: Bodendauerbeobachtung (BDF)

Projekt: 46 - Agrarmonitoring

Projektleiter:

Abteilung: 700 – Agrarökologie, Ackerbau und Grünland

Abteilungsleiter:

Laufzeit: 07/ 1998 – 12/ 2006

Auftraggeber: TMLNU

Namen der Bearbeiter: Dipl.-Agr.-Ing.(FH) Günter Marre

Dr. sc. agr. Peter Gullich Dr. agr. Rainer Paul Dr. Ingrid Pfleger

Dipl.-Agr.-Ing. (FH) Wolfgang Weber

Dipl.-Ing. (FH) Uwe Prüfer

Jena, im Dezember 2006

		Seite
1.	Einleitung und Zielstellung	4
2.	Die Thüringer Dauerbeobachtungsflächen unter	
	landwirtschaftlicher Nutzung	5
2.1	Kurzcharakteristik der Standorte	-
2.2	Repräsentanz des Messnetzes	7
2.3	Beprobung und Untersuchungen	5 7 8
2.3.1	Beprobungsprogramm	8
2.3.2	Parameter und Bestimmungsmethoden	12
3.	Ergebnisse	20
3.1	Boden	20
3.1.1	Bodenphysikalischer Zustand und Gefügeentwicklung	20
3.1.1.1	Bodenbeanspruchung	20
3.1.1.2	Entwicklung des Gefüges	22
3.1.1.2.1	Trockenrohdichte	22
3.1.1.2.2	Wasserspeicherung	25
3.1.1.2.3	Luftkapazität	27
3.1.1.2.4	Gesättigte Wasserleitfähigkeit	29
3.1.1.2.5	Entwicklung der Aggregateigenschaften	31
3.1.1.2.6	Entwicklung des Gefüges auf den Grünlandstandorten	32
3.1.1.2.7	Einfluß von Bodenbearbeitungsvarianten auf das Gefüge	33
3.1.1.3	Schlußfolgerungen	40
3.1.2	Bodenbiologie	41
3.1.2.1	Bodenmikrobiologie	41
3.1.2.2	Bodenzoologie	49
3.1.3	Bodenchemie	53
3.1.3.1	Makronährstoffe	53
3.1.3.1.1	Stickstoff	53
3.1.3.1.2	Kalzium, Phosphor, Kalium und Magnesium	64
3.1.4.2	Mikronährstoffe	71
3.1.3.3	Schwermetalle	73
3.1.4.4	Organische Schadstoffe	76
3.2	Pflanzen	, 78
3.2.1	Erträge	, 78
3.2.2	Nährstoffgehalte	, 82
3.2.3	Schwermetalle	84
3.2.4	Organische Schadstoffe	89
4.	Datenhaltung	92
5.	Zusammenfassung mit Schlussfolgerungen	99
6.	Verzeichnis der Abbildungen und Tabellen	102
7	Literaturyerzeichnis	106

1. Einleitung und Zielstellung

Der Boden ist Lebensgrundlage für Menschen, Tiere und Pflanzen. Er ist nicht vermehrbar und hat vielfältige Funktionen im Naturhaushalt. Von ihm erfolgt ein Stofftransfer in das Wasser und in die Luft. Durch Nutzung darf keine Gefährdung des Bodens entstehen.

Der Erhaltung wichtiger Bodenfunktionen wird deshalb besondere öffentliche Aufmerksamkeit gewidmet. So sind die Pflichten zur Gefahrenabwehr und zur Vorsorge gegen das Eintreten schädlicher Bodenveränderungen im Bundes-Bodenschutzgesetz (ANONYM, 1998) und in der Bundes-Bodenschutzverordnung (ANONYM, 1999) geregelt.

Die Bodendauerbeobachtung wird auf der Basis einer Bund-Länder-Vereinbarung durchgeführt; die dabei anfallenden Daten sind nach §6 des Thüringer Bodenschutzgesetzes (ANONYM, 2003) in einem Bodeninformationssystem vorzuhalten. Dieses Bodeninformationssystem wird gemäß §6, Abs.1 ThürBodSchG bei der Thüringer Landesanstalt für Umwelt und Geologie geführt.

Die Thüringer Landesanstalt für Landwirtschaft betreibt 14 Bodendauerbeobachtungsflächen unter landwirtschaftlicher Nutzung. Dafür wurden bislang ausschließlich haushaltsfinanzierte Personal- und Sachmittel eingesetzt. Die BDF wurden gemeinsam mit der vormaligen Thüringer Landesanstalt für Geologie, beginnend 1992, eingerichtet.

Grundlage für die Meßprogramme sind vereinheitlichte Untersuchungsmethoden und – perioden, die von der Bund-Länder-Sonderarbeitsgruppe "Informationsgrundlagen Bodenschutz" erarbeitet und in der "Konzeption zur Errichtung von Bodendauerbeobachtungsflächen" (ANONYM, 1991) dargestellt wurden. Die Meßprogramme umfassen physikalische, chemische und biologische Untersuchungen.

Das Hauptziel der landwirtschaftlichen Bodendauerbeobachtung ist es zu kontrollieren und zu dokumentieren, wie sich die Funktionen landestypischer Böden unter den gegebenen Nutzungsbedingungen langfristig entwickeln. Die Nutzungsbedingungen setzen sich zusammen aus den politisch-ökonomischen Rahmenbedingungen, der fachlichen Befähigung der Bewirtschafter und der Fähigkeit des jeweiligen Bodens, die Nutzungseinflüsse zu tragen.

Die 14 Dauerbeobachtungsflächen liegen inmitten großer Schläge, die von größeren Landwirtschaftsunternehmen nach üblicher Praxis bewirtschaftet werden. Sie befinden sich auf solchen Bodentypen, die die wichtigsten Bodenlandschaften vertreten, soweit sie landwirtschaftlich genutzt sind.

Bisher wurde in einem ersten Bericht die Aufnahme, Erstbeprobung und Einrichtung dokumentiert (WERNER,D; PAUL, R. ET AL.,1996). Ein Zwischenbericht (PAUL, R. ET AL.,1998) enthält bis zu 5jährige Ergebnisse der Meßprogramme. Mit dem vorliegenden Bericht sollen Ergebnisse nach bis zu 12 Jahren Meßbetrieb sowie Tendenzen der Bodenentwicklung mitgeteilt werden. Neben der Darstellung der Organisation des Datenmanagements wird die Einhaltung der Vorsorge-, Prüf- und Maßnahmewerte der Bodenschutzverordnung geprüft. Schließlich werden aus den langjährigen Entwicklungen von Bodenfunktionen im Abgleich mit den kapazitiven Möglichkeiten Schlußfolgerungen für den weiteren Untersuchungsablauf gezogen.

2. Die Thüringer Dauerbeobachtungsflächen unter landwirtschaftlicher Nutzung

2.1 Kurzcharakteristik der Standorte

Auswahl und Aufnahme der Leitprofile der Bodendauerbeobachtungsflächen wurden gemeinsam mit der vormaligen Thüringer Landesanstalt für Geologie vorgenommen. Tabelle 1 enthält eine Übersicht dazu. Profilbeschreibungen und Parameter enthält der Bericht der Thüringer Landesanstalt für Umwelt und Geologie "Bodendauerbeobachtung in Thüringen" (HANUßEK-BIERMANN ET AL., 2006).

2.2 Repräsentanz des Meßnetzes

Die Auswahl der Standorte erfolgte nach einer Abwägung verschiedener Aspekte. Im Vordergrund stand eine möglichst hohe Repräsentanz der Meßflächen in dem Sinne, daß die wichtigsten Standorteinheiten Thüringens erfaßt werden, soweit sie einen bedeutsamen Anteil an der landwirtschaftlich genutzten Landesfläche einnehmen. Daneben war es unverzichtbar, die Durchführbarkeit der Meßprogramme zu berücksichtigen. Von vornherein mußte vom ausschließlichen Einsatz landeseigener Kapazität ausgegangen werden. Deshalb konnten Bedingungen wie z.B. kurze Entfernungen zu Versuchseinrichtungen der Landesanstalt sowie die Lage auf Flächen langjähriger zuverlässiger Praxispartner bei der Abwägung zur Standortauswahl nicht unbeachtet bleiben. Die Tabelle 2 zeigt, daß die nicht mit einer BDF belegten Standorteinheiten lediglich rund 7% der Ackerfläche Thüringens umfassen.

Die BDF liegen auf Flächen, die vollständig den betriebsüblichen Entscheidungen über Agrotechnik, Düngung, Pflanzenschutz usw. unterworfen sind. Ein Nachweis von Auswirkungen bestimmter Bewirtschaftungsformen, eines bestimmten Aufwandes an Produktionsfaktoren o.ä. waren nicht Gegenstand der Abwägungen zur Repräsentanz.

Eine Repräsentativitätsanalyse nach einem Vorgehen, bei dem die merkmalsbezogene Repräsentativität (z.B.Landschaft, Nutzungsart; Bodendecke, Relief, Klima) zu einer Gesamtrepräsentativität zusammengeführt wird (FLÜGEL, 2002) hat Argumente für eine Erweiterung des Programms der Bodendauerbeobachtung ergeben. Dem wurde zwischenzeitlich bereits zum Teil durch die Thüringer Landesanstalt für Umwelt und Geologie entsprochen. Die Einbeziehung neuer BDF in die intensiven jährlichen Meßprogramme der TLL war nicht möglich. Eine Entlassung von langjährig beprobten BDF aus den Intensiv-Programmen, um neue Programme zu ermöglichen, wurde nach Abstimmung in der "Arbeitsgruppe Bodendauerbeobachtung in Thüringen" wegen der Aufgabe langer Zeitreihen als nicht zweckmäßig erachtet. Repräsentativitätsanalyse wurde im Bericht der TLUG (HANUßEK-BIERMANN ET AL., 2006) verarbeitet. Die gezogenen Schlußfolgerungen sind dort nachzulesen.

Tab. 1: Übersicht über die Standorte der landwirtschaftlichen Bodendauerbeobachtungsflächen

		NS ¹⁾	Höhe üb.NN	Jahr.temp.1)			2)	Bestimmender	
Nr	Bodenlandschaft	mm	m	° C	Geologie	Bodentyp	NSTE ²⁾	Bodenwasser- haushalt	Nutzung
1	Thüringer Becken	508	176	8,5	Holozäne Sedimente der Talauen	Vega (AB)	Al3	Sickerwasser	Acker
2	Thüringer Becken	505	177	8,5	Holozäne Sedimente der Talauen	Gley (GG)	Al3	Grundwasser	Acker
3	Randlage Thür.Becken	556	238	8,4	Löß	Schwarzerde (BB- TT)	Lö1	Sickerwasser	Acker
4	Randlage Thür.Becken	550	217	8,5	Keuper Tonmergel	Schwarzerde (TT)	Lö2	Stauwasser	Acker
5	Randlage Thür.Becken	542	218	8,5	Tonmergel-Rendzina	Pelosol (DD)	V1	Haftwasser	Acker
6	Saale-Sandsteinplatte	635	334	8,0	Ton-Sandstein-Wechselfolge	Braunerde (BB)	V4	Sickerwasser	Acker
7	Saale-Sandsteinplatte	630	321	8,0	Ton-Sandstein-Wechselfolge	Pseudogley (Koll.) (YK-SS)	V4	Hangwasser	Acker
8	Ilm-Saaleplatte	670	289	7,6	Ton-Kalkstein	Rendzina (RR)	V2	Haftwasser	Acker
_	Thüringer Schiefergebirge	637	399	7,5	Kulm-Tonschiefer	Pseudogley (SS)	V5	Stauwasser	Acker
	Thüringer Schiefergebirge	647	425	7,8	Kulm-Tonschiefer	Braunerde (SS-BB)	V5	Sickerwasser	Acker
11	Thüringer Wald	979	757	6,0	kambr. Tonschiefer	Braunerde (BBI)	V8	Sickerwasser	Grünland
12	Thüringer Wald	980	757	6,0	kambr. Tonschiefer	Pseudogley (SS)	V8	Stauwasser	Grünland
13	Rhön	860	565	6,6	Kalkmergel	Rendzina (RR)	V3	Sickerwasser	Grünland
14	Hohe Rhön	1014	810	5,2	Basalt	Ranker (RN)	V9	Sickerwasser	Grünland

ermittelt aus der Klimadatenbank (BERNHOFER, ET AL., 2003) Natürliche Standorteinheit (Areale mit annähernd gleichartigen natürlichen Bedingungen für die landwirtschaftliche Produktion)

Tab. 2: Repräsentanz der landwirtschaftlichen Bodendauerbeobachtung

Standorteinheit	Ackerfläche Tha	Anteil an der Ackerfläche Thüringen v.H.	Anzahl der BDF
Al 3	19,5	3,1	2
Lö 1	17,9	2,9	1
Lö 2	87,0	13,9	1
Lö 3	21,3	3,4	-
Lö 4	11,2	3,4 1,8	-
Lö 5	6,8	1,1	-
Lö 6	3,3	0,5	-
D 4	3,2	0,5	-
V 1	124,4	19,9	1
V 2	127,4	20,3	1
V 3	110,6	17,7	11)
V 4	22,5	3,6	2
V 5	63,6	10,1	2
V 8/9	7,3	1,2	3 ¹⁾
gesamt	626	100	14

¹⁾ Grünlandnutzung

- 2.3 Beprobung und Untersuchungen
- 2.3.1 Beprobungs- und Untersuchungsprogramm
- 2.3.1.1 Beprobungsregime

Die Bodendauerbeobachtungsflächen wurden auf Praxisschlägen angelegt. Sie entsprechen dem in Abb. 1 dargestellten Schema, mit Ausnahme einer Fläche unter Grünland, bei der die 4 Teilflächen bei sonst gleichen Abmessungen in einer Reihe nebeneinander liegen. Der Grund dafür ist die stärkere Hangneigung dieses Standortes; durch die beschriebene Anordnung ist eine einheitliche Reliefposition gewährleistet. Die Eckpunkte sind mittels eingegrabener Eisenplatten in 30...50 cm Tiefe vermarkt und mit einem Metall-Detektor auffindbar. Alternativ kann DGPS – Technik zum Auffinden der Punkte genutzt werden. Vor jeder Probenahme wird die Kernfläche einschließlich ihrer Quadrantenteilung abgesteckt. Der Tabelle 3 ist die zeitliche Ordnung des Beprobungsregimes zu entnehmen, während aus Tabelle 4 hervorgeht, wie welche/wieviele Proben entnommen werden und welche Parameter daran bestimmt werden. Das Beprobungsregime orientiert sich eng am Katalog der Länderarbeitsgruppe Boden (BARTH, ET AL., 2000).

Die Tabelle 5 schließlich dient der Übersicht über die angewandten Bestimmungsmethoden und die Bezeichnung der Parameter in der TLL-internen BDF-Datenhaltung.

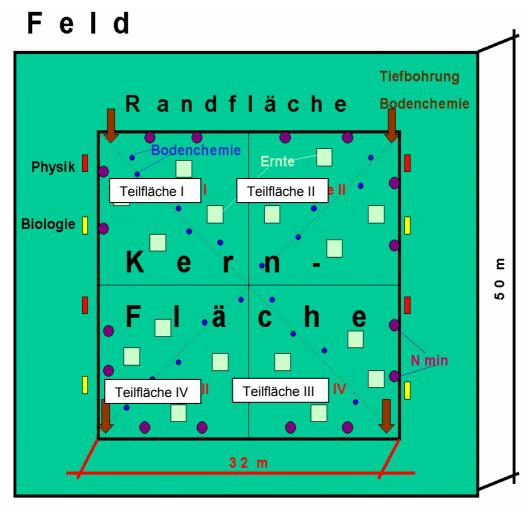
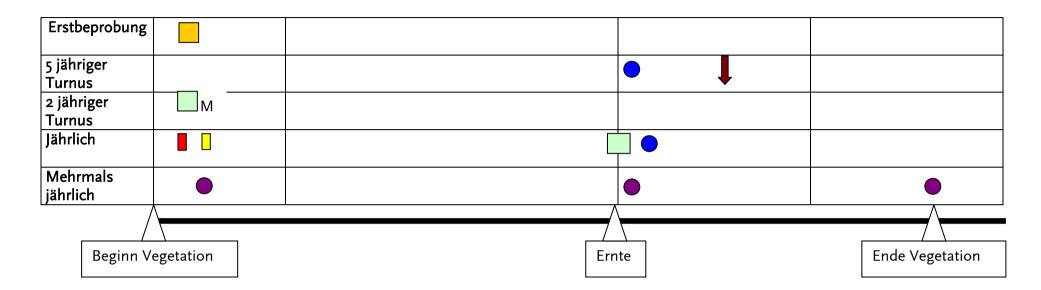



Abb. 1: Räumliche Anordnung der Probenahmen auf den landwirtschaftlichen Bodendauerbeobachtungsflächen

Tab. 3: Zeitliche Einordnung der Meßprogramme

Teilprogramm	Entnahmetechnik	Entnahmetiefe	Untersuchte Proben	Parameter (nach Tab. iii)
		(cm)		
Physik	Spaten, SZ,	4 Tiefen,	4x6 SZ	Db,rs, GPV, FÄ(4x), kfV, PL
	Schlagkappe,	horizontorientiert		
	Hammer, Beutel		4x1 Mischprobe	SkelGeh, Koer (7Fr.), rtk,rtg,APV
Lumbriciden	Spaten / Becher		5 Wdh.	A,M (Ad.u.juv.,6 Arten)
			á 50 dm³	
		0-20		
Zelluloseabbau	Freßstreifen		2 Termine á 10	T2bisT20
			Streifen	
Mikrobiologie	Spaten / Beutel		1 Mischprobe je	TM, BioM, Katz, BoAtm
	, ,		Quadrant	
N _{min} , S _{min}	Bohrstock	3 Tiefen AL	3(4)x1 Mischprobe je	NO ₃ -N;NH ₄ -N, TM, Smin
		4 Tiefen GL	Quadrant	
Bodenchemie,	Bohrstock	3 Tiefen	3x1 Mischprobe je	TM, pH,PCAL, KCAL, Mg, Salz, HS,
jährlich			Quadrant	
Bodenchemie,	Bohrstock	3 Tiefen	3x1 Mischprobe je	TM, pH,PCAL, KCAL, Mg, Salz, HS,
5-jährig			,	Corg, Nt, CaCO ₃ , NaCAL, Cl, PB, Pcu,
			`	PMn, PZn, PFe, PMo, Kfixnaß, Kfixtro,
				Ksa, Psl, Pfr, Kleff(8 Elem.), Kl (5 Elem.
				und T,H,S), Königsw. (21 Elem.),
				Ges.aufschluß (20 Elem.),NH4NO3-
				Extr.(9 Elem.),
	Physik Lumbriciden Zelluloseabbau Mikrobiologie N _{min} , S _{min} Bodenchemie, jährlich	Physik Spaten, SZ, Schlagkappe, Hammer, Beutel Lumbriciden Spaten / Becher Zelluloseabbau Freßstreifen Mikrobiologie Spaten / Beutel N _{min} , S _{min} Bohrstock Bodenchemie, jährlich Bodenchemie, Bohrstock	Physik Spaten, SZ, Schlagkappe, Hammer, Beutel Lumbriciden Spaten / Becher Zelluloseabbau Freßstreifen Mikrobiologie Spaten / Beutel N _{min} , S _{min} Bohrstock 3 Tiefen AL 4 Tiefen GL Bodenchemie, jährlich Bodenchemie, Bohrstock 3 Tiefen 3 Tiefen 3 Tiefen 3 Tiefen 3 Tiefen 3 Tiefen 3 Tiefen	Cm Cm A Tiefen, horizontorientiert Ax6 SZ Ax1 Mischprobe

					PCB (6x), HCH (4x), PAK (16x), Triazine (3x), HCB, HEP, EDN, E1, OP_DDT, PP_DDD, PP_DDE, PP_DDT, MCP,ISO, BEN, MCPA, DCP
1	Tiefbohrung Bodenchemie	Kernbohrer	512 Tiefen	512 Proben	TM, pH,PCAL, KCAL, Mg, Corg, Nt, CaCO ₃ , Cl, PCB (6x), HCH (4x), PAK (16x), Triazine (3x), HCB, HEP, EDN, E1, OP_DDT, PP_DDD, PP_DDE, PP_DDT, MCP,ISO, BEN, MCPA, DCP
	Ernte	Handernte		4 x 1 m² je Quadrant,	Ertrag (Haupt- u. Koppelprod.),
				1 Mischprobe je Quadrant	TM, NO ₃ , N, Ca, P, Na, Mg,K, Cu, Mn, Zn, Fe, S, Cl, 10 Schwermet. in DA_HNO ₃ , PCB (6x), HCH (4x), HCB, HEP, EDN, E1, OP_DDT, PP_DDD, PP_DDE, PP_DDT, ADN, CCL, DDN, ESS, C_HEPEP, NRX, OCL, TCL, K_EDN, IDN, THEPEP
	Leitprofil	Spaten, SZ, Schlagkappe,	36 Tiefen, horizontorientiert	36 x 6 SZ	Db,rs, GPV, FÄ(4x), kfV, PL
		Hammer, Beutel		36 x 1 Mischprobe	SkelGeh, Koer (7 Fraktionen.), rtk,rtg,APV, PH, Corg, Nt, CaCO3, KI (5 Elem. und T,H,S), Königsw. (21 Elem.), Ges.aufschluß (14 Elem.),NH4NO3- Extr.(9 Elem.),

2.3.1.2 Parameter und Bestimmungsmethoden

Tab. 5: Übersicht über die angewandten Bestimmungsmethoden und die Bezeichnung der Parameter in der TLL-internen Datenhaltung

	Boden-Chemie				
Bez. in DB	Parameter	Verfahren	Norm		
TM	ТМ	Wassergehalt (bzw. Trockenmasse) durch Trocknen im Trockenschrank	MB VDLUFA BD. I A 2.1.1		
NO3-N	Nitratstickstoff	Photometrische Bestimmung	MB VDLUFA BD. I A 6.1.4.1		
NH4-N	Ammoniumstickstoff	Photometrische Bestimmung	MB VDLUFA BD. I A 6.1.4.2		
Smin	Schwefel	ICP-OES	MB VDLUFA BD. I A 6.3.1.1		
рН	pH (CaCl2)	pH-Wert mit Potentiometrie	MB VDLUFA BD. I A 5.1.1		
PCAL	P (CAL)	Phosphor und Kalium im Calcium-Acetat-Laktat(CAL)-Auszug mit Photometrie/F-AAS	MB VDLUFA BD. I A 6.2.1.1		
KCAL	K (CAL)	Phosphor und Kalium im Calcium-Acetat-Laktat(CAL)-Auszug mit Photometrie/F-AAS	MB VDLUFA BD. I A 6.2.1.1		
Mg	Mg (Schachtschabel)	pflanzenverfügbares Magnesium im Calciumchlorid-Auszug mit F-AAS	MB VDLUFA BD. I A 6.2.4.1		
Salz	Salz (LF)	Salzgehalt mit Leitfähigkeitsmessung	MB VDLUFA BD. I A 10.1		
HS	Hyd. Säure	Hydrolytische Säure mit Titration	MB VDLUFA BD. I S.149 (1955)		
Corg	Corg	org. (und Gesamtkohlenstoff) nach trockener Verbrennung (Elementaranalyse)	DIN ISO 10694 (1996)		
Nt	N	Gesamtstickstoff nach trockener Verbrennung (Elementaranalyse)	DIN ISO 13878:1995		
CaCO3	CaCO3	Carbonate nach SCHEIBLER mit Gasvolumetrie	MB VDLUFA BD. I A 5.3.1		
NaCAL	Na (CaCl2)	pflanzenverfügbares Kalium und Natrium im Calciumchloridauszug mit F-AAS	MB VDLUFA BD. I A 6.2.1.7		
CI	CI	Chlorid mit Photometrie	MB VDLUFA BD. I A 10.1.1		
PB	B (hwl)	pflanzenaufnehmbares Bor (heißwasserlöslich nach Berger/TRUOG) mit ICP-OES	MB VDLUFA BD. I A 7.1.1		
PCu	Cu (HNO3)	in Salpetersäure extrahierbares Kupfer nach WESTERHOFF/KRÄHMER/ WITTER mit F-AAS	TGL 25418/13		
PMn	Mn (Sulfit-pH-8)	leichtreduzierbares Mangan nach SCHACHTSCHABEL mit F-AAS	TGL 25418/14		
PZn	Zn (TW)	pflanzenverfügbares Zink im Auszug mit EDTA/Ammoniumcarbonat mit F-AAS	MB VDLUFA BD. I A 7.5.1		
PFe	Fe (EDTA)	Spurennährstoffen und umweltrelevante Schwermetalle im EDTA-Auszug mit ICP-OES	MB VDLUFA BD. I A 7.6.1		
PMo	Mo (Grigg)	in Ammoniumoxalat/Oxalsäure extrahierbares Molybdän mit ICP-MS nach GRIGG	TGL 25418/15 (11/78)/DIN 38406		
Kfixnaß	Kfix - naß	naß fixierbares Kalium mit F-AAS	TGL 25418/08		
Kfixtro	Kfix - tr.	trocken fixierbares Kalium mit F-AAS	HAUSMETHODE		
Ksa	Ksa	schweraustauschbares Kalium mit F-AAS	HAUSMETHODE		

Psl	Psi	schwer lösliches Phosphors (Psl) mit Photometrie	HAUSMETHODE
Pfr	Pfr	Phosphor-Freisetzungsrate nach FLOSSMANN und RICHTER mit Photometrie	HAUSMETHODE
KleffNa	Na (KAKeff.)	effektive Kationenaustauschkapazität (AKe) mit ICP-OES	
	<u> </u>	<u> </u>	HFA (6-2005) A 3.2.1.1
KleffK	K (KAKeff.)	effektive Kationenaustauschkapazität (AKe) mit ICP-OES	HFA (6-2005) A 3.2.1.1
KleffCa	Ca (KAKeff.)	effektive Kationenaustauschkapazität (AKe) mit ICP-OES	HFA (6-2005) A 3.2.1.1
KleffMg	Mg (KAKeff.)	effektive Kationenaustauschkapazität (AKe) mit ICP-OES	HFA (6-2005) A 3.2.1.1
KleffFe	Fe (KAKeff.)	effektive Kationenaustauschkapazität (AKe) mit ICP-OES	HFA (6-2005) A 3.2.1.1
KleffMn	Mn (KAKeff.)	effektive Kationenaustauschkapazität (AKe) mit ICP-OES	HFA (6-2005) A 3.2.1.1
KleffAl	AI (KAKeff.)	effektive Kationenaustauschkapazität (AKe) mit ICP-OES	HFA (6-2005) A 3.2.1.1
KleffH	H+ (KAKeff.)	effektive Kationenaustauschkapazität (AKe) mit ICP-OES	HFA (6-2005) A 3.2.1.1
KINa	KAK (Na)	potentielle Austauschkapazität und austauschbare Kationen mit F-ASS	DIN 19684 Teil 8 (1977)
KIK	KAK (K)	potentielle Austauschkapazität und austauschbare Kationen mit F-ASS	DIN 19684 Teil 8 (1977)
KICa	KAK (Ca)	potentielle Austauschkapazität und austauschbare Kationen mit F-ASS	DIN 19684 Teil 8 (1977)
KIMg	KAK (Mg)	potentielle Austauschkapazität und austauschbare Kationen mit F-ASS	DIN 19684 Teil 8 (1977)
KIMn	KAK (Mn)	potentielle Austauschkapazität und austauschbare Kationen mit F-ASS	DIN 19684 Teil 8 (1977)
KITWert	T-Wert	potentielle Austauschkapazität und austauschbare Kationen mit F-ASS	DIN 19684 Teil 8 (1977)
KIHWert	H-Wert	potentielle Austauschkapazität und austauschbare Kationen mit F-ASS	DIN 19684 Teil 8 (1977)
KISWert	S-Wert	potentielle Austauschkapazität und austauschbare Kationen mit F-ASS	DIN 19684 Teil 8 (1977)
	KönigswExtraktion	Extraktion mit Königswasser	DIN ISO 11466:1997-06
KCa	Ca (ICP-AES) KW	mit ICP-OES	DIN EN ISO 11885:1997-11
KFe	Fe (ICP-AES) KW	mit ICP-OES	DIN EN ISO 11885:1997-11
KK	K (ICP-AES) KW	mit ICP-OES	DIN EN ISO 11885:1997-11
KMg	Mg (ICP-AES) KW	mit ICP-OES	DIN EN ISO 11885:1997-11
KMn	Mn (ICP-AES) KW	mit ICP-OES	DIN EN ISO 11885:1997-11
KNa	Na (ICP-AES) KW	mit ICP-OES	DIN EN ISO 11885:1997-11
KP	P (ICP-AES) KW	mit ICP-OES	DIN EN ISO 11885:1997-11
KS	S (ICP-AES) KW	mit ICP-OES	DIN EN ISO 11885:1997-11
KAI	AI (ICP-AES) KW	mit ICP-OES	DIN EN ISO 11885:1997-11
KAs		***************************************	
	As (Hydrid-AAS) KW	mit Hydrid-AAS	DIN EN ISO 11969:1996-11
KB	As (Hydrid-AAS) KW B (ICP-AES) KW	mit Hydrid-AAS mit ICP-OES	DIN EN ISO 11969:1996-11 DIN EN ISO 11885:1997-11
KB KCd			
	B (ICP-AES) KW	mit ICP-OES	DIN EN ISO 11885:1997-11
KCd	B (ICP-AES) KW Cd (ETA-AAS) KW Cr (Flammen-AAS) KW	mit ICP-OES mit Graphitrohr-AAS	DIN EN ISO 11885:1997-11 E DIN ISO 11047:1995-06 VERF. B
KCd KCr KCu	B (ICP-AES) KW Cd (ETA-AAS) KW Cr (Flammen-AAS) KW Cu (Flammen-AAS) KW	mit ICP-OES mit Graphitrohr-AAS mit Flammen-AAS mit Flammen-AAS	DIN EN ISO 11885:1997-11 E DIN ISO 11047:1995-06 VERF. B E DIN ISO 11047:1995-06 VERF. A E DIN ISO 11047:1995-06 VERF. A
KCd KCr	B (ICP-AES) KW Cd (ETA-AAS) KW Cr (Flammen-AAS) KW	mit ICP-OES mit Graphitrohr-AAS mit Flammen-AAS	DIN EN ISO 11885:1997-11 E DIN ISO 11047:1995-06 VERF. B E DIN ISO 11047:1995-06 VERF. A

KPb	Pb (Flammen-AAS) KW	mit Flammen-AAS	E DIN ISO 11047:1995-06 VERF. A
KSb	Sb (ICP-MS) KW	mit ICP-MS	DIN 38406-E29:1999-05
KTI	TI (ICP-MS) KW	mit ICP-MS	DIN 38406-E29:1999-05
KZn	Zn (Flammen-AAS) KW	mit Flammen-AAS	E DIN ISO 11047:1995-06 VERF. A
	Gesamtaufschluß	mit HNO3/HF/HCIO4-Säuregemisch in geschlossenen PTFE-Gefäßen (Picotrace)	HAUSVERFAHREN
HFCa	Ca (ICP-AES) HF/HNO3	mit ICP-OES	DIN EN ISO 11885:1997-11
HFFe	Fe (ICP-AES) HF/HNO3	mit ICP-OES	DIN EN ISO 11885:1997-11
HFK	K (ICP-AES) HF/HNO3	mit ICP-OES	DIN EN ISO 11885:1997-11
HFMg	Mg (ICP-AES) HF/HNO3	mit ICP-OES	DIN EN ISO 11885:1997-11
HFMn	Mn (ICP-AES) HF/HNO3	mit ICP-OES	DIN EN ISO 11885:1997-11
HFNa	Na (ICP-AES) HF/HNO3	mit ICP-OES	DIN EN ISO 11885:1997-11
HFP	P (ICP-AES) HF/HNO3	mit ICP-OES	DIN EN ISO 11885:1997-11
HFAI	AI (ICP-AES) HF/HNO3	mit ICP-OES	DIN EN ISO 11885:1997-11
HFAs	As (ICP-MS) HF/HNO3	mit ICP-MS	DIN 38406-E29:1999-05
HFB	B (ICP-MS) HF/HNO3	mit ICP-MS	DIN 38406-E29:1999-05
HFCd	Cd (ICP-MS) HF/HNO3	mit ICP-MS	DIN 38406-E29:1999-05
HFCr	Cr (ICP-MS) HF/HNO3	mit ICP-MS	DIN 38406-E29:1999-05
HFCu	Cu (ICP-MS) HF/HNO3	mit ICP-MS	DIN 38406-E29:1999-05
HFMo	Mo (ICP-MS) HF/HNO3	mit ICP-MS	DIN 38406-E29:1999-05
HFNi	Ni (ICP-MS) HF/HNO3	mit ICP-MS	DIN 38406-E29:1999-05
HFPb	Pb (ICP-MS) HF/HNO3	mit ICP-MS	DIN 38406-E29:1999-05
HFSb	Sb (ICP-MS) HF/HNO3	mit ICP-MS	DIN 38406-E29:1999-05
HFTI	TI (ICP-MS) HF/HNO3	mit ICP-MS	DIN 38406-E29:1999-05
HFV	V (ICP-MS) HF/HNO3	mit ICP-MS	DIN 38406-E29:1999-05
HFZn	Zn (ICP-MS) HF/HNO3	mit ICP-MS	DIN 38406-E29:1999-05
	NH4NO3-Extraktion	Extraktion mit 1 M Ammoniumnitratlösung	DIN 19730:1995-10
AAs	As (ICP-MS) AN	mit ICP-MS	DIN 38406-E29:1999-05
ACd	Cd (ICP-MS) AN	mit ICP-MS	DIN 38406-E29:1999-05
ACr	Cr (ICP-MS) AN	mit ICP-MS	DIN 38406-E29:1999-05
ACu	Cu (ICP-MS) AN	mit ICP-MS	DIN 38406-E29:1999-05
ANi	Ni (ICP-MS) AN	mit ICP-MS	DIN 38406-E29:1999-05
APb	Pb (ICP-MS) AN	mit ICP-MS	DIN 38406-E29:1999-05
ASb	Sb (ICP-MS) AN	mit ICP-MS	DIN 38406-E29:1999-05
ATI	TI (ICP-MS) AN	mit ICP-MS	DIN 38406-E29:1999-05
AZn	Zn (ICP-MS) AN	mit ICP-MS	DIN 38406-E29:1999-05

	Boden-Organik				
TM	Trockenmasse	Gefriertrocknung	GLP-SOP 3050, 3051		
A_HCH	alpha-HCH	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
ATR	Atrazin	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
B_HCH	ß-HCH	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
D_HCH	delta-HCH	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
EDN	Endrin (Summe)	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
HCB	НСВ	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
HEP	Heptachlor	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
G_HCH	Lindan	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
OP_DDT	O,P'-DDT	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
PP_DDD	P,P'-DDD	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
PP_DDE	P,P'-DDE	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
PP_DDT	P,P'-DDT	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
PCB101	PCB 101	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
PCB138	PCB 138	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
PCB153	PCB 153	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
PCB180	PCB 180	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
PCB28	PCB 28	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
PCB52	PCB 52	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
SIM	Simazin	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
TBZ	TERBUTYLAZIN	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
E1	Endosulfan (Summe)	mit GC, Boden, ASE	VDLUFA MB B.VII 1.AUFL.1996		
FLT	FLUORANTHEN	mit HPLC (UV- und Fluoreszenzdetektion)	VDLUFA MB B.VII 1996		
IPY	INDENO(1,2,3-cd)PYRE	mit HPLC (UV- und Fluoreszenzdetektion)	VDLUFA MB B.VII 1996		
BBF	BENZO(b)FLUORANTHEN	mit HPLC (UV- und Fluoreszenzdetektion)	VDLUFA MB B.VII 1996		
BKF	BENZO(k)FLUORANTHEN	mit HPLC (UV- und Fluoreszenzdetektion)	VDLUFA MB B.VII 1996		
BAP	BENZO(a)PYREN	mit HPLC (UV- und Fluoreszenzdetektion)	VDLUFA MB B.VII 1996		
BPE	BENZO(ghi)PERYLEN	mit HPLC (UV- und Fluoreszenzdetektion)	VDLUFA MB B.VII 1996		
DCP	Dichlorprop	mit GC-MS, Boden	HAUSVERFAHREN, PHENOXYCARBONS.		
MCPA	MCPA	mit GC-MS, Boden	HAUSVERFAHREN, PHENOXYCARBONS.		
MCP	Mecoprop	mit GC-MS, Boden	HAUSVERFAHREN, PHENOXYCARBONS.		
ISO	Isoproturon	mit HPLC nach ASE-Extraktion	VDLUFA-MB B.VII 1.AUFL.1996		
BEN	Bentazon	mit GC-MS, Boden	HAUSVERFAHREN, PHENOXYCARBONS.		
IOX	IOXYNIL	mit GC-MS, Boden	HAUSVERFAHREN, PHENOXYCARBONS.		

BRO	Bromoxynil	mit GC-MS, Boden	HAUSVERFAHREN, PHENOXYCARBONS.
NAP	NAPHTALIN	mit HPLC (UV- und Fluoreszenzdetektion)	VDLUFA MB B.VII 1996
ANA	ACENAPHTHEN	mit HPLC (UV- und Fluoreszenzdetektion)	VDLUFA MB B.VII 1996
FLU	FLUOREN	mit HPLC (UV- und Fluoreszenzdetektion)	VDLUFA MB B.VII 1996
PHE	PHENANTHREN	mit HPLC (UV- und Fluoreszenzdetektion)	VDLUFA MB B.VII 1996
ANT	ANTHRACEN	mit HPLC (UV- und Fluoreszenzdetektion)	VDLUFA MB B.VII 1996
PYR	PYREN	mit HPLC (UV- und Fluoreszenzdetektion)	VDLUFA MB B.VII 1996
CHR	CHRYSEN	mit HPLC (UV- und Fluoreszenzdetektion)	VDLUFA MB B.VII 1996
BAA	BENZO(a)ANTHRACEN	mit HPLC (UV- und Fluoreszenzdetektion)	VDLUFA MB B.VII 1996
DBA	DIBENZO(a,h)ANTHRACE	mit HPLC (UV- und Fluoreszenzdetektion)	VDLUFA MB B.VII 1996
ANY	ACENAPHTHYLEN	mit HPLC (UV- und Fluoreszenzdetektion)	VDLUFA MB B.VII 1996
		Boden-Physik	
KfV	Wasserdurchlässigk.	Bestimmung der Wasserdurchlässigkeit von Böden im wassergesätt. Zustand	MB VDLUFA Bd. I C 5.1.1
PL	Luftdurchlässigk.	Bestimmung derLuftdurchlässigkeit von Böden	DIN 19 682-9
Db	Rohdichte trocken	Trockenrohdichte von Bodenproben	DIN ISO 11272 (1994)
rs	Reindichte	Reindichte durch Volumenverdrängung	BAL MICROMETRICS (2001)
GPV	GPV	Bestimmung des Substanz- und Porenanteils in Mineralböden	DIN 19 683-13 (1973)
FAE1	pF-Wert 1,8	Bestimmung der Porengrößenverteilung bei pF 1,8	MB VDLUFA Bd. I C 4.3
FAE2	pF-Wert 2,0	Bestimmung der Porengrößenverteilung bei pF 2,0	MB VDLUFA Bd. I C 4.3
FAE3	pF-Wert 2,5	Bestimmung der Porengrößenverteilung bei pF 2,5	MB VDLUFA Bd. I C 4.3
FAE4	pF-Wert 3,0	Bestimmung der Porengrößenverteilung bei pF 3,0	MB VDLUFA Bd. I C 4.3
AeWP	pF-Wert 4,2	Bestimmung der Porengrößenverteilung bei pF 4,2	MB VDLUFA Bd. I C 4.3
rtk	Aggr.dichte 3-5mm	Volumenverdrängung mit dryflow (Geopyc)	BAL MICROMETRICS (2001)
rtg	Aggr.dichte 5-7mm	Volumenverdrängung mit dryflow (Geopyc)	BAL MICROMETRICS (2001)
APVtk	APVtk	Aggregatporenvolumen Aggregate 3-5 mm trocken	Hausmethode
APVfk	APVfk	Aggregatporenvolumen Aggregate 3-5 mm feucht	Hausmethode
APVtg	APVtg	Aggregatporenvolumen Aggregate 5-7 mm trocken	Hausmethode
APVfg	APVfg	Aggregatporenvolumen Aggregate 5-7 mm feucht	Hausmethode
AggStk	AggStk	Druckstabilität Aggregate 3-5 mm	Methode POP
AggStg	AggStg	Druckstabilität Aggregate 5-7 mm	Methode POP
SkelGeh	SkelGeh	Siebung > 2 mm	DIN 19 683-1
KoerGS	GS	Siebung und Sedimentation 0,63 - 2 mm	DIN 19 683-1
KoerMS	MS	Siebung und Sedimentation 0,2 - 0,63 mm	DIN 19 683-1
KoerFS	FS	Siebung und Sedimentation 0,063 - 0,2 mm	DIN 19 683-1
KoerGU	GU	Siebung und Sedimentation 0,02 - 0,063 mm	DIN 19 683-2

KoerMU	MU	Siebung und Sedimentation 0,0063 - 0,02 mm	DIN 19 683-2
KoerFU	FU	Siebung und Sedimentation 0,002 - 0,0063 mm	DIN 19 683-2
KoerT	Т	Siebung und Sedimentation < 0,002 mm	DIN 19 683-2
		Pflanzen	
TM	Trockensubstanz	im Trockenschrank	VDLUFA MB BD. III, 3.1
NO3	NO3	Nitrat mit Fotometrie	HAUSMETHODE
Ν	Gesamt-Stickstoff	mit DUMAS-Verbrennungsmethode	VDLUFA MB BD. III, 4.1.2
Ca	Ca (RFA)	mit Röntgenfluoreszenzanalyse (RFA)	HAUSMETHODE SOP V1-260-01
Р	P (RFA)	mit Röntgenfluoreszenzanalyse (RFA)	HAUSMETHODE SOP V1-260-01
Na	Na (RFA)	mit Röntgenfluoreszenzanalyse (RFA)	HAUSMETHODE SOP V1-260-01
Mg	Mg (RFA)	mit Röntgenfluoreszenzanalyse (RFA)	HAUSMETHODE SOP V1-260-01
K	K (RFA)	mit Röntgenfluoreszenzanalyse (RFA)	HAUSMETHODE SOP V1-260-01
Cu	Cu (RFA)	mit Röntgenfluoreszenzanalyse (RFA)	HAUSMETHODE SOP V1-260-01
Mn	Mn (RFA)	mit Röntgenfluoreszenzanalyse (RFA)	HAUSMETHODE SOP V1-260-01
Zn	Zn (RFA)	mit Röntgenfluoreszenzanalyse (RFA)	HAUSMETHODE SOP V1-260-01
Fe	Fe (RFA)	mit Röntgenfluoreszenzanalyse (RFA)	HAUSMETHODE SOP V1-260-01
S	S (RFA)	mit Röntgenfluoreszenzanalyse (RFA)	HAUSMETHODE SOP V1-260-01
CI	CI (RFA)	mit Röntgenfluoreszenzanalyse (RFA)	HAUSMETHODE SOP V1-260-01
	Druckaufschluß	Druckaufschluß mit HNO3	VDLUFA MB-VII:1996
	MikrowDruckaufsch.	mit HNO3/H2O2-Gemisch in geschlossenen Quarzglasgefäßen	HAUSVERFAHREN
As	As (Hydrid-AAS)	mit Hydrid-AAS	DIN EN ISO 11969:1996-11
В	B (ICP-MS)	mit ICP-MS	DIN 38406-E29:1999-05
Cd	Cd (ICP-MS)	mit ICP-MS	DIN 38406-E29:1999-05
Cr	Cr (ETA-AAS)	mit Graphitrohr-AAS	DIN EN 1233.4:1996-07
Hg	Hg (KaltdAAS)	mit Kaltdampf-AAS	DIN EN 1483:1997-05
Мо	Mo (ICP-MS)	mit ICP-MS	DIN 38406-E29:1999-05
Pb	Pb (ICP-MS)	mit ICP-MS	DIN 38406-E29:1999-05
Ni	Ni (ETA-AAS)	mit Graphitrohr-AAS	DIN 38406-E11-2:1991-09
Sb	Sb (ICP-MS)	mit ICP-MS	DIN 38406-E29:1999-05
TI	TI (ICP-MS)	mit ICP-MS	DIN 38406-E29:1999-05
	Organik		
ADN	Aldrin	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
A_HCH	alpha-HCH	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
B_HCH	в-нсн	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
CCL	cis-Chlordan	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991

G_HCH	Lindan	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
	cis-Heptachlorepoxid Lindan	mit GC, Pflanze mit GC. Pflanze	DFG S19; 111.LIEFERG. 1991 DFG S19: 111.LIEFERG. 1991
MRX	Mirex	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
OP_DDD	O,P'-DDD	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
OP_DDE	O,P'-DDE	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
_	O,P'-DDT	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
	Oxychlordan	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
	P,P'-DDD	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
PP_DDE		mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
PP_DDT	P,P'-DDT	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
PCB101	PCB 101	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
PCB138	PCB 138	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
PCB153	PCB 153	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
PCB180	PCB 180	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
PCB28	PCB 28	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
PCB52	PCB 52	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
TCL	trans-Chlordan	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
E_HCH	epsilon-HCH	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
K_EDN	delta-Keto-Endrin	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
IDN	Isodrin	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
T_HEPEP	trans-Heptachlorepox	mit GC, Pflanze	DFG S19; 111.LIEFERG. 1991
		Boden-Biologie	
TM	Trockenmasse	Trockenmasse durch Trocknen im Trockenschrank	MB VDLUFA BD. I A 2.1.1
BoAtm	Bodenatmung	Bodenatmung CO2/50 g BodenTS/24 h	nach ISERMEYER
	Biomasse	Mikrobielle Biomasse C/100 g BodenTS	nach ANDERSON und DOMSCH 1978
		NH4-N/g BodenTS/h	
Arg	Arginin-Ammonifikation	NA+N/Q Bouen 5/11	nach ALEF und KLEINER 1987

Glucosid	Beta-Glucosidase	Beta-Glucosidase Bestimmung	nach HOFFMANN & DEDEKEN 1965
Aad	Lumbricidenanzahl (adulte)	Handauslese+Formalin-Austreibung	Hausmethode nach JANETSCHEK 1982
Ajuv	Lumbricidenanzahl (juvenile)	Handauslese+Formalin-Austreibung	Hausmethode nach JANETSCHEK 1982
Mad	Lumbricidenmasse (adulte)	Handauslese+Formalin-Austreibung	Hausmethode nach JANETSCHEK 1982
Mjuv	Lumbricidenmasse (juvenile)	Handauslese+Formalin-Austreibung	Hausmethode nach JANETSCHEK 1982
1	Octalasium	Artbestimmung	MÜLLER 1986
2	Allobophera terrestris longa	Artbestimmung	MÜLLER 1986
3	Allobophera caliginosa	Artbestimmung	MÜLLER 1986
4	Lumbricus terrestris	Artbestimmung	MÜLLER 1986
5	Lumbricus castaneus/rubellus	Artbestimmung	MÜLLER 1986
6	Allobophera rosea	Artbestimmung	MÜLLER 1986
7	Allobophera chlorotica	Artbestimmung	MÜLLER 1986
T2 bis T20	% Celluloseschwund	Köderstreifenfreßtest in mehreren Tiefen	Hausmethode nach v.THOERNE

- 3. Ergebnisse
- 3.1 Boden
- 3.1.1 Bodenphysikalischer Zustand und Gefügeentwicklung

3.1.1.1 Bodenbeanspruchung

Auf den BDF wird der Großflächenwirtschaft entsprechend leistungsstarke Technik eingesetzt. Dabei ist eine erhebliche Veränderung der Technikausstattung eingetreten. Zu Beginn der Dauerbeobachtung war noch Alttechnik verbreitet, die zunehmend durch leistungsstärkere Technik, in den letzten Jahren auch verstärkt unter bodenschonendem Aspekt, ersetzt wurde.

Die modernen Fahrzeuge und Geräte sind mit wenigen Ausnahmen schwerer als die Alttechnik. Jedoch steht ein wesentlich umfangreicheres Angebot an bodenschonenden Bereifungen und Fahrwerkskonstruktionen zur Verfügung und wird von den bewirtschaftenden Betrieben eingesetzt, z.B. Breit- und Großvolumenreifen und Gleisbandfahrwerke. Genutzt werden auch Spezialfahrzeuge mit besonders bodenschonenden Fahrwerken, z.B. für die Gülleausbringung der Terratrac als Dreirad-Fahrzeug mit Reifen von 1050 mm Breite, aber auch Tankfahrzeuge mit Tandem- und Tridemachsen und Bereifung von 600 mm Breite und mehr. Der Innendruck der Reifen wird entsprechend der Tragfähigkeit eingestellt, wobei ein Absenken des Innendruckes auf dem Acker nicht erfolgt.

Die für die belastungsintensiven Arbeiten verwendete Technik und der berechnete Kontaktflächendruck ist in der Tabelle 6 dargestellt.

Der Kontaktflächendruck ergibt sich aus der Radlast, dividiert durch die Reifenaufstandsfläche. Die Radlast ist der Anteil an der Gesamtmasse des Fahrzeuges, der auf das am stärksten beanspruchte Rad entfällt, zuzüglich der anteiligen Masse eines Anbaugerätes einschließlich einer Hebelkraft bzw. der Auflast der Aufsattelgeräte bzw. der Achsbelastung durch den Zugwiderstand.

Tab. 6: Technik für belastungsintensive Arbeitsgänge auf den BDF

Arbeitsgang	Fahrzeug/ Gerät	Zul. Gesamt masse kN	Rad- last kN	Reifen	Kontakt- fläche m²	Kontakt- flächen- druck kPa
Pflügen	Radtraktoren	140	45	620/70R	0,31	145
1,5-2,5m; 0,25m	230-330 PS					
Grubbern	Radtraktoren	140	44	620/70R	0,31	142
5m, 0,15 m	230-330 PS					
Mineral-	Aufsattelstreuer	100	28	18R20	0,19	150117
düngung	, 7-8t Nutzlast			550//6oR	0,24	
Organische	St.d.streuer	200	40	600/55R	0,28	145
Düngung	/Gülletankw.					
	Horsch 18t	265	90	66-43*25	1,10	82
Getreideernte	Mähdrescher	200	Vorn:	30,5R32800/	0,50	120127
	bis 7 m AB,		65	65R	0,54	
	Bunker bis 8t					
Futterernte	Anhänger 8t	120	30	16-20	0,13	230
(Transport)	Nutzlast -					
	Anhänger 20t Nutzlast, Tridemachse	320	41	600/55-22	0,29	141

Zur Berechnung der Kontaktfläche gibt die VDI-Richtlinie Maschineneinsatz (VDI, 2006) Formeln an, die Reifendurchmesser, -breite, -innendruck und Radlast berücksichtigen. Diese Formeln gelten jedoch nur für Reifen mit einem Durchmesser > 1350 mm. Ihre Besonderheit besteht im Ausweis einer wachsenden Aufstandsfläche bei Absenkung des Reifeninnendruckes. Es ist jedoch anzuzweifeln, ob die so berechnete Fläche gleichmäßig beaufschlagt ist. ZIESAK (2005) stellt eine Konzentration des Kontaktflächendruckes unter der Achse fest. Diese Fläche ist ellipsenförmig, ihr Inhalt kann mit der Berechnung als Rechteck mit den Seitenlängen Reifenbreite und Reifenbreite*0,8 ausreichend genau bestimmt werden und ist dem Ergebnis obiger Gleichungen ähnlich, wenn in diese der nach den Lastindizes mögliche Reifeninnendruck eingesetzt wird. Außerdem liefert die vereinfachte Formel plausible Ergebnisse für Implementreifen mit geringerem Durchmesser. Die Kontaktflächen in Tabelle 6 sind mit der vereinfachten Formel berechnet.

Aus dem Bodendruck der Technik und der Druckbelastbarkeit der Flächen (siehe PAUL, R. ET AL. 1998) ergibt sich als Quotient aus Bodendruck und Druckbelastbarkeit die Schadverdichtungsgefährdung als Wahrscheinlichkeit, dass das Gefüge so verändert wird, dass Mindesteigenschaften (kf-Wert > 10 cmd⁻¹; Luftkapazität >8 in der Krume bzw. 5 Vol.-% im Unterboden) nicht mehr gegeben sind Dieses Verhältnis wird als **Druckbelastungsquotient** bezeichnet.

Tab. 7: Verdichtungsrisiko auf den Bodendauerbeobachtungsflächen

Standort	Mittlerer Druckbelastungsquotient		Bewertung	
(BDF)	1998	2005	1998	2005
1	1,54	1,28	zu hoch	kritisch
2	2,01	1,88	zu hoch	zu hoch
3	1,21	1,16	gering	gering
4	1,51	1,37	zu hoch	kritisch
5	1,73	1,37	zu hoch	kritisch
6	1,77	1,30	zu hoch	kritisch
7	2,7	1,34	zu hoch	kritisch
8	1,44	1,34	kritisch	kritisch
9	1,08	1,05	gering	gering
10	1,09	1,09	gering	gering
Mittelwert aller Acker- BDF	1,61	1,32	zu hoch	kritisch

Schadverdichtung

Nach dem Verdichtungsrisiko sind die Standorte in Gefährdungsgruppen eingeteilt. Die Einteilung entspricht mit Ausnahme des Standortes 1 der Einschätzung im Zwischenbericht (PAUL, R. ET AL.1998). Die Quotienten sind jedoch möglicherweise als Folge verbesserter Reifenausstattung kleiner geworden. Danach können die BDF in drei Gruppen eingeteilt werden:

Art des Verdichtungsrisikos	BDF
geringes Verdichtungsrisiko	1,3, 9,10
Risiko vorwiegend durch Kompression	6, 7
Risiko vorwiegend durch Scherung	2, 4, 5, 8

3.1.1.2 Entwicklung des Gefüges 3.1.1.2.1 Trockenrohdichte

Die Trockenrohdichte beschreibt die Masseanteile an Festsubstanz eines Bodenvolumens in Beziehung zu den Hohlräumen, d.h. den Poren. Veränderungen betreffen nur dieses Verhältnis, ohne Aussage zu den Eigenschaften (Speicherung und Verfügbarkeit des Bodenwassers, Durchlüftung, Transporteignung) der Poren. Zudem ist die Trockenrohdichte von der Dichte der Festsubstanz abhängig. So senken Humusakkumulationen und/oder Kalziumsulfatanreicherungen die Trockenrohdichte ab, ohne dass damit eine entsprechende Zunahme des Hohlraumanteils verbunden ist.

Ein weiteres Problem ist die Verteilung der Hohlräume. Tonreiche Böden verfügen über einen hohen Feinporenanteil. Diese Poren senken zwar die Trockenrohdichte, sie nehmen aber nicht am Makrostoffaustausch teil.

Zwecks Vergleichbarkeit mit grobkörnigeren Böden wird die effektive Trockenrohdichte berechnet, indem die Trockenrohdichte mit dem Tonanteil multipliziert wird. Damit löst die effektive Trockenrohdichte aber nur einen Teil des Problems und verbessert die Aussage des Parameters nicht wesentlich.

Je bedeutsamer beim Belastungsvorgang die Scherkräfte gegenüber der Kompression werden, umso geringer ist der Indikatorwert der Trockenrohdichte für stattgefundene Gefügeveränderungen.

Häufig werden dessen ungeachtet in der bodenkundlichen Literatur weitreichende Schlussfolgerungen aus der Trockenrohdichte gezogen.

Die Entwicklung der Trockenrohdichte der gering gefährdeten Standorte ist in der Tabelle 8 dargestellt.

Tab. 8: Entwicklung der Trockenrohdichte der gering verdichtungsgefährdeten BDF

BDF	Mittl. Trockenrohdichte 2005 (g/cm³)	Trend 19982005	Bestimmtheitsmaß
Obere Krume			
1	1,28	fallend	0,0024
3	1,29	fallend	0,0502
9	1,25	fallend	0,5318
10	1,34	fallend	0,1168
Untere Krume			
1	1,40	steigend	0,1334
3	1,39	steigend	0,6963
9	1,30	fallend	0,1273
10	1,35	fallend	0,3345
Krumenbasis			
1	1,46	fallend	0,4581
3	1,47	fallend	0,3127
9	1,56	fallend	0,005
10	1,55	fallend	0,0767
Unterboden		·	
1	1,38	fallend	0,0266
3	1,42	fallend	0,6368
9	1,64	fallend	0,0374
10	1,56	Fallend	0,0414

Auf allen Standorten besteht eine vertikale Schichtung der Trockenrohdichte mit einem Maximum an der Krumenbasis und wieder geringerer Dichte im Unterboden mit Ausnahme des Standortes 9. Innerhalb der Schichten hat sich eine statistisch gesicherte Veränderung Entwicklung nur auf dem Standort 3, dem Braunerde-Tschernosem aus Löß nach Umstellung auf pfluglose Bodenbearbeitung, eingestellt. Die untere Krume (15...30 cm) ist deutlich dichter geworden, der Unterboden hat sich aufgelockert.

Die hohe Trockenrohdichte des Unterbodens des Standortes 9 ist bodentypisch und entspricht der Dichte des Sw/Sd-Horizontes schluffiger Pseudogleyböden, wie sie so und höher auch unter Wald auftritt.

Auf den Standorten 6 und 7 (Braunerde und Pseudogley auf Buntsandstein) zeigt sich ebenfalls nach Umstellung auf pfluglose Bodenbearbeitung eine deutliche Zunahme der Dichte der unteren Krume (Tab. 9). Der Trend ist im Jahre 2004 unterbrochen, insbesondere auf dem Standort 6 ist die Trockenrohdichte in diesem Jahr um 0,14 gcm⁻³ abgesunken. In diesem Jahr wurde Raps angebaut, die Rapswurzeln haben ein umfangreiches Röhrensystem angelegt. Die Röhren waren nicht beständig, zur nächsten Beprobung stieg die Trockenrohdichte wieder auf das vorherige Niveau.

Tab. 9: Entwicklung der Trockenrohdichte auf den gefährdeten Standorten (kompressionsgefährdete Böden)

BDF	Mittl. Trockenrohdichte 2005 (g/cm³)	Trend 19982005	Bestimmtheitsmaß	
Obere Krume				
6	1,42	fallend	0,1093	
7	1,34	steigend	0,0442	
Untere Krume				
6	1,63	steigend	0,2526	
7	1,50	steigend	0,8449	
Krumenbasis				
6	1,68	fallend	0,1358	
7	1,62	steigend	0,1975	
Unterboden				
6	1,64	steigend	0,0033	
7	1,64	steigend	0,5215	

Die Trockenrohdichte der tonreichen Standorte (scherempfindliche Böden, Tab.10) hat sich in keinem der untersuchten Standorte verändert. Die Druckwirkung auf den Tonböden ist im betrachteten Bodendruckbereich vorwiegend knetend (isovolum), d.h. das geringe Grobporenvolumen wird überwiegend umgelagert, wahrscheinlich auch anteilig in Mittelporen umgewandelt, die bestehenden und dominierenden engen Mittelporen und vor allem Feinporen werden nicht angegriffen.

Tab. 10: Entwicklung der Trockenrohdichte auf den gefährdeten Standorten (scherempfindliche Böden)

BDF	Mittl. Trockenrohdichte (g/cm³)	Trend	Bestimmtheitsmaß
	Obere Krume		
2	0,91	steigend	0,5689
4	1,27	fallend	0,4856
5	1,17	fallend	0,0591
8	1,19	steigend	0,5826
Untere Krume			
2	0,98	fallend	0,1574
4	1,37	steigend	0,3623
5	1,30	steigend	0,0426
8	1,29	steigend	0,0148
Krumenbasis			
2	1,14	fallend	0,0612
4	1,47	steigend	0,1645
5	1,46	steigend	0,1259
8	1,48	fallend	0,4377
Unterboden			
2	1,15	steigend	0,0125
4	1,46	steigend	0,0662
5	1,52	steigend	0,0562
8	1,52	fallend	0,02811

Zusammenfassung

Deutliche Veränderungen der Trockenrohdichte waren nur in der unteren Krume der pfluglos bearbeiten Standorte festzustellen, sie stieg dort an. Unter dem Einfluss von Fruchtarten mit starkem Wurzelsystem kann aber auch eine temporäre Auflockerung eintreten, hervorgerufen durch grobe Vertikalporen.

Krumenbasis und Unterboden sind im gesamten Beobachtungszeitraum auf dem eingangs gemessenen Niveau geblieben, d.h. signifikante Verdichtungen des Unterbodens sind weder auf den stabilen noch auf den druckempfindlichen Standorten eingetreten.

Methodisch zeigt der Einfluss temporärer Grobporen an, dass Ergebnisse aus Einzelbeobachtungen kritisch zu werten sind. Messreihen sind für die Beurteilung von Auswirkung jeglicher Eingriffe in ein Gefüge vorzuziehen.

3.1.1.2.2 Wasserspeicherung

Die Wassergehalts-Saugspannungsbeziehungen unterscheiden sich substratbedingt zwischen den Standorten deutlich (Abb.2)

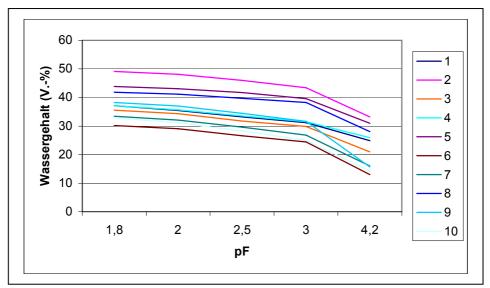


Abb.2: Wassergehalts-Saugspannungsbeziehungen in der Unterkrume der Ackerstandorte

Tendenzen wurden im Beobachtungszeitraum nicht festgestellt. Verschiedene Einflüsse wie die heterogene Verteilung des Substrates auf der Fläche, organische Düngung, Wurzelmasse entsprechend der angebauten Kultur und deren Entwicklungsstand zur Probenahme führten zu Schwankungen des Messwertes zwischen den einzelnen Messjahren (Standardabweichung ca. 2 Vol.-%).

Eine Beziehung zur Trockenrohdichte besteht insofern, als sich die Relationen zur Festsubstanz ändern. Das hat aber nichts mit der Menge gebundenen Wassers zu tun, mit Ausnahme extrem hoher Trockenrohdichten (Buntsandsteinflächen) bleibt die Menge gebundenen Wassers unverändert, denn bei Lockerung und Verdichtung verändert sich vorwiegend das Porensystem > 50 μ m, das kein Wasser speichert. Bei Bezug auf das Bodenvolumen steigt deshalb der Wassergehalt mit der Trockenrohdichte, bei Bezug auf die Trockenmasse fällt der relative Bodenwassergehalt mit steigender Dichte (Abb. 3 u. 4). Nur wenn die Verdichtung Poren zwischen 10 und 50 μ m (und auch engere) komprimiert wie offenbar auf den Buntsandsteinstandorten, bleibt der volumenbezogene Bodenwassergehalt konstant bzw. fällt sogar, der auf die Trockenmasse bezogene Wassergehalt fällt stark ab (Abb. 5).

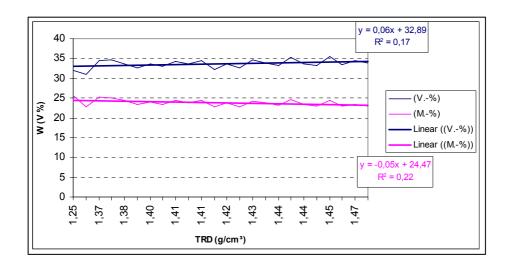


Abb. 3: Entwicklung des Bodenwassergehaltes (FK) im Zusammenhang mit der Trockenrohdichte (Bodenart schluffiger Lehm)

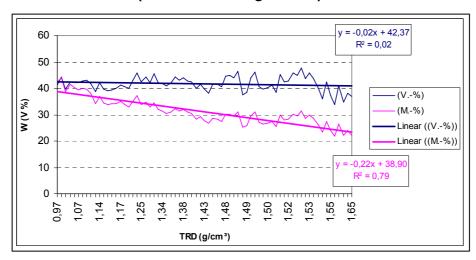


Abb. 4: Entwicklung des Bodenwassergehaltes (FK) im Zusammenhang mit der Trockenrohdichte (Bodenart schwach schluffiger Ton)

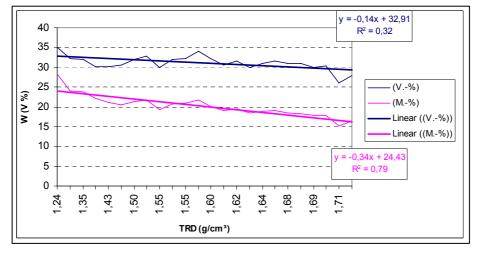


Abb. 5: Entwicklung des Bodenwassergehaltes (FK) im Zusammenhang zur Trockenrohdichte (Bodenart Slu)

Zusammenfassung

Die Wassergehalts-Saugspannungsbeziehungen unterscheiden sich vorrangig nach dem Substrat der BDF. Eine zeitliche Entwicklung ist nur auf den BDF auf Buntsandstein zu erkennen. Die Feldkapazität wird auf diesem Substrat zu einem erheblichen Anteil von den von den Grobporen > 10 μ m bestimmt. Sie nimmt mit zunehmender Trockenrohdichte wegen des Verlustes dieser Poren ab. Das in den Mittel- und Feinporen gespeicherte Wasser ist von der Änderung der Trockenrohdichte nicht signifikant betroffen.

3.1.1.2.3 Luftkapazität:

Die Luftkapazität entspricht dem Anteil an Poren > 50 μ m. Sie bilden den Interaggregatporenraum und sind anteilig vom Substrat abhängig, stärker jedoch vom Gefüge. Mit der Trockenrohdichte besteht ein loser Zusammenhang, indem extreme Werte auch extremen Trockenrohdichten entsprechen. Ein engerer Zusammenhang ist in Böden mit Einzelkorngefüge möglich. Damit kann kein allgemeiner Rückschluss von der Trockenrohdichte auf die Porengrößenverteilung bindiger Böden und damit die Luftkapazität gezogen werden.

Die Luftkapazität ist ein sensibler Parameter für den Nachweis von Schadverdichtungen, denn Veränderungen des Gefüges infolge Kompression oder auch Lockerung betreffen zuerst diese Poren. Zudem sind diese Poren für den Stoffaustausch wichtig.

Auf den gering schadverdichtungsgefährdeten Standorten ist im Mittel weder im Krumenbereich noch an der Krumenbasis und dem Unterboden der jeweilige Orientierungswert unterschritten worden. Entwicklungstrends sind nur in der Unterkrume des Standortes 3 infolge der pfluglosen Bodenbearbeitung zu sichern. Auf allen anderen Standorten gibt es keine signifikanten Veränderungen der Luftkapazität, in der Tendenz an Krumenbasis und Unterboden sogar Verbesserungen. (Abb. 6).

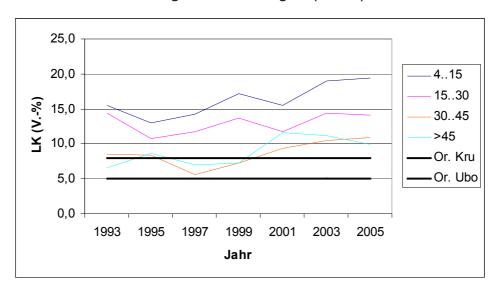


Abb. 6: Entwicklung der Luftkapazität auf den gering verdichtungsgefährdeten BDF in den betrachteten Bodenhorizonten

Auf den BDF 6 und 7 (Buntsandsteinstandorte) hat sich die Luftkapazität in der unteren, nicht mehr gelockerten Krume verringert und das erforderliche Volumen von 8 Vol.-% bis zum Jahre 2004 bei kontinuierlicher Abnahme unterschritten. Im Jahre 2004 erzeugte Raps zahlreiche Vertikalporen, welche die Luftkapazität wieder anhoben. Ein Teil dieser Poren ist im Folgejahr unter Getreide wieder komprimiert worden, so dass das Grobporenvolumen wieder leicht unter 8 Vol.-% sank. In den tieferen Schichten verlief diese Entwicklung

abgeschwächt, auch hier stellte sich nach dem Rapsanbau wieder ein Grobporenvolumen zwischen 5 und 8 Vol.-% ein (Abb. 7).

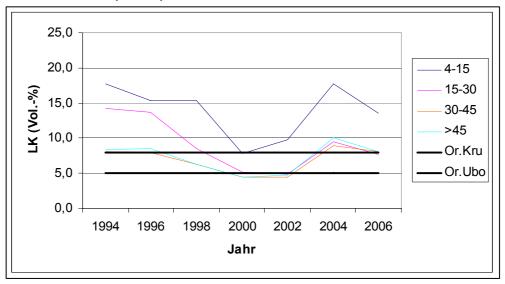


Abb. 7: Entwicklung der Luftkapazität auf den verdichtungsgefährdeten BDF (Kompression) in den betrachteten Bodenhorizonten

Auf den tonreichen Standorten ist eine ausreichende Luftkapazität nur im Krumenraum nach Lockerung gegeben. Krumenbasis und Unterboden sind ihrem kohärenten Gefüge zufolge unzureichend durchlüftet. Rapswurzeln können zwar ein Grobporensystem installieren. Dieses wird aber sehr rasch wieder mit der knetenden Beanspruchung zerstört, d.h. dauerhafte Veränderungen der Luftkapazität traten in diesen Schichten nicht ein. Die Krume wurde überwiegend jährlich mit dem Pflug bis 25 cm Tiefe gelockert. In den seltenen Jahren ohne Pflug sank die Luftkapazität in der unbearbeiteten Unterkrume unter den Orientierungswert. (Abb. 8).

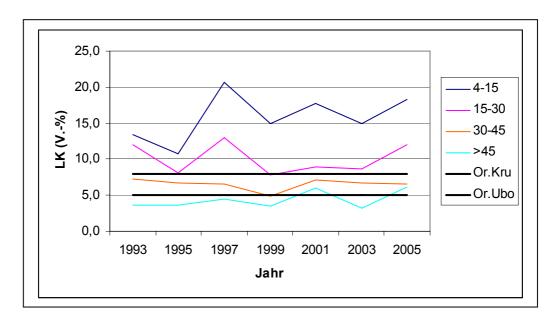


Abb.8: Entwicklung der Luftkapazität auf den verdichtungsgefährdeten Standorten (Knetung) in den betrachteten Bodenhorizonten

Zusammenfassung:

Die Luftkapazität veränderte sich nur im Krumenraum signifikant. Dabei sind hinsichtlich der Schadsituation deutliche Unterschiede zwischen den Standorten festzustellen, die auf die unterschiedliche Druckbelastbarkeit zurückzuführen sind:

Auf den verdichtungsgefährdeten Standorten gerät die Luftkapazität in den Schadbereich, wobei die Schadsituation im unbearbeiteten Krumenbereich (pfluglose Bodenbearbeitung) dauerhaft ist. Kulturen mit kräftigem Wurzelsystem (Raps) können zwar wieder Poren schaffen, auf den pfluglos bewirtschafteten Böden differenziert sich dann diese Schicht in eine sehr dichte Matrix (siehe Entwicklung der Trockenrohdichte) mit zahlreichen Röhren. Die röhrenförmigen Poren nehmen aber mit den nachfolgenden Druckereignissen wieder ab

Tiefere Schichten veränderten sich nicht signifikant.

Auf den Standorten ohne Verdichtungsgefährdung zeigte sich in allen betrachteten Schichten eine ansteigende Tendenz, unabhängig davon, ob die Standorte pfluglos oder mit Pflug bearbeitet wurden.

3.1.1.2.4 Gesättigte Wasserleitfähigkeit

Die gesättigte Wasserleitfähigkeit kennzeichnet die Durchgängigkeit des Grobporensystems für den Stoffaustausch. Im Zusammenhang mit der Luftkapazität betrachtet, ermöglicht der Parameter auch eine Einschätzung der Porenkontinuität. So entspricht eine hohe Leitfähigkeit bei geringer Luftkapazität einem röhrenartigen Grobporensystem, weil Röhren sehr durchlässig sind, andererseits ist ein bei gleicher Luftkapazität gering durchlässiges Grobporensystem stark verwickelt bis isoliert.

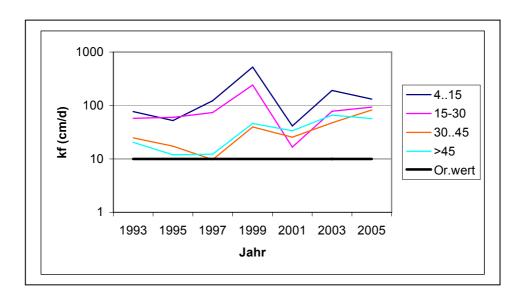


Abb. 9: Gesättigte Wasserleitfähigkeit der Standorte mit geringer Verdichtungsgefährdung

Abb. 10: Gesättigte Wasserleitfähigkeit der Standorte mit Verdichtungsgefährdung (Kompression)

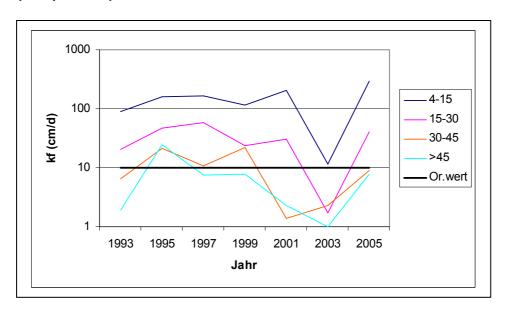


Abb. 11: Gesättigte Wasserleitfähigkeit der Standorte mit Verdichtungsgefährdung (Knetung)

Die Standorte mit geringer Verdichtungsgefährdung sind im betrachteten Bodenraum ausreichend durchlässig mit Ausnahme des SwSd-Horizontes des Pseudogleys (Standort 9), der auf Grund seiner natürlichen Bodenentwicklung dicht ist (Abb. 9).

Auf den anderen Standorten dieser Gruppe besteht eine Tendenz zur Verbesserung bis in den Unterboden.

Auf den kompressionsgefährdeten Buntsandsteinstandorten sinkt die Leitfähigkeit bis zum Jahre 2002, wo sie den Orientierungswert von 10 cmd⁻¹ unterschreitet (Abb. 10). Danach steigt sie stark an, um 2006 wieder zu fallen. Der Rückgang ist am stärksten in der unteren

Krume, wo wieder 15 cmd⁻¹ erreicht werden. Bezogen auf das grobkörnige Bodenmaterial ist der erreichte kf-Wert jedoch niedrig.

Die knetungsgefährdeten Standorte sind nur in der Krume ausreichend durchlässig, wobei der Verzicht auf die tiefe Lockerung sofort von einem starken Rückgang begleitet wird (Abb. 11). Krumenbasis und Unterboden sind überwiegend unzureichend durchlässig, nur kurzeitig verbessert von Rapswurzelröhren.

Zusammenfassung:

Durchgängigkeit des Porensystems steht wie der Volumenanteil Grobporensystems in engem Zusammenhang mit der Gefügeausbildung, ihr Erhalt mit der -stabilität. Die gefügestabilen Standorte sind im gesamten betrachteten Bodenraum unabhängig vom Bodenbearbeitungsverfahren ausreichend durchlässig, d.h. der Bodendruck hat die Poren zwar komprimiert oder verengt, aber nicht unterbrochen. Auf den verdichtungsgefährdeten Standorten kam es dagegen zu erheblicher Reduzierung der Durchgängigkeit in den unbearbeiteten Horizonten, bei pflugloser, flachlockernder Bearbeitung bereits im unteren Krumenraum. Auf den tonreichen Standorten ist die Durchgängigkeit nur durch permanente Lockerung aufrechtzuerhalten. Das bestätigt die vorrangig scherende Wirkung des Bodendruckes auf den Standorten mit knetbarem Bodenmaterial.

Deutlich wird, dass zur Beurteilung eines Standortes Parameter für die Durchlässigkeit des Porensystems immer im Zusammenhang mit dem Volumenanteil der Poren betrachtet werden müssen.

3.1.1.2.5 Entwicklung der Aggregateigenschaften

Verdichtungen der Aggregate weisen auf eine besonders intensive und mit hoher Wahrscheinlichkeit unumkehrbare Gefügeveränderung hin. Sie treten ein, wenn der Bodendruck so hoch ist, dass die Aggregate nicht nur verlagert und enger gepackt, sondern auch erheblich unter Verlust ihres inneren Porenvolumens komprimiert werden. Es entsteht zunächst ein plattiges Gefüge, das sich infolge Quellung und Schrumpfung in polyedrische Aggregate teilt.

Das Aggregatporenvolumen auf den BDF beträgt bodenartspezifisch zwischen 38...35% bei den Schluffböden, 30..35% bei den Sandböden, um 30% bei den schluffigen Lehmböden und unter 30% bei den Tonböden.

Im Beobachtungszeitraum haben sich die Aggregate mit Ausnahme der Unterkrume der BDF 10 (Braunerde auf Schiefer) nicht signifikant verändert (Abb. 12). Die Verdichtung trat dort ein, als der Standort beweidet wurde und auf der Dauerbeobachtungsfläche die Tränkstelle eingerichtet war. Die Fläche wurde damit besonders intensiv belastet.



Abb. 12: Entwicklung der Aggregatdichte (Aggregate 5-7 mm) in der unteren Krume des Standortes 10 (Braunerde auf Schiefer)

Zusammenfassung

Eine signifikante Veränderung der Dichte bzw. des Porenvolumens der Aggregate trat im Beobachtungszeitraum nicht ein. Daraus ist zu schließen, dass die bisher beschriebenen Veränderungen weitgehend auf Veränderungen des Interaggregatporensystems zurückzuführen sind bzw. dass evt. Komprimierungen des Inneraggregatporensystems von natürlichen Kräften (Quellung, Schrumpfung, Frost, biologische Aggregatbildung) wieder aufgehoben wurden.

3.1.1.2.6 Entwicklung des Gefüges auf den Grünlandstandorten

Bei den Grünlandflächen handelt es sich um extensiv bewirtschaftete Flächen mit gelegentlicher Schnittnutzung, überwiegend aber extensiver Beweidung. Die Böden sind zudem skelettreich, so dass wesentlich höhere Widerstandskräfte (es müssen geschichtete Steine verlagert werden) wirken als auf den skelettärmeren Ackerböden.

Auf den Grünlandstandorten sind keine signifikanten Veränderungen der Gefügeeigenschaften eingetreten. Die Trockenrohdichte bewegte sich mit bodentypischen Unterschieden auf einem niedrigen Niveau (Abb. 13), begleitet von einem hohen Grobporenanteil (Abb. 14) und hoher Durchlässigkeit des Porensystems (Abb. 15).

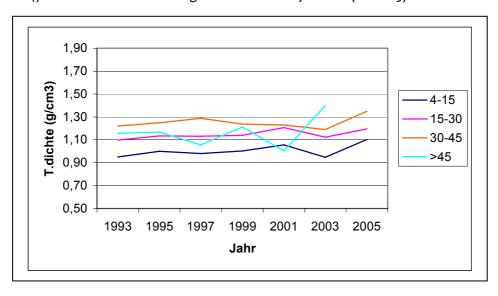


Abb. 13: Entwicklung der Trockenrohdichte auf den Grünlandstandorten

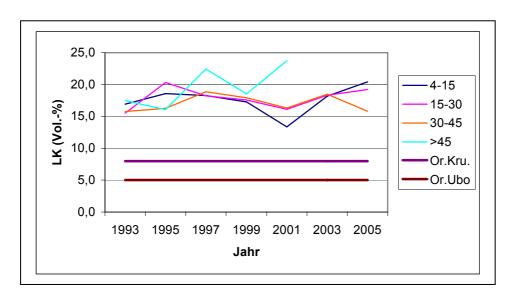


Abb. 14: Entwicklung der Luftkapazität auf den Grünlandstandorten

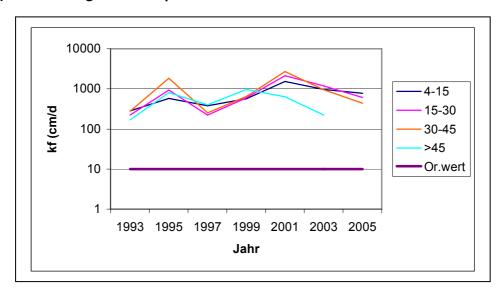


Abb. 15: Entwicklung der Durchlässigkeit auf den Grünlandstandorten

Zusammenfassung:

Die gering belasteten Grünlandflächen veränderten das Gefüge nicht. Das Ergebnis entspricht damit den Erwartungen.

3.1.1.2.7 Einfluss von Bodenbearbeitungsvarianten auf das Gefüge

Pfluglose Bodenbearbeitung

Konsequent pfluglos mit Schwergrubber bzw. Scheibengrubber mit Arbeitstiefen um 12–15 cm wurde auf der BDF 3 (Braunerde-Tschernosem aus Löß) und den BDF 6 und 7 (Braunerde und Pseudogley auf Buntsandstein) gearbeitet.

Auf dem Braunerde-Tschernosem trat nach einer Zunahme der Dichte in der unteren Krume in den ersten Jahren der pfluglosen Bodenbearbeitung in allen betrachteten Schichten und Horizonten keine weitere Veränderung der Trockenrohdichte ein. Die Luftkapazität (Abb. 16) veränderte sich mit Ausnahme eines Rückganges in der unteren Krume, die auf die Zunahme der Trockenrohdichte auf Kosten der groben Poren zurückzuführen ist, ebenfalls nicht signifikant. In der Tendenz ist jedoch ein Anstieg an der

Krumenbasis und im Unterboden zu erkennen. Gleiches trifft für die Leitfähigkeit (Abb. 17) zu.

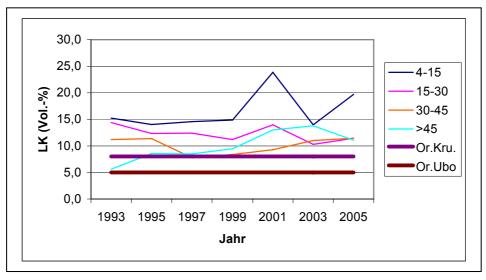


Abb. 16: Entwicklung der Luftkapazität auf dem Braunerde-Tschernosem

Abb. 17: Entwicklung der Wasserleitfähigkeit auf dem Braunerde-Tschernosem

Auf den als druckempfindlich eingeschätzten BDF 6 und 7 stieg die Trockenrohdichte in der unteren Krume signifikant und in den tieferen Schichten in der Tendenz an (Abb. 18).

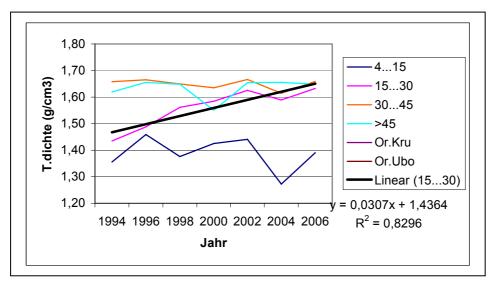


Abb. 18: Entwicklung der Trockenrohdichte auf pfluglos bewirtschafteten verdichtungsempfindlichen (Kompression) Buntsandsteinstandorten

Der Anstieg der Trockenrohdichte erfolgte vorrangig auf Kosten des weiten Grobporensystems, aber auch die engen Grobporen wurden signifikant und die Mittelporen in der Tendenz verringert (siehe Abb. 19).

Die Entwicklung der Luftkapazität zeigt deshalb einen kontinuierlichen Rückgang mit Tiefpunkt im Jahre 2002. Danach ist ein Wiederanstieg zu verzeichnen, der sich im Jahr 2006 wieder umkehrt. Der Tiefpunkt ist unter Ackergras in einem niederschlagsreichen Jahr eingetreten, in dem der nasse Boden befahren wurde, den Anstieg verursachte Raps, der, verbunden mit einer hohen organischen Stickstoffdüngung, zahlreiche Röhren entwickelte, welche die immer noch sehr dichte Matrix durchbrochen haben. Die nachfolgende Beprobungen zeigt wieder einen, wenn auch geringen, Rückgang des Grobporenanteils an.

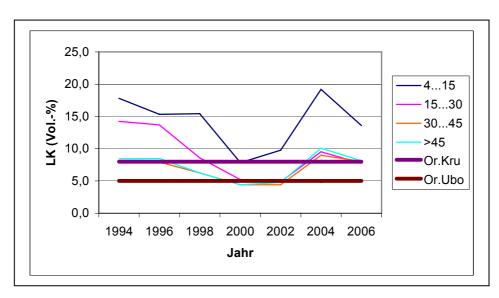


Abb. 19: Entwicklung der Luftkapazität auf den pfluglos bearbeiteten verdichtungsempfindlichen (Kompression) Standorten

Die Wasserleitfähigkeit bleibt ungeachtet der Abnahme der Luftkapazität zunächst weitgehend konstant, sinkt im Jahr mit Ackergras erheblich ab um nach steilem Anstieg wieder das bisherige Niveau zu erreichen (Abb. 20).

Die verzögerte Reaktion der Leitfähigkeit ist auf einen teilweisen Ersatz durch Röhren zurückzuführen. Der wieder einsetzende Rückgang ist auf die Zerstörung eines Teiles dieser Röhren, ggf. auch Unterbrechung zurückzuführen.

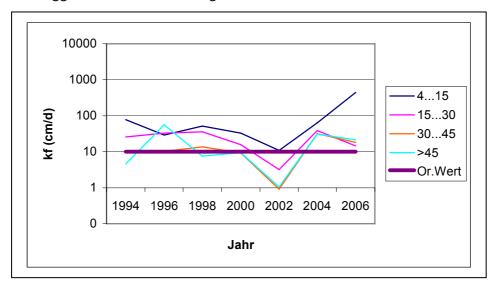


Abb. 20: Entwicklung der gesättigten Wasserleitfähigkeit auf den pfluglos bearbeiteten verdichtungsempfindlichen (Kompression) Standorten

Vergleicht man die Transporteignung des Bodenprofils, so fällt im gefügestabilen pfluglos bearbeiteten Boden die Gleichmäßigkeit auf, während die instabilen Standorte extrem durchlässig in der Oberkrume sind, erreichen die unbearbeiteten Horizonte trotz der Durchbohrung der festen Matrix nur eine geringe Durchlässigkeit. Dies dürfte zum Stau von Starkniederschlägen an der Grenze zur Oberkrume führen (Tab. 11).

Tab. 11: Verteilung der Wasserdurchlässigkeit im Profil pfluglos bearbeiteter Standorte

	Kf – Wert (cm/d)			
Schicht	stabiles Gefüge	instabiles Gefüge		
Oberkrume	72	444		
Unterkrume	73	15		
Krumenbasis	42	18		
Unterboden	73	22		

Zusammenfassung:

Auf den pfluglos bewirtschafteten Standorten tritt eine signifikante Dichtezunahme der unteren, nicht mehr bearbeiteten Krume vorrangig auf Kosten des Grobporensystems > 50 µm ein. Die Durchlässigkeit der Schicht sinkt dagegen nicht mit gleicher Intensität, weil röhrenförmige Poren (Wurzel- und Wurmröhren) mit ihrer hohen Durchgängigkeit die Transportleistung der Schicht z.T. ausgleichen. Auf gefügestabilen Standorten wie dem Tschernosem bleibt die verdichtete Schicht nach beiden Kriterien hinreichend funktionsfähig, d.h. es ist keine Schadverdichtung eingetreten. Auf den instabileren kompressionsgefährdeten Standorten wie den Buntsandsteinstandorten wird das Grobporensystem stärker verändert, die Schicht kann schadverdichtet werden. Auf den BDF ist sie in eine extrem dichte Matrix und zahlreiche Röhren gegliedert.

Die Röhren können die Parameter Luftkapazität und Leitfähigkeit so verbessern, dass sie wenigstens zeitweise als intakt betrachtet werden kann. Dem widerspricht die visuelle Gefügeburteilung, weil die Matrix alle Anzeichen einer Schadverdichtung beibehält. Es ist daher erforderlich, die visuelle Gefügebeurteilung hinzuzuziehen (siehe Lebert u.a. 2004).

Periodisches Pflügen

Die Mehrzahl der Standorte wurde wechselweise pfluglos und nach unterschiedlich langen Perioden mit dem Pflug bearbeitet. Die pfluglosen Perioden lagen meist zwischen Getreide, gepflügt wurde nach Raps, Silomais und vor grobkörnigen Saaten. Es wurde aber auch zwischen längeren Getreidefolgen Pflugarbeit eingeschaltet. Die pfluglosen Perioden waren auf den gefügestabilen Böden länger, auf den tonigen Standorten wurde nur gelegentlich auf das Pflügen verzichtet.

Auf den gefügestabilen Böden zeigt sich eine signifikante Dynamik nur in der Krume. In den pfluglosen Perioden verdichtet sich die untere Krume, ohne schadverdichtet zu werden. Die Pflugarbeit lockert diese Schicht wieder auf (Abb. 21).

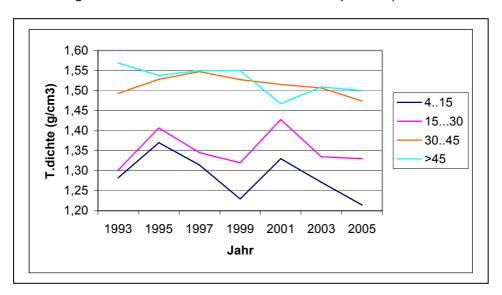


Abb. 21: Entwicklung der Trockenrohdichte auf den gepflügten gefügestabilen Standorten

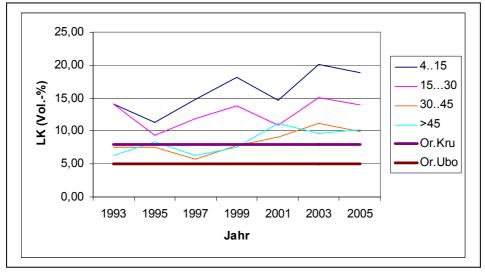


Abb. 22: Entwicklung der Luftkapazität auf den periodisch gepflügten gefügestabilen Standorten

Die Dynamik beruht vor allem auf Veränderungen des Grobporensystems, es wird in den pfluglosen Perioden reduziert und durch die Pflugarbeit zunächst im Übermaß wieder neu geschaffen (Abb. 22).

Dieses Übermaß an Grobporen ist die Ursache für eine größere Spurtiefe bei Befahren des noch nicht abgesetzten Bodens, jedoch ist diese Spur nicht unbesehen mit einer Schadverdichtung gleichzusetzen.

Die Aggregateigenschaften sind unverändert geblieben und bestätigen die überwiegenden Auswirkungen der Pflugarbeit auf das Grobporensystem. Es ist aber anzunehmen, dass in den pfluglosen Perioden Aggregate in der Unterkrume verdichtet und zu Polyedern umgeformt werden, diese Aggregatform ist zu entsprechenden Zeiten zu finden. Der Pflug befördert diese Aggregate an die Oberfläche, wo sie durch Frost, Quellung und Schrumpfung zerfallen und durch biologische Prozesse zu neuen Krümeln aufgebaut werden.

Die Wasserleitfähigkeit der gepflügten Böden hat sich auf ein gleichbleibendes ausreichendes Niveau im gesamten betrachteten Profil eingeregelt (Abb. 23).

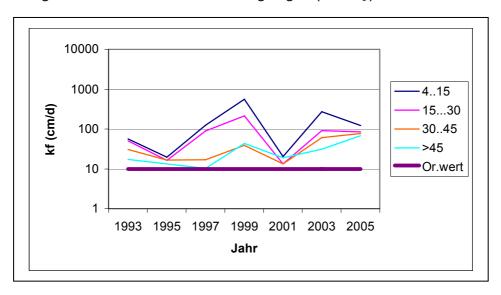


Abb.23: Entwicklung der Wasserdurchlässigkeit auf den periodisch gepflügten gefügestabilen Standorten

Auf den knetungsgefährdeten Tonböden ist nur eine geringe Dynamik der materialbedingt niedrigen Trockenrohdichten zu verzeichnen. Die ohnehin geringe Luftkapazität sinkt bei Lockerungsverzicht regelmäßig unter die Schadschwelle (Abb. 24). Dabei ist der Rückgang auf den skelettarmen Standorten dramatischer als auf den skelettreichen. In Krumenbasis und Unterboden ist kein Einfluss der Bearbeitung zu erkennen, eine Erhöhung der Luftkapazität ist nach Raps zu beobachten, die jedoch rasch wieder absinkt.

Die Wasserdurchlässigkeit folgt in der Krume den Bearbeitungsverfahren, d.h. bei Pflugverzicht sinkt sie in der unteren Krume weit unter das notwendige Niveau. Krumenbasis und Unterboden sind überwiegend dicht, eine zeitlich begrenzte höhere Durchlässigkeit tritt durch den Anbau von Raps ein (Abb. 25).

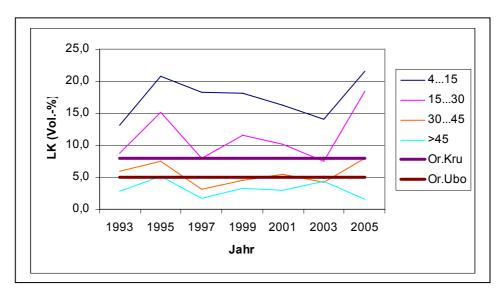


Abb.24: Entwicklung der Luftkapazität auf den periodisch gepflügten instabilen (Knetung)
Standorten

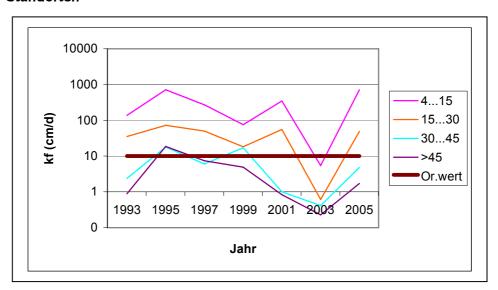


Abb. 25: Entwicklung der Wasserleitfähigkeit auf den gepflügten instabilen (Knetung)
Standorten

Zusammenfassung

Die Auswirkungen eines bestimmten Bodenbearbeitungsverfahrens auf das Gefüge sind weitgehend von den Gefügeeigenschaften, insbesondere der Gefügestabilität abhängig. Auf Böden mit stabilem Krümel-/Bröckelgefüge ist sowohl pfluglos als auch Pflugeinsatz bei dem vorgefundenen Bodendruckniveau möglich. Die entsprechenden Böden sind die schluffreichen Böden aus Löß und Schieferverwitterung mit einem Tonanteil von 18...25%. Allerdings zeigen Ergebnisse auf Böden vergleichbarer Bodenart im schlechten Gefügezustand (Platten- Polyedergefüge) sächsischen Beobachtungen zufolge eine wesentlich höhere Druckempfindlichkeit.

Die druckempfindlichen pfluglos bearbeiteten Buntsandsteinböden sind im Unterkrumenbereich sehr stark verdichtet worden und als geschädigt zu betrachten. In der Tendenz setzt sich die Verdichtung bis in den Unterboden fort.

Auf den Tonböden, die gleichfalls druckempfindlich insbesondere gegenüber scherender Beanspruchung sind, ist eine tiefe Lockerung der Krume notwendig. Unbearbeitete Schichten werden bei dem bestehenden Bodendruckniveau schnell schadverdichtet. Von den Lockerungsverfahren haben wendende den Vorteil, dass evt. umgeformte Aggregate an die Oberfläche kommen und dort intensiver natürlichen gefügebildenden Kräften ausgesetzt sind. Hinsichtlich der Gefügeentwicklung sollte der Entscheid für ein Bodenbearbeitungsverfahren vom Gefügezustand der nicht mehr zu bearbeitenden Schicht und der folgenden Schichten, deren Druckfestigkeit und den Möglichkeiten, mit dem Bodendruck dieser Druckfestigkeit zu entsprechen bzw. sie zu unterbieten, abhängig gemacht werden. Aus den Untersuchungen leiten sich keine standortbezogenen Ausschlussgründe für den Pflugverzicht ab.

3.1.1.3 Schlussfolgerung

Gefügeentwicklung:

- Eine deutliche Dynamik der Gefügeeigenschaften hat sich unter den gegenwärtigen Belastungsbedingungen nur im Krumenraum gezeigt.
- Krumenbasis und Unterboden blieben unverändert
- Gefügeschäden sind nur in der Unterkrume der pfluglos bearbeiteten Buntsandsteinstandorte und temporär bei Pflugverzicht auf den Tonböden eingetreten.
- Es bestätigt sich eine Abhängigkeit der Gefügeentwicklung von der Gefügestabilität
- Die Gefügestabilität und der Gefügezustand bestimmen auch die Auswirkungen unterschiedlicher Bodenbearbeitungsverfahren auf die Gefügeentwicklung
- Die Ergebnisse sind unter den gegenwärtigen Belastungsbedingungen entstanden. Da sich die Landtechnik weiterentwickelt, bleibt eine potentielle Gefahr für das Gefüge bestehen und Maßnahmen zum Gefügeschutz aktuell.
- Wegen der Begrenzung der beobachteten Gefügeschäden auf den ehemaligen Pflughorizont können die durch sie hervorgerufenen Funktionsstörungen mittels periodisch tieferer Bearbeitung behoben werden.

Methodik:

- Deutlich geworden ist der Vorteil langjähriger Reihen bei der Bewertung von Entwicklungen des Bodengefüges. Die des Aufwandes wegen praktizierte Reduzierung von Gefügeuntersuchungen auf eine Anfangs- und Schlussuntersuchung kann zu Fehlurteilen führen, weil zeitlich begrenzte Ereignisse wirken können.
- Messparameter sollten vorrangig funktionsbezogene Parameter sein, die sinnvoll mit der visuellen Gefügebeurteilung zu ergänzen sind. Ausschließlich volumenbezogene Parameter wir Porenvolumen und Trockenrohdichte sind für Gefügebewertungen ungeeignet.
- Angesichts zu erwartender Weiterentwicklung der Landtechnik sollte die Gefügeentwicklung auf den BDF weiter beobachtet werden.
- Das Vorsorgekonzept zum Bodengefügeschutz (Druckbelastungsquotient) hat sich langjährig bestätigt und sollte von der Praxis angewandt werden.

3.1.2 Bodenbiologie

3.1.2.1 Bodenmikrobiologie

Der mikrobielle Umsatz organischer Materialien trägt wesentlich zur Versorgung der Pflanzen mit Nährstoffen in aufnehmbarer Form bei.

Mikroorganismen spalten hochmolekulare organische Verbindungen. Damit sind sie in der Lage, Rückstände von Pflanzenschutzmitteln abzubauen und so die Risiken des chemischen Pflanzenschutzes zu mindern.

Biologische Parameter zeigen den Bewirtschaftungseinfluß und sonstige Umwelteinflüsse auf die Bodenchemie an, bevor Ertragsminderungen eintreten. Damit sind sie im besonderen Maße für den vorsorgenden Bodenschutz interessant.

Das Ziel der Untersuchungen besteht in der langfristigen Beobachtung des Einflusses von Bewirtschaftungsmaßnahmen und Umwelteinflüssen auf die mikrobielle Biomasse und die mikrobielle Leistung.

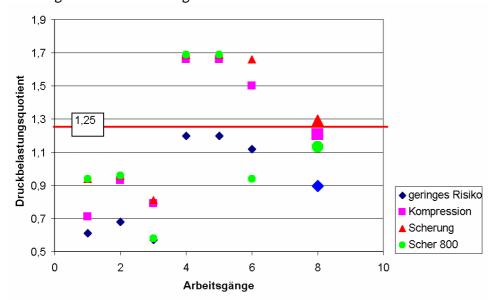
Es werden bestimmt:

- Mikrobielle Biomasse
- Bodenatmung
- Katalasezahl.

Im Vergleich mit der ersten Auswertung 1998 zeigen bei allen 3 Parametern nur noch 2 der 4 Grünland-BDF im Mittel aller Beobachtungsjahre deutlich höhere Werte als die Acker-Standorte (vgl. Abb.26). Das könnte eine Folge der nunmehr langjährig extensiven Grünlandnutzung sein. In speziellen, tiefer gehenden Analysen des gesamten Datenmaterials, die im Rahmen dieses Berichtes nicht leistbar sind, sollte dieser Vermutung nachgegangen werden.

Tischer (2005) bezeichnet Metabolische Quotienten >10 als bedenklich und ein Verhältnis Cmik / Corg von < 1 als Ausdruck eines zu niedrigen Pools an mikrobiologisch aktiver Biomasse. In Abb. 36 sind die Mittelwerte des gesamten Messzeitraumes dargestellt. Abb.27 zeigt, dass die 2 Grünlandflächen mit den weniger bedenklichen Metabolischen Quotienten tatsächlich auch über einen ausreichenden Pool an mikrobiologisch aktiver Biomasse verfügen. Dem Niveau "nicht ausreichender Pool" nähern sich die anderen beiden Grünlandflächen an (…und bezeichnenderweise keine der 10 Ackerflächen!).

Im folgenden soll der Versuch einer kombinierten Interpretation von mikrobiologischen Ergebnissen und der bodenphysikalischen Befunden für die Acker-BDF unternommen werden:

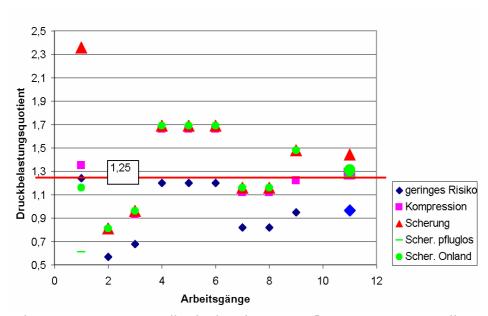

Dazu werden die BDF nach ihrer Verdichtungsgefährdung wie in Kap. 3.1.1 beschrieben gruppiert ("geringe Gefährdung", Gefährdung durch Kompressionsvorgänge", Gefährdung durch Scherprozesse").

Die Zeitreihen der Parameter Mikrobielle Biomasse, Bodenatmung und Katalasezahl sind in den Abbildungen 28, 29 und 30 dargestellt. Zunächst ist generell festzustellen, dass über die Jahre scheinbar ein Anstieg von mikrobieller Biomasse und Katalasezahl und eine Abnahme der Bodenatmung erfolgte. Im Falle der Gruppe "Gefährdung durch Scherprozesse" ergibt sich nur für die Biomasse ein beachtliches Bestimmtheitsmaß dieses Trends.

Abb. 31 enthält die bodenphysikalischen Gefügekennwerte aus 20...30 und 30...40 cm Bodentiefe. Dort finden sich im oberen Tiefenbereich nahezu ausschließlich Werte der letzten Jahre der Gruppe "Gefährdung durch Scherprozesse" im kritischen Bereich (Luftkapazität <10 V%, gesättigte Wasserleitfähigkeit <10 cm/d). Im oberen Unterboden wurden namentlich in den letzten Jahren für die gleiche Gefährdungsgruppe unzureichende Werte der Wasserdurchlässigkeit bei noch ausreichenden Grobporenvolumina gefunden. In Verbindung mit einem in Tabelle 12 exemplarisch mitgeteilten Druck-

belastungsquotienten von 1,49 (tolerabel <1,25) drückt das bewirtschaftungsbedingte Bodenstrukturprobleme, oder anders ausgedrückt, Handlungsbedarf zur Vorsorge gegen Bodenschadverdichtung, aus.

Dieser Handlungsbedarf bei praxisüblicher Produktionstechnologie wird bei Anwendung des "Bodenschutzplaners" der TLL für die Feldblöcke, auf denen die jeweiligen BDF liegen, auch tatsächlich abgebildet: Abb.32 und 33 zeigen für die Produktion von Silomais und Winterweizen Druckbelastungsquotienten >1,25. Dieser Wert soll nach dem Thüringer Beratungsansatz zur Vorsorge gegen Schadverdichtung (PAUL, ET AL., 1998; GULLICH, 2003) nicht überschritten werden. In Abb. 32 beinhaltet die Variante "Scher 800" für die Gruppe "Gefährdung durch Scherprozesse" den Einsatz von Breitreifen bei Bestellung und Ernte, was zur erwünschten Absenkung des Druckbelastungsquotienten unter den genannten Wert führt. Abb. 33 berücksichtigt für die gleiche Gruppe in der Variante "Scher pfluglos" den Ersatz des Pfluges durch den Grubber und in der Variante "Pflug Onland" den Verzicht auf Furchenfahrt beim Pflügen. Beide Vorsorgemaßnahmen führen zumindest zu einer bedeutenden Absenkung des Druckbelastungsquotienten, obgleich noch in geringerem Umfang weiterer Handlungsbedarf besteht.



Arbeitsgänge: 1 Grundbodenbearbeitung, Grubber 2 Gülleausbringung 3 Bestellung 4 u.5 Pflanzenschutz 6 Ernte 8 Mittelwert

Abb.32: Druckbelastungsquotient bei Produktion von Silomais auf den Feldblöcken, die die BDF der 3 Gefährdungsgruppen beinhalten.

Tabelle 12: Bodenphysikalische Parameter und Mikrobiologie im unteren Bereich des A_p-Horizontes

Verdichtungs- risikogruppe	Druckbe- lastungs- Quotient	Trockenroh- dichte	Luftkapazität	Gesättigte Wasserleit- fähigkeit	Meta- bolischer Quotient	C _{mik} / C _{Org}		
nachKap. 3.1.1	2005 (MW)	Т	rend 1998 200	Mittel aller BDF und messjahre der Gruppe				
ger. Risiko (BDF 1,3,9,10)	1,14	leicht steigend	gleich bleibend	gleich bleibend	11,8	3,16		
Risiko durch Kompression (BDF 6,7)	1,34	steigend abnehmend		leicht abnehmend	8,6	4,58		
Risiko durch Scherung (BDF 2,4,5,8)	1,49	gleich bleibend	abnehmend	abnehmend	15,8	4,44		

Arbeitsgänge: 1 Grundbodenbearbeitung, Pflug 2 Bestellung

3 Gülleausbringung 4,5,6 Pflanzenschutz 7,8 Mineraldüngung

9 Ernte 11 Mittelwert

Abb.33: Druckbelastungsquotient bei Produktion von Winterweizen auf den Feldblöcken, die die BDF der 3 Gefährdungsgruppen beinhalten.

Metabolische Quotienten (Atmung /Mikrobielle Biomasse in den bei TISCHER, 2005 angegebenen Maßeinheiten) > 10 werden als bedenklich angesehen.

Die Zeitreihe der Quotienten für die Gruppe "Gefährdung durch Scherprozesse" zeigt einen deutlich abnehmenden Trend mit einem Bestimmtheitsmaß der exponentiellen Regressionsfunktion von 0,67 und erreicht gegen Ende des Berichtszeitraumes tolerable Werte (Abb.34). Die Reihen der anderen beiden Gruppen enden bei nur geringfügig höherem Ausgangsniveau ebenfalls im Bereich <10, weisen allerdings keinen zu sichernden Trend auf (Abb. 35). Das bedeutet, dass im Mittel des Berichtszeitraumes bodenphysikalische Gefügeparameter und Metabolischer Quotient gleichermaßen im kritischen Bereich liegen, aber zum Ende des Zeitraumes offenbar der Gefügezustand nicht bestimmend ist für die Leistung des mikrobiologischen Systems. Die maßgeblichen anderen Einflüsse können Bodentemperaturen, Humushaushalt, Nährstoffstatus, Bodenbearbeitungsintensität u.v.a.m. sein. Auch die im Berichtszeitraum ansteigenden Katalasezahlen (vgl. Abb. 30) sprechen für eine intakte Mikrobiologie. Weitergehende Fragestellungen, was zu dem Trend, besonders auf den tonreichen Böden, führte, und ob es eventuell langfristig sich einstellende bodentypische Quotienten gibt, könnten erst an noch längeren Zeitreihen überprüft werden.

Zusammenfassend ist festzuhalten:

- Alle BDF unter Ackernutzung verfügen nach TISCHER (2005) über einen ausreichenden Pool an mikrobiologisch aktiver Biomasse.
- Beurteilt am Metabolischen Quotenten, ist im Beobachtungszeitraum auf den Ackerböden keine Minderung der relativen Atmungsleistung der Mikroorganismen eingetreten, auf den tonreichen Böden sogar eine deutliche Verbesserung. Im

- Gruppenmittel (Verdichtungs-Gefährdungsgruppen) liegt sie jetzt auf allen Böden im unbedenklichen Bereich. Gestiegene Katalasezahlen stützen diese Aussage.
- Das praxisübliche Bodenbewirtschaftungsregime auf den BDF mit geringem Verdichtungsrisiko sorgt ausreichend gegen Schadverdichtungen vor.
- Auf den durch Scherwirkungen besonders gefährdeten Böden (höherer Tongehalt und längere Phasen geringer Druckbelastbarkeit) sollte der Vorsorge gegen Schadverdichtungen trotz weitgehend unbedenklicher Mikrobiologie besonderes Augenmerk gewidmet werden.

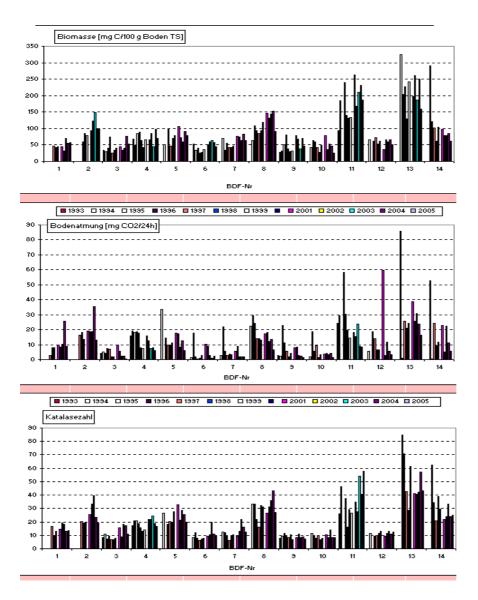


Abb.26: Mikrobielle Biomasse, Bodenatmung und Katalasezahl der BDF im Berichtszeitraum

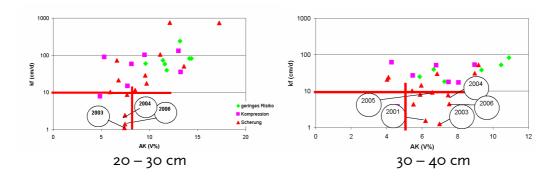


Abb. 31: Luftkapazität und gesättigte Wasserleitfähigkeit in 20-30 und in 30 – 40 cm Bodentiefe - Mittelwerte der 3 Gefährdungsgruppen

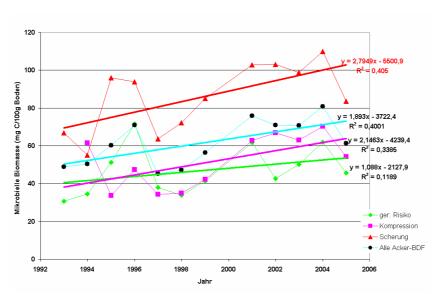


Abb. 28: Mikrobielle Biomasse auf den Acker-BDF

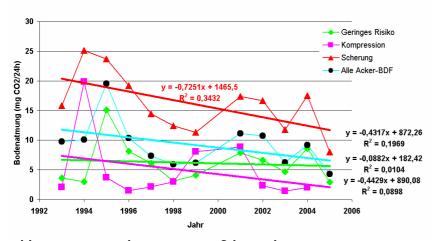


Abb. 29: Bodenatmung auf den Acker-BDF

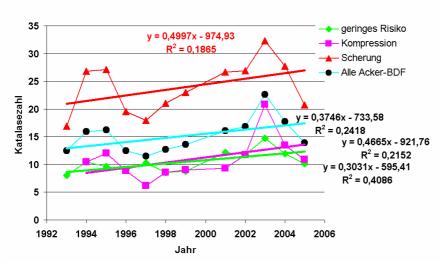


Abb. 30: Katalasezahl auf den Acker-BDF

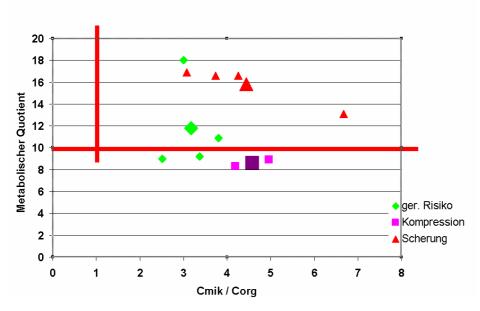


Abb.36: Metabolischer Quotient und Verhältnis des Gehaltes an mikrobiellem Kohlenstoff zu organischem Kohlenstoff auf den Acker-BDF, im Mittel aller Messjahre

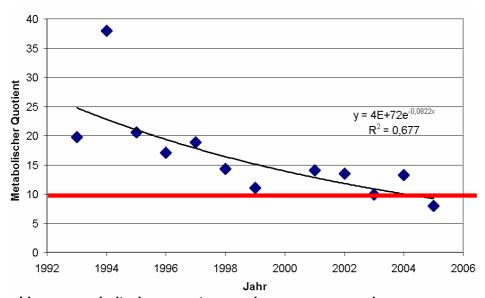


Abb.34: Metabolischer Quotient nach TISCHER(2005) der BDF-Gruppe "Gefährdung durch Scherprozesse"

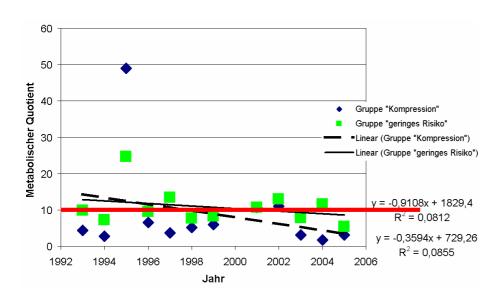


Abb.35: Metabolischer Quotient nach Tischer(2005) der BDF-Gruppen "Gefährdung durch Kompression" und "geringes Risiko"

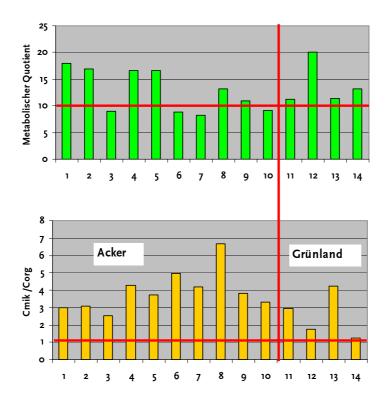


Abb. 27: Metabolischer Quotient und $C_{\rm mik}$ / $C_{\rm org.}$ – Verhältnis (Mittelwerte aller Messungen bis 2005)

3.1.2.2 Bodenzoologie

Bodenzoologische Parameter werden erhoben, weil angenommen wird, dass sie sich in Abhängigkeit vom Bodennutzungsregime sehr schnell ändern und deshalb einen hohen diagnostischen Wert hätten.

Bestimmt wurde der Regenwurmbesatz (Individuendichte und Biomasse) und die biologische Gesamtaktivität (Köderstreifen-Freßtest).

Im Gegensatz zur Feststellung von 1998 (PAUL et al. 1998), dass die Regenwurm-Individuenzahl zwischen Acker- und Grünlandnutzung deutlich unterschieden sei, kann man das nun allenfalls noch für eine der insgesamt 4 Grünlandflächen feststellen (Abb. 37 Nr.11).

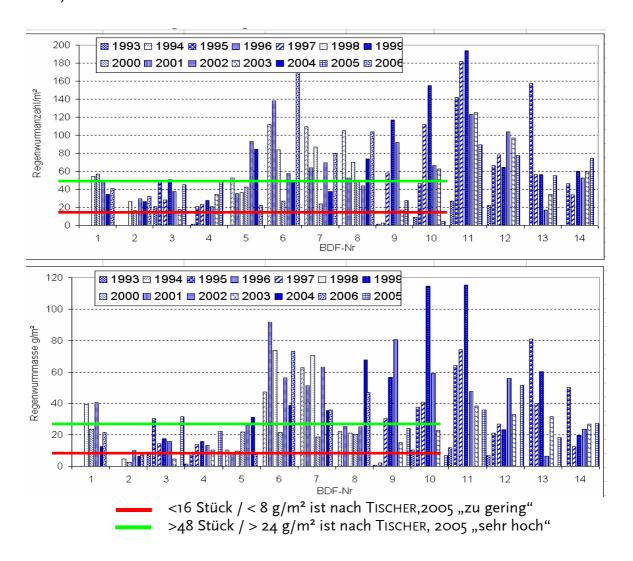


Abb. 37: Anzahl und Masse der Regenwürmer auf den Bodendauerbeobachtungsflächen

Dieser Befund ist im Zusammenhang mit der langjährig extensiven Grünlandnutzung zu sehen, die eine Nährstoff-Aushagerung bis in den zumindest aus landwirtschaftlicher Sicht unerwünschten Gehaltsbereich hinein mit sich brachte.

Die meist starken Schwankungen zwischen den im Zweijahresabstand liegenden Untersuchungsterminen sind auf das Zusammenspiel vieler Einflußgrößen, darunter wechselnde Bodenbearbeitung, Pflanzenschutz, Zufuhr organischer Dünger, Fruchtarten

u.a. zurückzuführen. Dabei war nicht möglich, Dominanz einzelner Einflüsse herauszuarbeiten. Dafür besteht auf dem Ackerland angesichts der Höhe der ermittelten Anzahlen und Massen von Regenwürmern auch wenig Anlass, liegen sie doch nach dem Maßstab von TISCHER (2005) nicht in einem bedenklich niedrigen Bereich, so dass gezielte Einflussnahme erforderlich wäre. Ein Trend über die Jahre ist nicht feststellbar.

Im Mittel der gesamten Beobachtungszeit (Zusammenfassung aller Messtermine) weist allerdings die Gruppe der tonreichen BDF, die durch bewirtschaftungsbedingt vergleichsweise hohe Verdichtungsgefährdung gekennzeichnet ist, niedrigere Werte auf, als die beiden anderen Gefährdungsgruppen (Tab. 13)

Zusätzlich zu Individuenzahl und Wurmmasse wurde die Untersuchung der Artenzusammensetzung, wie sie im 1. Bericht (PAUL ET AL., 1998) begonnen wurde, fortgesetzt. Zur Bedeutung der Arten sei an dieser Stelle nur auf die besondere Bedeutung der tieflebenden und intensiv bodenmischenden Tätigkeit Art Allobophora caliginosa für Acker- und Grünlandstandorte hingewiesen. Detailliertere Wertungen finden sich im genannten Vorläufer-Bericht. Die Ergebnisse zeigen, dass sich über den gesamten Untersuchungszeitraum und alle BDF hinweg keine nennenswerten Verschiebungen des Artenspektrums erkennen lassen (Tabelle 14). Die mittlere Artenzusammensetzung im Berichtszeitraum ist in Abb. 38 dargestellt. Hervorzuheben ist der hohe Anteil tiefgrabender Arten auf den Acker-BDF. Aus Tabelle 13 geht hervor, dass die Gefährdungsgruppe "Scherung" (Gruppierung nach Kap. 3.1.3) den geringsten Anteil Tiefgräber und die kleinsten Individuen aufweist. Damit scheint der Regenwurmbesatz den bodenphysikalischen Befunden im Mittel des Beobachtungszeitraumes zu folgen.

Tab. 13: Bodenzoologische Parameter auf den Acker-BDF im Mittel des gesamten Untersuchungszeitraumes

	BDF Gruppierung	nach Art der bewirtsch Gefügegefährdung	aftungsbedingten
Parameter	Gering gefährdet (schluffiger Lehm)	Durch Scherung gefährdet (stark schluffiger Ton)	Durch Kompression gefährdet (mittel lehmiger Sand)
Regenwurm- Individuenzahl je m²	48	44	83
Regenwurmmasse (g/m²)	29,1	16,9	52,8
Anteil tiefgrabende Arten (v.H.)	79,7	54,4	94,4
Masse je Individuum (g)	0,59	0,38	0,65
Köderschwund (v.H.)	39,3	51,1	44,1

Tab. 14: Vorkommen der Regenwurmarten auf den landwirtschaftlich genutzten BDF

	An	teil der a	dulten E	Exemplai	re (v.H.)	ndividue	enzahl je m²						
Art		Gesamt			Acker		Grünland						
Art	bis	bis	bis	bis	bis	bis	bis	bis	bis				
	1998	2002	2005	1998	2002	2005	1998	2002	2005				
Lumbricus	7,7	11,4	11,3	5,9	12,0	11,8	9,9	10,4	10,5				
terrestris													
Lumbr.cast./rub.	2,1	3,6	3,4	0,4	1,0	0,9	5,6	7,9	7,0				
Allobophora	59,8	57,3	56,2	64,1	64,8	64,5	51,2	44,6	44,1				
cal./t.l.													
Allobophora	14,0	12,7	14,4	13,0	8,4	8,4	16,0	20,0	23,3				
rosea													
Allobophora	7,3	7,9	7,4	10,9	12,6	12,5	0,0	0,0	0,0				
chlorotica													
Octalasium	9,7	7,2	7,3	5,8	1,2	1,9	17,4	17,1	15,2				

Die durch Köderstreifenfresstest ermittelten biologischen Gesamtaktivitäten lagen, wie schon im vorangegangenen Berichtszeitraum, bei Ackernutzung höher (45 %) als auf Grünland mit 28 % (vgl. Abb. 39 u. Abb. 40). Innerhalb der Acker-BDF weisen die tonigen BDF die höchsten Gesamtaktivitäten auf (Tab. 13).

PAUL ET.AL. (1998) stellten dies auch schon fest und vermuteten einen Mangel an eiweißreicher Nahrung für Collembolen auf biologisch weniger aktiven Böden, wie es die Tonböden wären. Die Folge wäre eine höhere Inanspruchnahme der Köderstreifen. Dazu sei an dieser Stelle auf die in Abschnitt 3.1.2 dargestellten Ergebnisse zur Mikrobiologie verwiesen. Danach erfährt diese genannte Hypothese keine Bestätigung. Die tonigen Böden stellen sich durchaus nicht als wenig aktiv dar.

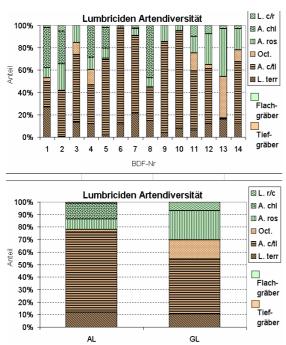


Abb. 38: Artenspektrum der Lumbriciden auf den BDF

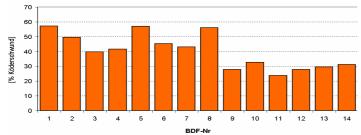


Abb. 39: Biologische Gesamtaktivität / Köderschwund der landwirtschaftlich genutzten BDF im Mittel aller Beobachtungsjahre

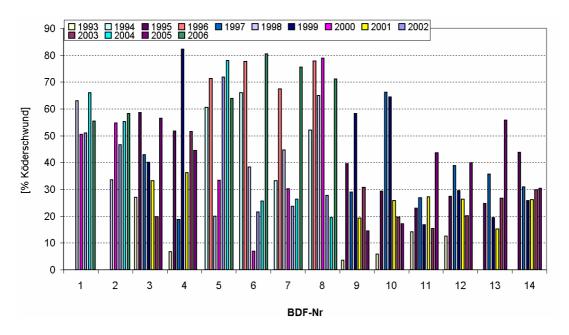


Abb. 40: Biologische Gesamtaktivität / Köderschwund auf den landwirtschaftlich genutzten BDF

3.1.3.1 Bodenchemie

3.1.3.2 Makronährstoffe

3.1.3.2.1 Stickstoff

Die zentralen Fragen beim Stickstoff sind die nach Ertragswirksamkeit der Stickstoffdungung und nach der Gefahr von Stickstoffauswaschung.

Letztere wird maßgeblich beeinflusst vom Bodenwasserhaushalt und der Menge an mineralischem Stickstoff. PAUL ET AL.(1998) charakterisierten die Bedingungen für den Wasserhaushalt auf den Acker-BDF, wobei die in Kap. 3.1.2 angewandte Gruppierung Anwendung fand. Anhand der bodenphysikalischen Parameter wurde eine Bewertung des Bodenwasserregimes vorgenommen (Tab. 15).

Tab. 15: Bewertung der BDF nach Merkmalen des Bodenwasserhaushaltes (nach PAUL ET AL. 1998)

BDF-Gruppe	Bodenwasser- Speicherfähigkeit	Durchlüftung	Durchlässigkeit
"geringes Risiko"	speicherfähig	gut	mäßig
"Kompression"	mäßig	gut	hoch
"Scherung"	gering	schlecht	schwach

Für diese Gruppierung wurden die in Tabelle 16 aufgeführten N-Salden festgestellt. Sie spiegeln die landwirtschaftliche Nutzung auf den Flächen der BDF im gesamten Beobachtungszeitraum als Zusammenspiel von Anbauverteilung, Düngungsmanagement und Jahreswitterung, natürlich unter den jeweiligen betrieblichen Verhältnissen, wider. Es wäre unbegründet, den Betrieben im einen Falle "gutes" und im anderen Falle "schlechteres" Management zu unterstellen; außerdem ist der Untersuchungszeitraum mittlerweile von beachtlicher Länge.

Es fällt auf, dass die Bodengefüge- und -Wasserhaushaltsbedingungen der Gruppierung offensichtlich bei Betrachtungen zum Stickstoff im Boden von maßgeblicher Bedeutung sind. "Überschussjahre" sind bezeichnenderweise bei den problematischsten Gefüge- und Bodenwasserverhältnissen am häufigsten und bei den relativ besten Verhältnissen am seltensten. Das ist zunächst ein allgemeiner Hinweis darauf, dass der Komplex Bodengefüge und Wasser beim Nährstoffmanagement künftig im Interesse einer effizienteren Düngung und verminderten Stoffaustragsrisikos stärker berücksichtigt werden müsste.

Tab. 16: Stickstoff-Saldo der Acker-BDF

BDF - Gruppe	Jahre mit N- Negativsaldo	Jahre mit N- Saldenüber-	kgNmin/ha in 0-9 dm	Mittlerer (kg N/ha)		r Gruppe
	(im Gruppen- mittel)	schuß (im Gruppen- mittel)	folg. Frj. beim mittl. N-Saldo der Gruppe	Mittel aller Jahre	Min.	Max.
Alle Acker-BDF	5	7	ca. 65	9,9	-24	124
"geringes Risiko"	9	4	ca. 70	-16,4	-61	51
"Kompression"	6	6	ca. 70	15,1	-178	181
"Scherung"	3	10	ca. 60	32,2	-42	197

Ein von PAUL ET AL (1998) nach den ersten Beobachtungsjahren festgestellter gruppenspezifischer Trend der N-Salden hat sich im weiteren Verlauf nicht bestätigt.

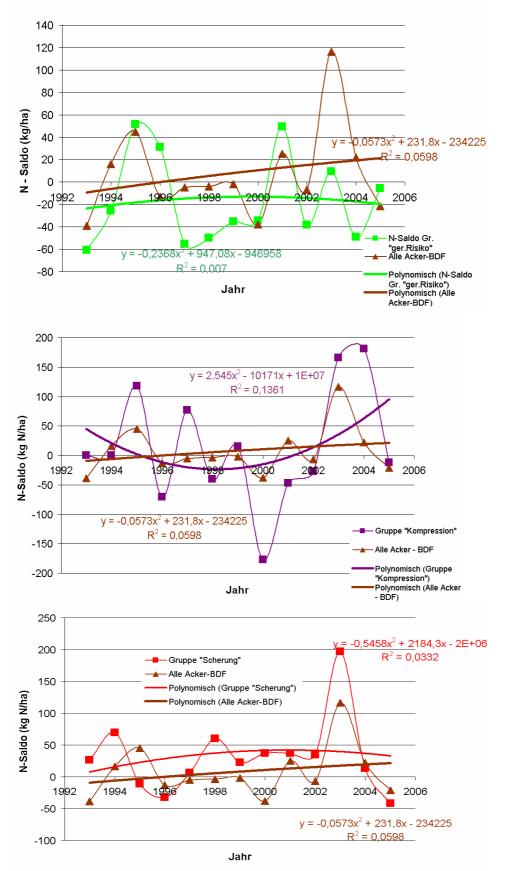


Abb. 41: Stickstoffsalden der Acker-BDF (Bodengefüge- / -wasser -Gruppen)

Weder eine der 3 Gruppen, noch alle Acker-BDF insgesamt weisen über die Messjahre hinweg einen gesicherten Trend auf (Abb.41).

Die problematischen Standorte wurden im Mittel aller Jahre mit einem positiven N-Saldo von 32 kg N/ha bewirtschaftet, während die vergleichsweise gut speicher- und regulationsfähigen Standorte –16 kg aufweisen. Das sind im Mittel der Jahre 50 kg Saldenunterschied. Zu welchem Anteil Reserven im Anbau- und Düngungsmanagement beteiligt sind, und welcher Anteil nicht vermeidbare standortbedingte Differenzierung ist, kann an dieser Stelle nicht geklärt werden. Dazu werden spezielle Untersuchungen durchgeführt (KNOBLAUCH ET AL. 2006).

Für die Frage, wie groß die N-Austragsgefahr einzuschätzen ist, wird häufig dem Gehalt an mineralischem Stickstoff im Boden großer Zeigerwert beigemessen. Das begründet sich aus der Tatsache, dass Nitrat (wenn es denn vorhanden ist) mit dem Sickerwasser leicht in das Grundwasser gewaschen werden kann. Gemessene Gehalte an mineralischem Stickstoff im Boden sind Momentaufnahmen zu einem Teil des Stickstoffkreislaufes. Von daher ist es außerordentlich problematisch, aus Nmin-Gehalten direkt auf die Gefahr des N-Eintrages in das Grundwasser zu schließen. Je mehr die Zufuhr an Nährstoffen die Abfuhr mit dem Erntegut übersteigt, desto größer ist das Risiko, dass diese Überschüsse in mineralische Form überführt werden und der Auswaschung anheim fallen können. Diese Tatsache muss auch nach den hier vorgelegten Ergebnissen für praktische Konsequenzen genügen. Abb. 42 zeigt den Zusammenhang von N-Saldo und Nmin-Gehalt im Boden, jeweils im Herbst (zum Ende der Vegetationsperiode) und im darauffolgenden Frühjahr. Bei Zusammenfassung aller BDF zeigt sich, dass mit steigendem Saldo im Bereich -50 ... +50 kg auch die Nmin-Gehalte zunehmen, und zwar statistisch gesichert im Bereich o...9 dm Bodentiefe um etwa 3 kg je 10 kg Saldenanstieg. In der Umkehr bedeutet das enorme Anforderungen an die Saldenabsenkung, wollte man Nmin als alleinigen Erfolgsmaßstab zur Bewertung der potentiellen Stoffaustragsgefahr verwenden. Aufgrund der System-Trägheit des Stickstoffhaushaltes des Bodens wäre ein solcher Handlungsansatz wenig zielführend.

Untergliedert man die Acker-BDF in die bereits mehrfach dargestellten Gruppen, besteht der Zusammenhang von N-Saldo und Nmin nur in den Gruppen "geringes Risiko" und "Scherung" auf akzeptablem Signifikanzniveau (vgl. Abb. 43).

Betrachtet man die Nmin-Gehalte im folgenden Frühjahr in den 3 Gruppen beim mittleren N-Saldo der Gruppe in der Zeitreihe (Tab. 16), stellt man fest, dass trotz bedeutend unterschiedlicher Salden kaum unterschiedliche Nmin-Werte vorliegen, und dass obendrein der niedrigste Wert mit dem höchsten mittleren Saldo verbunden ist. Hinzuweisen ist auf die im Bereich unter +50 kg bei abnehmenden Salden ansteigenden Nmin-Werte der tonreichen Böden (Gruppe "Scherung")- eine Erscheinung, die zunächst nicht recht erklärbar, aber zumindest für die Herbstwerte statistisch hoch gesichert ist.

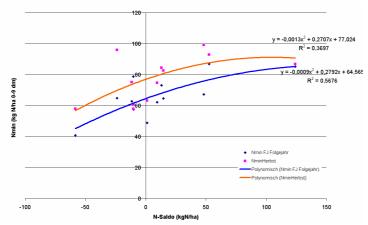


Abb. 42: N-Saldo und Nmin-Gehalt aller Acker-BDF

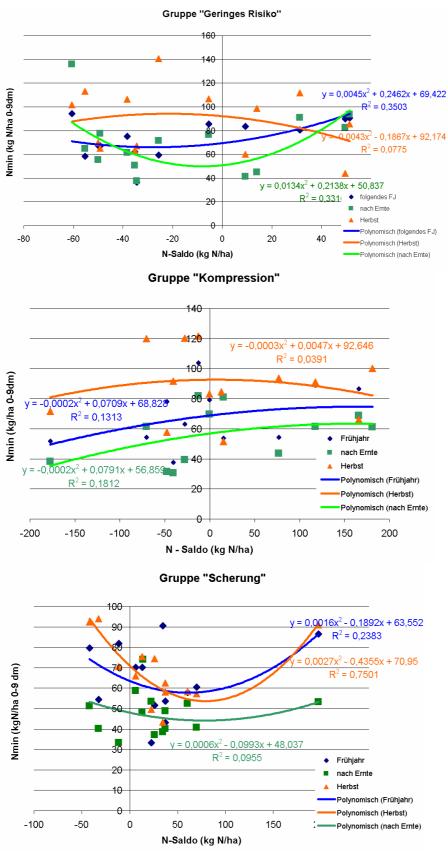


Abb. 43: N-Salden und Nmin-Gehalte der Acker-BDF – gruppiert nach Aspekten des Bodengefüges und des Bodenwasserhaushaltes

Abb. 44 zeigt einen im Mittel aller Acker-BDF um das Jahr 2000 herum beginnenden Wiederanstieg sowohl der Herbst-, als auch der Frühjahrs-Nmin-Gehalte.

Außerdem zeigen die Nmin-Gehalte in o-9 dm Bodentiefe eine Abhängigkeit vom Witterungsverlauf (Klimaentwicklung), der in spezielleren Untersuchungen nachgegangen werden sollte. In Abb. 44 sind mit steigender Jahresverdunstung (letztere in Abb. 47 dargestellt) immer stärker werdende Abnahmen des Nmin-Gehaltes über Winter zu sehen. Abb. 46 weist auf eine Abhängigkeit der Frühjahrs-Nmin-Gehalte in o-9 dm von der Klimatischen Wasserbilanz des Vorjahres hin. Im Trend der letzten 10 Jahre wären 40 kg Nmin-Abnahme festzustellen. Es ist anzunehmen, dass Stickstoff immobilisierende Prozesse im Boden in viel stärkerem Maße an diesen zeitlichen Gehaltsdifferenzen beteiligt sind als Auswaschung von Nitrat. Auch die an anderer Stelle des Berichtes dargestellten mikrobiologischen Befunde (steigende Katalasezahlen und metabolische Quotienten im unauffälligen Bereich) sprechen dafür.

Folgt man den aus Abb.46 gezogenen Schlüssen, ergäben sich daraus entsprechend steigende Düngungsempfehlungen nach Stickstoffsbedarfsanalyse, und das bei einer defizitärer werdenden Klimatischen Wasserbilanz, die natürlich auch den in Ertragsbildung der angebauten Kulturen umgesetzten Verdunstungsanteil beinhaltet. Alles zusammen genommen sind das Hinweise auf eine unbedingt erforderliche Berücksichtigung der klimatischen Entwicklung bei der Optimierung des Düngungsregimes.

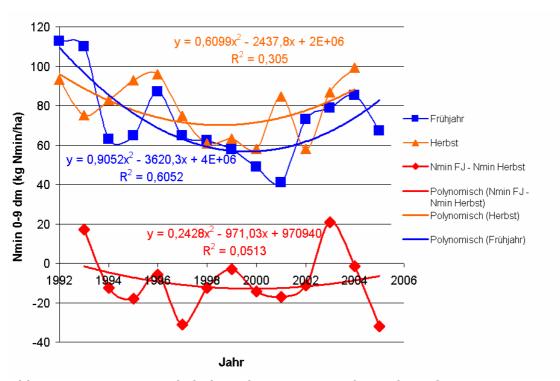
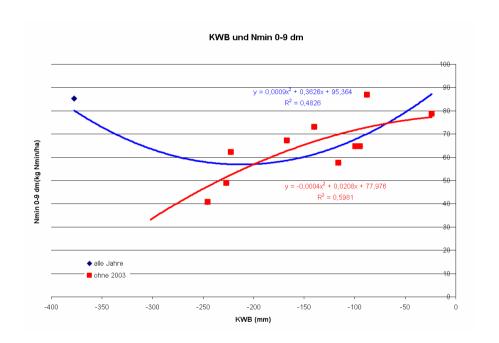



Abb. 44: Nmin – Gehalt der Acker-BDF in 0-9 dm Bodentiefe

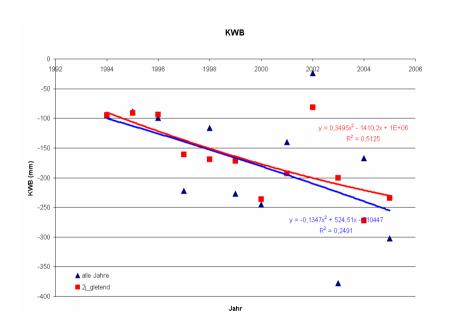


Abb. 46: Nmin-Gehalt der Acker-BDF im Frühjahr in 0-9 dm Bodentiefe und Klimatische Wasserbilanz des vorangegangenen Jahres (KWB aus den Mittelwerten Verdunstung und Niederschlag der Stationen Friemar, Großobringen, Burkersdorf des Agrarmeteorologischen Messnetzes der TLL)

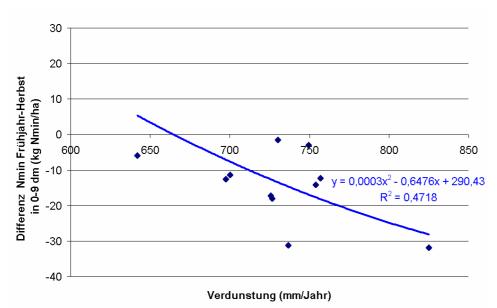


Abb. 45: Beziehung zwischen winterlicher Nmin-Minderung und Jahressumme der Verdunstung im Zeitraum 1994-2005, ohne das Extremjahr 2003
(Nmin: Gehalt in 0-9 dm Bodentiefe, alle Acker-BDF, Verdunstung: Mittelwert der Stationen Friemar, Großobringen, Burkersdorf des Agrarmeteorologischen Messnetzes der TLL)

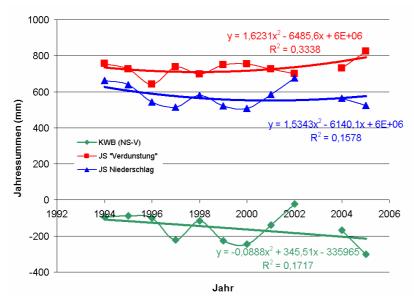


Abb. 47: Jahressummen der Verdunstung des Niederschlages und der Klimatischen Wasserbilanz im Mittel der Stationen Friemar, Großobringen und Burkersdorf des Agrarmeteorologischen Messnetzes der Thüringer Landesanstalt für Landwirtschaft (Trendlinien ohne das Extremjahr 2003)

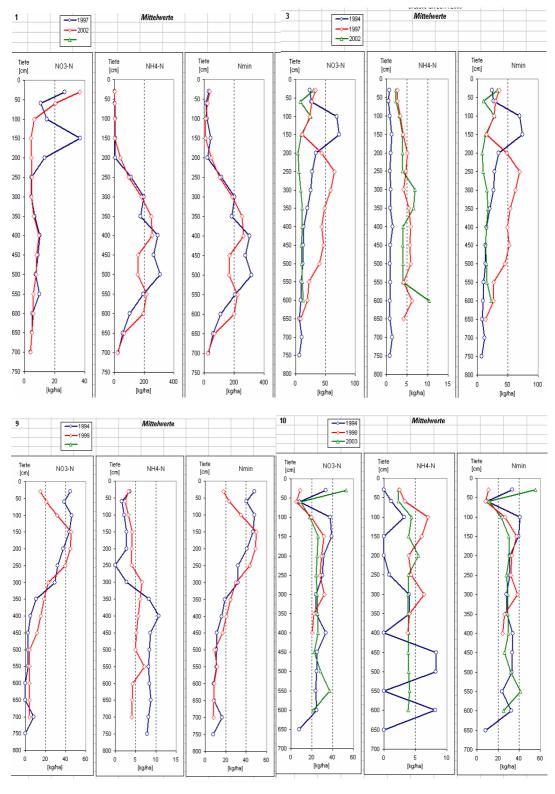


Abb. 48: Mineralischer Stickstoff auf den Acker-BDF mit gut speicher- und regulationsfähigen Böden (Tiefbohrungen)

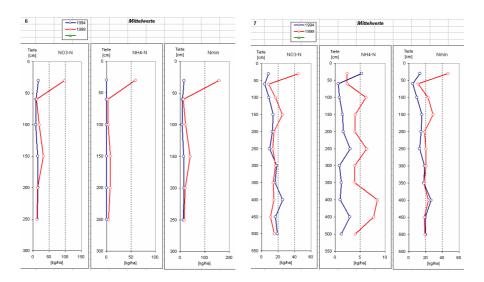


Abb. 49: Mineralischer Stickstoff auf den Acker-BDF mit gering speicher- und gut regulationsfähigen Böden (Tiefbohrungen)

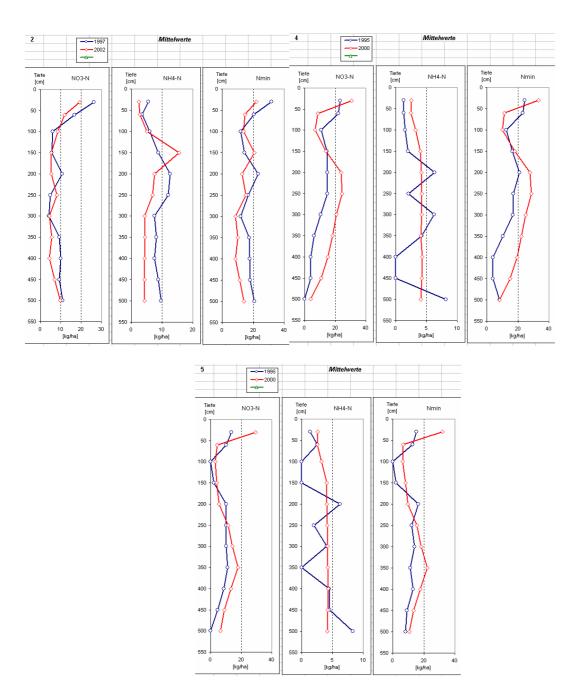


Abb. 50: Mineralischer Stickstoff auf den Acker-BDF mit gering speicherfähig und schwach durchlässigen Böden (Tiefbohrungen)

Die vorliegenden Ergebnisse zum mineralischen Stickstoff aus den in größerem zeitlichem Abstand wiederholten Tiefbohrungen (Abb. 48-50) weisen außer auf den sandigen Böden (Abb.49) in allen Fällen bis in eine bestimmte Tiefe steigende Ammoniumgehalte bei meist abnehmenden Nitratgehalten auf. Diese Erscheinung ist auf den tonreichen Böden (Abb. 50) bis in etwa 1,50m, auf den gut speicher- und regulationsfähigen Böden (Abb. 48) bis etwa 2,50m zu beobachten. Die Nmin-Gehalte im durchwurzelten Bodenraum liegen auf den gut speicher- und regulationsfähigen Böden (Abb. 48) zum 2. Messtermin unter denen vom ersten Termin. Das bedeutet eine Abnahme an mineralischem Stickstoff mit der Zeit. Diese findet sich in geringerer Ausprägung auch auf den tonreichen Böden (Abb. 50). Auf den sandigen Böden hingegen deutet sich eine Zunahme an. Die Ergebnisse der jährlich mehrfach durchgeführten Nmin-Messungen bis 1m Bodentiefe bestätigen das für

den vergleichbaren Zeitraum(vgl. Abb.44), jedoch sei auf den dort im Mittel aller Acker-BDF festgestellten Wiederanstieg danach hingewiesen.

Erwartungsgemäß liegen die tiefenabhängigen Nmin-Gehaltsprofile der tonigen und sandigen BDF unter denen der gut speicher- und regulationsfähigen Böden. Hinweise auf mögliche Nitratverlagerung mit dem Sickerwasser finden sich auf den BDF 3 und 9 in Abb. 48, wo sich ein Nitrat-Gehaltsmaximum von 1994 zu 1997, bzw.1999 um einen Meter im Profil nach unten verschoben hat.

Zusammenfassung wesentlicher Befunde:

- Jahre mit deutlich positiven N-Salden sind auf den tonreichen BDF mit eher problematischen Gefüge- und Bodenwasserverhältnissen häufiger als auf den BDF mit gut regulationsfähigen Böden. Die mittleren N-Salden der Gruppen unterscheiden sich um rund 50 kgN/ha (-16...+32 kg). Dies legt eine stärkere Berücksichtigung von Bodengefügeverhältnissen und Bodenwassernutzbarkeit beim Düngen nahe.
- Im Mittel aller Acker-BDF besteht eine Korrelation von N-Saldo und Nmin-Gehalt im Herbst sowie im darauffolgenden Frühjahr. Überschläglich folgen je 10 kg Saldenanstieg 3 kg Nmin-Erhöhung in 0-9 dm Bodentiefe.
- Der mittlere frühjährliche Nmin-Gehalt der Acker-BDF zeigte eine deutliche Abhängigkeit von der Klimatischen Wasserbilanz des Vorjahres. Im Trend der letzten 10 Jahre sind etwa 40 kg Nmin-Abnahme festzustellen. Es ist anzunehmen, dass Stickstoff immobilisierende Prozesse im Boden in viel stärkerem Maße an diesen zeitlichen Gehaltsdifferenzen beteiligt sind als Auswaschung von Nitrat. Die Konsequenz einer um diesen Betrag erhöhten Düngungsempfehlung bei steigendem Wasserdefizit (Klimaänderung!) muss überprüft werden!
- Nmin-Messungen bei Tiefbohrungen ergaben über die Zeit steigende Ammoniumgehalte bei abnehmenden Nitratgehalten, auf tonreicheren Böden bis in 150 cm, auf gut speicherfähige und durchlüfteten Böden bis 250 cm Bodentiefe.

3.1.3.1.2 Kalzium, Phosphor, Kalium und Magnesium

Kalzium

Die Kalkbedürftigkeit der BDF ist geogen bedingt unterschiedlich.

kalkreich: Auestandorte BDF 1,2

Muschelkalk BDF 8,13

Keuper BDF 4,5

kalkarm: entkalkter Löß BDF 3

Buntsandstein BDF 6,7

Schieferverwitterung BDF 9,10,11,12

Basalt BDF 14

Ein Trend zu erheblichem Rückgang des pH-Wertes, wie er im ersten Berichtszeitraum (bis 1997) auf den BDF 6,7,12 und 14 festgestellt wurde, hat sich in den folgenden Jahren nur auf einer extensiv genutzten Grünlandfläche (Schieferverwitterung, BDF 12) fortgesetzt (Abb. 51). Auf den kalkreichen Standorten bestand sogar eine gewisse Tendenz des pH-Anstiegs, während die pH-Werte der kalkärmeren Standorte im wesentlichen gleich geblieben sind (Tab.17).

Tab. 17: pH-Werte der BDF in 0-20 cm Bodentiefe

pH-V BDF-Nr Ackerla	BG	1993	1994	1995	1996	Jahr 1997	1998	1999	2000	2001	2002	2003	2004	2005	MW	Verän- derung
1	4					7,5 E	7,6 E	7,5 E	7,2 D	7,5 E	7,6 E	7,6 E	7,7 E	7,7 E	7,5 E	+ 0,1
2	5					7,4 D	7,6 D	7,6 D	7,6 D	7,6 D	7,6 D	7,5 D	7,7 D	7,6 D	7,6 D	+ 0,1
3	4	6,3 C	6,9 C	6,5 C	6,8 C	6,4 C	6,9 C	7,0 C	7,0 C	7,0 C	6,6 C	6,8 C	6,9 C	7,0 C	6,8 C	+ 0,5
4	5	7,3 D	7,3 D	7,1 C	7,3 D	7,4 D	7,6 D	7,3 D	7,3 D	7,6 D	7,6 D	7,6 D	7,6 D	7,7 D	7,4 D	+ 0,1
5	5	7,2 C	7,4 D	7,4 D	7,2 C	7,4 D	7,6 D	7,4 D	7,6 D	7,6 D	7,5 D	7,6 D	7,6 D	7,6 D	7,5 D	+ 0,2
6	3		5,7 B	5,5 B	5,9 B	5,8 B	6,1 C	5,9 B	6,4 C	5,7 B	5,6 B	5,7 B	5,7 B	6,3 C	5,9 B	+ 0,2
7	3	6,2 C	6,7 C	5,5 B	5,8 B	5,8 B	5,8 B	6,2 C	6,2 C	6,2 C	6,5 C	6,3 C	6,3 C	6,1 C	6,1 C	- 0,1
8	5	7,2 C	7,6 D	7,3 D	7,5 D	7,5 D	7,6 D	7,5 D	7,7 D	7,6 D	7,4 D	7,5 D	7,6 D	7,6 D	7,5 D	+ 0,3
9	4	6,4 C	6,3 C	6,1 B	6,2 B	6,3 C	6,4 C	6,3 C	6,5 C	6,4 C	6,5 C	6,3 C	6,5 C	6,6 C	6,4 C	- 0,1
10	4	5,9 B	5,8 B	5,6 B	6,2 B	6,4 C	6,5 C	6,3 C	6,2 B	6,4 C	6,3 C	6,3 C	6,0 B	6,2 B	6,2 B	+ 0,3
Grünlar	ıd										•					
11	3	6,4 D	6,5 D	6,2 D	6,3 D	6,2 D	6,6 E	6,3 D	6,5 D	6,5 D	6,3 D	6,2 D	6,2 D	6,3 D	6,3 D	- 0,1
12	3	5,8 C	5,5 C	5,6 C	5,2 B	5,1 B	5,5 C	5,1 B	5,4 C	5,0 B	5,1 B	5,0 B	5,0 B	5,1 B	5,2 B	- 0,5
13	5		7,2 E	7,3 E	7,4 E	7,4 E	7,5 E	7,6 E	7,5 E	7,5 E	7,6 E	7,4 E	7,5 E	7,4 E	7,4 E	+ 0,2
14	4		4,6 A	4,8 B	4,9 B	4,4 A	4,8 B	4,6 A	4,5 A	4,3 A	5,0 B	4,7 A	4,4 A	5,0 B	4,7 A	+ 0,1

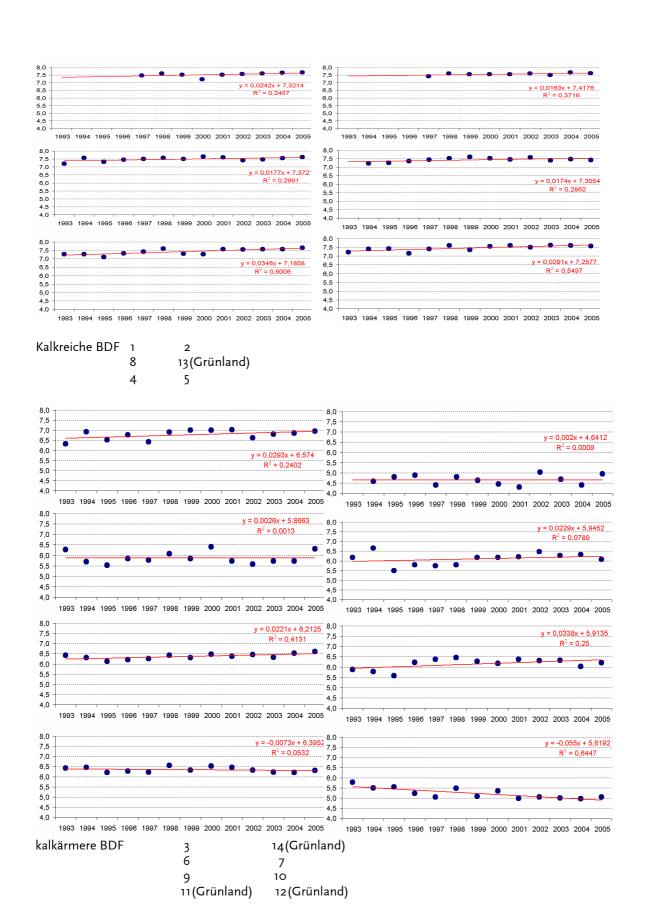
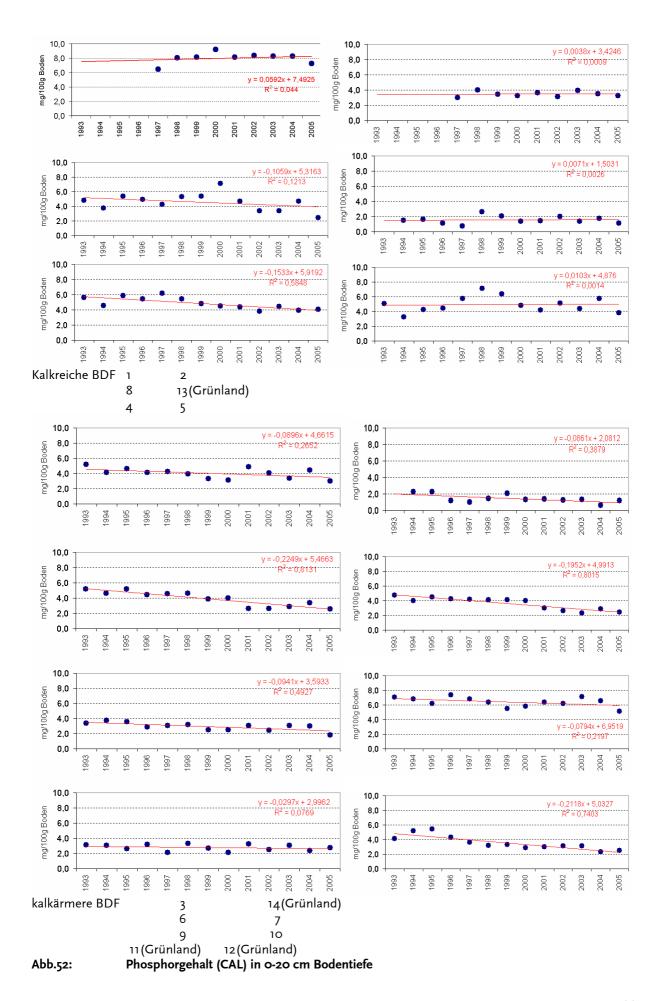
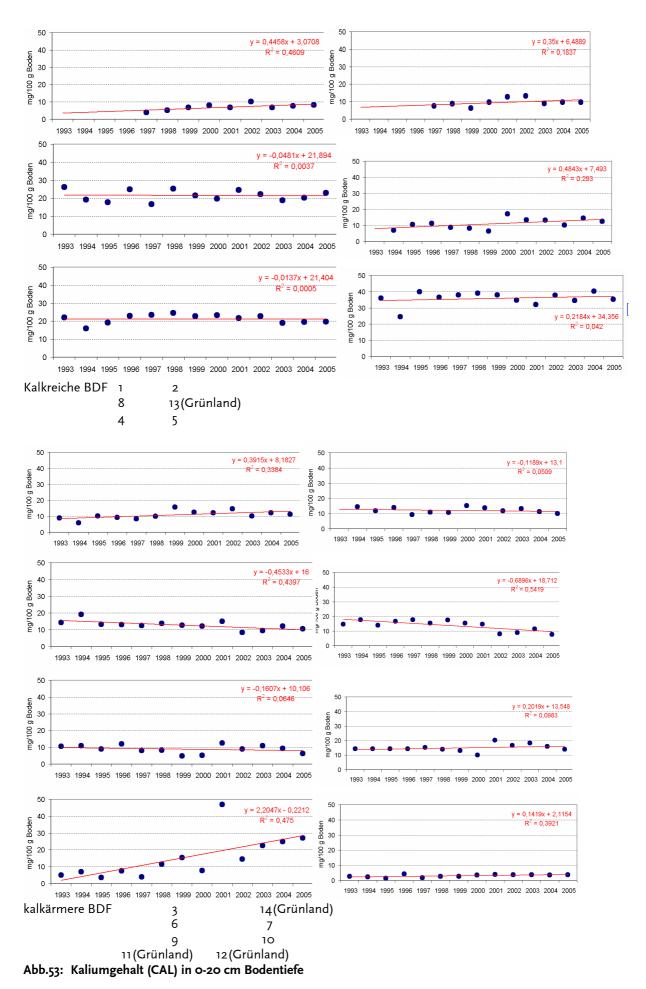



Abb. 51: pH-Wert der BDF in 0-20 cm Bodentiefe

Phosphor und Kalium

Der Gehalt an pflanzenaufnehmbarem Phosphor hat aufgrund der weitgehend unterbliebenen P-Düngung auf 11 BDF abgenommen (Abb.52). In 5 Fällen ist bereits die Gehaltsklasse A erreicht, 9 Flächen weisen Klasse B auf, während die anzustrebende Gehaltsklasse C lediglich in 2 Fällen auftritt. Besonders prekär stellt sich die Situation auf den langjährig extensiv genutzten Grünlandflächen dar, mit einem nachhaltigen Schutz der Produktionsfunktion des Bodens ist das nicht mehr vereinbar (Tab.18).

Damit zeigen die Dauerbeobachtungsflächen das gleiche Defizit bei der Grunddüngung, wie alle Nutzflächen in Thüringen. Angesichts der klimawandelbedingten Verschärfung der Wasserbereitstellung von pflanzennutzbarem Bodenwasser sollte diese Situation dringend verbessert werden. Eine Berücksichtigung bei der Bemessung der Stickstoffdüngung scheint geboten.


Beim Kalium wirkt sich die unterlassene Düngung weniger stark aus als bei Phosphor, weil die Böden allgemein ein respektables Nachlieferungsvermögen haben. Auch die z.T. zu beobachtenden Gehaltsrückgänge sind nicht dramatisch (Abb. 53). 2005 waren 8 Flächen ausreichend, 2 Flächen unter- und 2 Flächen überversorgt (Tab. 19). Hohe Kaligehalte der Ackerböden sind keine Umweltgefährdung. Von daher ist die Überversorgung unbedenklich, sofern sie nicht durch unnötige Mineraldüngung zustande kam und finanziellen Schaden bedeutet.

Tab. 18: Gehalt an pflanzenaufnehmbarem Phosphor (CAL-Methode) in 0-20 cm Bodentiefe

•	CAL)					Jahr										Verän-
BDF-Nr	BG	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	MW	derung
Ackerla	nd															
1	4					6,5	8,1	8,1	9,2	8,1	8,4	8,3	8,3	7,3	8,0	+ 1,6
						С	D	D	D	D	D	D	D	D	D	
2	5					3,0	4,0	3,4	3,2	3,7	3,2	3,9	3,5	3,2	3,5	+ 0,4
						В	В	В	В	В	В	В	В	В	В	
3	4	5,2	4,1	4,6	4,1	4,3	4,0	3,3	3,1	4,9	4,1	3,4	4,4	3,0	4,0	- 1,2
		C	В	В	В	В	В	В	В	ပ	В	В	В	В	В	
4	5	5,7	4,6	5,9	5,4	6,2	5,4	4,8	4,5	4,4	3,8	4,4	3,9	4,1	4,8	- 0,8
		С	В	С	C	С	С	В	В	В	В	В	В	В	В	
5	5	5,1	3,3	4,2	4,5	5,8	7,2	6,4	4,8	4,2	5,1	4,4	5,7	3,8	4,9	- 0,1
		C	В	В	В	С	O	C	В	В	U	В	C	В	O	
6	3		4,6	5,2	4,5	4,6	4,6	3,9	4,0	2,7	2,6	2,9	3,4	2,6	3,9	- 0,7
			В	C	В	В	В	В	В	В	В	В	В	В	В	
7	3	4,7	4,0	4,5	4,3	4,2	4,1	4,2	4,0	3,0	2,6	2,3	2,9	2,4	3,6	- 1,1
		В	В	В	В	В	В	В	В	В	В	Α	В	Α	В	
8	5	4,8	3,8	5,4	4,9	4,3	5,3	5,4	7,2	4,7	3,4	3,4	4,7	2,4	4,6	- 0,2
		В	В	С	С	В	С	С	С	В	В	В	В	Α	В	
9	4	3,4	3,8	3,6	2,9	3,1	3,2	2,5	2,5	3,1	2,5	3,1	3,0	1,8	2,9	- 0,4
		В	В	В	В	В	В	В	В	В	В	В	В	Α	В	
10	4	7,1	6,8	6,2	7,4	6,8	6,4	5,5	5,8	6,4	6,2	7,1	6,6	5,1	6,4	- 0,7
		C	C	C	D	С	C	С	С	C	C	C	C	С	C	
Grünlar	าd															
11	3	3,2	3,1	2,6	3,2	2,2	3,3	2,7	2,1	3,2	2,5	3,1	2,4	2,7	2,8	- 0,4
		В	В	В	В	Α	В	В	Α	В	В	В	Α	В	В	
12	3	4,2	5,2	5,4	4,3	3,6	3,2	3,3	2,9	3,0	3,2	3,1	2,3	2,5	3,6	- 0,6
		В	С	С	В	В	В	В	В	В	В	В	Α	В	В	
13	5		1,5	1,6	1,1	0,8	2,6	2,1	1,4	1,4	2,0	1,4	1,8	1,2	1,6	+ 0,1
			Α	Α	Α	Α	В	Α	Α	Α	Α	Α	Α	Α	Α	
14	4		2,2	2,3	1,2	1,0	1,5	2,1	1,3	1,4	1,3	1,3	0,7	1,2	1,4	- 0,8
			Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	

Tab.19: Gehalt an pflanzenaufnehmbarem Kalium (CAL-Methode) in 0-20 cm Bodentiefe

K(C	CAL)					Jahr										Verän-
BDF-Nr	BG	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	MW	derung
Ackerla	nd															
1	4					4,0	5,3	6,8	8,0	6,8	10,3	6,8	7,8	8,3	7,1	+ 3,1
						Α	Α	В	В	В	В	В	В	В	В	
2	5					7,5	8,8	6,3	9,8	12,8	13,3	9,0	9,8	9,8	9,6	+ 2,1
						В	В	Α	В	В	В	В	В	В	В	
3	4	9,0	6,0	10,3	9,3	8,5	10,0	15,8	12,5	12,3	14,8	10,3	12,3	11,3	10,9	+ 1,9
		В	В	В	В	В	В	С	С	С	С	В	С	С	С	
4	5	22,0	16,0	19,3	23,0	23,5	24,5	22,8	23,3	21,8	22,8	19,0	19,5	19,8	21,3	- 0,7
		С	С	С	С	D	D	С	С	С	С	С	С	С	С	
5	5	36,0	24,5	40,0	36,5	38,0	39,0	38,0	34,8	32,0	37,8	34,5	40,3	35,3	35,9	- 0,1
		E	E	E	E	E	E	E	E	E	E	E	E	E	E	
6	3		19,3	13,3	13,0	12,5	13,8	12,8	12,3	15,0	8,5	9,5	12,3	10,5	12,8	- 6,4
			D	С	С	С	С	С	С	D	В	С	С	С	С	
7	3	14,8	17,8	14,0	16,8	17,8	15,5	17,5	15,5	14,8	8,0	9,0	11,5	7,8	13,9	- 0,9
		D	D	С	D	D	D	D	D	D	В	В	С	В	С	
8	5	26,3	19,3	17,8	25,0	16,8	25,3	21,5	19,8	24,5	22,3	18,8	20,3	23,0	21,6	- 4,7
		D	С	С	D	С	D	С	С	D	С	С	С	С	С	
9	4	10,5	11,0	9,0	12,0	8,0	8,3	4,8	5,3	12,5	9,0	11,0	9,3	6,3	9,0	- 1,5
		С	С	В	С	В	В	Α	Α	С	В	С	В	В	В	
10	4	14,3	14,3	14,3	14,3	15,3	14,0	13,0	10,0	20,3	16,8	18,3	16,0	14,0	15,0	+ 0,7
		С	С	С	С	С	С	С	В	D	D	D	С	С	С	
Grünlar	าd															
11	3	5,0	7,0	3,5	7,5	4,0	11,5	15,5	7,8	47,0	14,5	22,5	25,0	27,0	15,2	+ 10,2
		В	В	В	В	В	С	D	В	Е	D	D	E	E	D	
12	3	2,8	2,3	1,5	4,3	1,8	2,8	2,8	3,5	4,0	3,8	3,8	3,7	3,8	3,1	+ 0,3
		Α	Α	Α	В	Α	Α	Α	В	В	В	В	В	В	Α	
13	5		7,0	10,5	11,3	8,8	8,3	6,5	17,3	13,5	13,3	10,3	14,5	12,5	11,1	+ 4,1
			В	С	С	В	В	В	С	С	С	В	С	С	С	
14	4		14,5	11,8	14,0	9,3	11,0	10,8	15,3	13,8	11,8	13,3	11,3	10,0	12,2	- 2,3
			С	С	С	В	С	С	С	С	С	С	С	С	С	

Magnesium

Die Magnesiumversorgung ist, abgesehen von dem Vega-Standort (BDF 1) und den beiden BDF auf Muschelkalk (BDF 8-Acker, BDF 13-Grünland), hoch. Gehaltsveränderungen im Berichtszeitraum sind nicht von Bedeutung (Tab.20). Ursache für den insgesamt als ausreichend anzusehenden Magnesiumgehalt ist der hohe geogen bedingte Grundgehalt der Böden.

Tab. 20: Gehalt an Magnesium in 0-20 cm Bodentiefe (mg/100g Boden, bzw. Gehaltsklassen)

	Mg					Jahr										Verän-
BDF-Nr		1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	MW	derung
Ackerla	_														1	
1	4					11,7	9,9	10,8	10,0	9,2	10,5	9,6	9,8	10,3	10,2	- 1,5
						D	С	С	С	С	С	С	С	С	С	
2	5					13,8	20,1	12,6	18,0	12,4	14,5	13,4	15,1	14,8	15,0	+ 1,1
						С	Е	С	D	С	D	C	D	D	D	
3	4	17,6	16,2	18,4	16,6	19,9	15,6	16,8	15,2	15,6	15,8	14,2	15,2	15,6	16,4	- 1,2
		E	E	E	E	Е	E	E	E	E	E	D	E	E	E	
4	5	21,4	20,9	19,6	21,1	23,7	21,2	21,4	21,0	23,1	20,2	17,6	19,7	23,3	21,1	- 0,3
		E	E	E	E	E	E	E	E	E	E	D	E	E	E	
5	5	32,9	35,9	37,5	33,2	38,5	40,3	34,8	34,0	36,6	36,1	34,1	34,1	45,3	36,4	+ 3,5
		Е	Е	Е	Е	Е	Е	Е	E	Е	Ε	Е	Е	Е	Е	
6	3	14,5	13,6	14,2	12,2	12,4	13,4	12,7	11,2	9,7	9,8	12,5	10,1	10,3	12,0	- 1,5
		Е	Е	Е	E	Е	Е	Е	E	D	D	Е	D	D	E	
7	3	22,7	23,4	23,4	20,3	21,3	20,5	22,9	19,7	20,7	18,8	20,1	16,8	17,8	20,6	- 2,1
		E	E	E	E	Е	E	E	E	E	E	E	E	E	E	
8	5	6,7	6,5	7,6	7,5	7,4	6,7	6,9	7,1	7,1	6,8	7,2	7,4	7,7	7,1	+ 0,4
		В	В	В	В	В	В	В	В	В	В	В	В	В	В	
9	4	26,0	23,0	23,8	25,8	26,1	24,6	23,1	23,0	24,2	22,3	24,4	24,7	25,2	24,3	- 1,6
		E	E	E	E	Е	E	E	E	E	E	E	E	E	E	
10	4	16,0	16,5	17,1	17,0	19,7	17,6	18,6	17,6	18,4	16,7	15,5	17,0	18,0	17,3	+ 1,3
		E	E	E	E	E	E	E	E	E	E	E	E	E	E	
Grünlar	nd															
11	3	40,8	38,9	40,2	44,0	41,5	39,5	41,1	40,9	41,9	40,1	33,6	38,1	33,2	39,5	- 1,2
		É	E	E	É	É	E	É	E	É	E	E	E	E	É	
12	3	15,6	12,4	14,1	12,5	11,5	12,1	10,6	9,2	10,1	9,0	9,9	10,5	9,1	11,3	- 4,3
		É	É	É	É	É	É	E	D	Ď	D	D	Ď	Ď	É	
13	5		8,5	7,4	8,2	9,6	8,7	9,0	8,6	8,9	6,5	7,4	6,5	6,3	8,0	- 0,5
			В	B	В	Ċ	В	В	В	В	В	B	В	В	В	
14	4		15,5	22,1	19,1	17,0	23,6	24,0	20,5	21,1	16,5	17,7	19,0	16,3	19,4	+ 3,9
			É	Ē	Ē	E	E	É	E	E	E	É	É	É	E	

3.1.4.2 Mikronährstoffe

Die Gehalte an pflanzenverfügbaren Mikronährstoffen sind in Tab.1 dargestellt. Sie liegen bei Ackernutzung meist auf mittlerem bis hohem Niveau. Von den Acker-BDF zeigt lediglich eine Flächen auf Schieferverwitterung (BDF 9) niedrige Zink-, Kupfer- und Bor-Gehalte. Unter Grünlandnutzung zeigen die beiden BDF auf Schieferverwitterung eine Unterversorgung bei Kupfer.

Auf allen Flächen ist kein Trend über die meist 3 realisierten Messtermine feststellbar.

Tab. 21: Gehalte an pflanzenverfügbaren Mikronährstoffen (mg/kg) der BDF in 0-25 cm Bodentiefe (Methoden vgl. Kap.2.3.2)

Ackerfl	äche	n Bo	dentiefe	02	25 cm				Pfla	flanzenverfügbare Mikronä				ikronährstoffe										
			mg/kg					mg/kg					mg/kg					(Prüfwert))				mg/kg	
Bor					Kupfer		•			Mangan					Molybdän	Prüfwert		i` i		Zink				
BDF-Nr	Jahr	BG	Ergebnis	GK	BDF-Nr	Jahr	ВG	Ergebnis		BDF-Nr	Jahr	BG	Ergebnis	GK	BDF-Nr	Jahr	ВG	Ergebnis	GK	BDF-Nr	Jahr	BG	Ergebnis	GK
1	1997	4	1,58	Е	1	1997	4	10,5	Е	1	1997	4	30,8	Е	1	1997	4	9,2	Е		1997	4	8,2	Е
	2002	4	1,31	Е	i	2002	4	10,1	Е		2002	4	42,8	Е		2002	4	9,1	Е		2002	4	2,6	С
2	1997	5	4,67	E	2	1997	5	12,8	Е	2	1997	5	85,0	Е	2	1997	5	9,4	Е	- 2	1997	5	5,2	Е
	2002	5	3,48	E	1	2002	5		Е	1	2002	5		Е	1	2002	5	9,5	Е	i	2002	5	1,4	Α
3	1993	4	0,94	Е	3	1993	4	8,4	Е	3	1993	4	131,5	Е	3	1993	4	7,8	С		1993	4	3,6	Е
	1997	4	0,94	Е		1997	4	8,9	Е		1997	4	114,5	Е	1	1997	4	8,2	С		1997	4	3,7	Е
	2002	4	1,00	Е	1	2002	4	7,8	С	1	2002	4	129,8	Е	1	2002	4	8,5	Е	i	2002	4	3,0	Е
4	1993	5	0,85	Е	4	1993	5		С	4	1993	5	50,5	E	4	1993	5	8,1	С	4	1993	5	3,7	Е
	1997	5	0,75	Е		1997	5	8,7	Е		1997	5	57,8	Е	1	1997	5	8,9	Е		1997	5	2,7	С
	2002	5	0,84	Е		2002	5	9,4	Е		2002	5	59,3	Е	1	2002	5	8,9	Е		2002	5	3,0	Е
5	1993	5	0,84	Е	5	1993	5	10,7	Е	5	1993	5	46,0	Е	5	1993	5	8,0	С	į	1993	5	2,2	С
	1998	5	1,17	Е		1998	5		Е		1998	5	46,8	Е	1	1998	5	10,3	Е		1998	5	2,3	С
	2003	5	0,99	Е		2003	5	10,7	Е		2003	5	42,3	Е	1	2003	5	8,8	Е		2003	5	2,0	С
6	1993	3	0,35	С	6		3		С	6	1993	3	,	Е	6		3	,	С	(1993	3	3,9	
	1998	3	0,55	Е		1998	3		С		1998	3	119,3	Е	1	1998	3	8,8	Е		1998	3	3,9	
	2003	3	0,34	С		2003	3	3,2	С		2003	3	95,8	Е		2003	3	8,3	Е		2003	3	3,3	Е
7	1993	3	0,62	E	7	1993	3		С	7	1993	3	87,5	Е	7	1993	3	7,5	С	-	1993	3	3,4	Е
	1998	3	0,77	E	1	1998	3		Е	1	1998	3	100,5	Е	1	1998	3	9,0	Е	i	1998	3	3,6	Е
	2003	3	0,57	Е	i	2003	3	4,7	Е	1	2003	3	87,0	Е	1	2003	3	8,5	Е		2003	3	2,8	С
8	1993	5	0,54	С	8	1993	5		С	8	1993	5	37,3	Е	8	1993	5		С		1993	5	3,7	Е
	1998	5	0,81	E	1	1998	5		С	1	1998	5	28,8	С		1998	5	8,7	Е	i	1998	5	2,8	С
	2003	5	0,52	С		2003	5		С		2003	5	27,8	С	1	2003	5	8,3	Е		2003	5	2,2	С
9	1993	4	0,29	Α	9	1993	4	5,0	С	9	1993	4	32,8	Е	9	1993	4	7,1	Α	9	1993	4	1,4	Α
	1997	4	0,42	С	1	1997	4	5,5	С	1	1997	4	34,8	Е	1	1997	4	8,9	Е	i	1997	4	1,1	Α
	2002	4	0,32	Α	1	2002	4		Α	1	2002	4	34,5	Е	1	2002	4	8,4	Е	i	2002	4	0,9	Α
10	1993	4	0,43	С	10	1993	4	4,6	С	10	1993	4	79,8	Е	10	1993	4	7,5	С	10	1993	4	3,9	Е
	1997	4	0,54	С	i	1997	4	5,1	С	1	1997	4	53,3	Е	1	1997	4	9,1	Е	i	1997	4	2,5	С
	2002	4	0.46	С	1	2002	4	4,4	С	1	2002	4	59.0	Е		2002	4	8,9	E	i	2002	4	2,6	С
			., .					Ĺ					, , ,					- 7-					, -	
Grünla	nd B	oden	tiefe 0	20 cr	n																			
Bor	iia D	oacii	1010 0	20 0.	Kupfer		_			Mangan					Molybdän					Zink				
BDF-Nr	Jahr	BG	Ergebnis		BDF-Nr	Jahr	DC.	Ergebnis	GK	BDF-Nr	Jahr	BG	Ergebnis	GK	BDF-Nr	Jahr	ВG	Ergebnis	l	BDF-Nr	Jahr	BG	Ergebnis	
11	1993	4	0,31		11	1993	<u>⊿</u>	3,5	A	11		BG ⊿	20,8	С	11		4	7,5		1 ²		BG ⊿	3,8	
	1997	4	0,24		1 ''	1997	7	3,2	A	1 ''	1997	4		E	- ''	1997	7	8,9		·	1997	4	4,0	
	2002	4	0,24		l	2002	1	4,0	A		2002	4		C	1	2002	4	9,7	 	ł	2002	4	4,8	1
12	1993	4	0,43		12		4	3,5	A	12		4		E	12		4	6,1	-	12		4	2,7	
12	1997	4	0,23		'2	1997	4	3,5	A	12	1997	4			┤ '^	1997	4	6,4		· '	1997	4	3,6	
	2002	4	0,18		I	2002	4	3,4	A		2002	4	,	E	1	2002	4	6,4	l		2002	4	3,0	
13	1994	5	0,18		13	1994	5		C	13		5		E	13		5	8,0	 	1;		5	5,5	1
13	1999	5	0,24		13	1999	5		A	13	1999	5		E	┧ '`	1999	5			l '`	1999	5	4,4	
	2004	5	0,18		1	2004	5		C		2004	5		E	1	2004	5		 	ł	2004	5	7,3	1
14	1994	4	0,51		14	1994	7	5,9	С	14		4	,	E	14		4	11,0	 	14		4	18,0	1
14	1994	4	0,05		'4	1999	4	1,0	A	14	1994	4			┨ '*	1999		10,9	-	''	1994	4	4,3	1
	2004	4	0,03			2004	4	6.0		1	2004	4			1	2004	 4	11,8	<u> </u>	ł	2004	4	16,6	1
	2004	_ 4	0,29			∠004	4	0,0	١		∠004	4	170,0		1	∠004	4	11,8			2004	4	10,0	

3.1.3.3 Schwermetalle

Die Gehalte an Schwermetallen (Analyse mit Königswasser) überschreiten die Vorsorgewerte nach Bodenschutzverordnung (BbodSchV, 1998) auf Böden mit hohen geogen bedingten Hintergrundwerten (Tab.22). So weisen die Flächen 9 und 10 auf Schieferverwitterung höhere Arsenwerte, die Fläche 14 auf Basalt höhere Chrom-, Nickel- und Zinkgehalte auf. Ein etwa 10% über dem Vorsorgewert von Blei liegender Gehalt auf der BDF 11 (Schieferverwitterung) und leicht erhöhte Quecksilberwerte auf den Buntsandsteinflächen 6 und 7 bestätigten sich in den letzten Messungen nicht.

Abb.54 gibt einen Überblick über die Reihung der Flächen nach ihren Gehalten an den einzelnen Schwermetallelementen.

Der mobile Anteil an Schwermetallen ist insgesamt sehr gering (Tab.2). Lediglich auf dem Basaltstandort (BDF 14) wird der Prüfwert der Bodenschutzverordnung für Cadmium (40 Mikrogramm je kg Boden) überschritten. Der für Blei an gleicher Stelle festgelegte Wert von 500 mg wird nicht erreicht.

Tab.22: Maximal gemessene Schwermetallgehalte (Einzelwerte) auf den BDF in 0-25 cm Bodentiefe

Gesamtgehalt(Königswasser) mg/kg Boden

Maximalwerte aus Einzelwerten 0...25 cm Tiefe

		Ton (BD	F 2,5,8,13)		Lehm/S	Lehm/Schluff (BDF 1,3,4,9,10,11,12,14)				Sand (E	DF 6,7)	
	Vorsorge-		max. Istwe	rt	Vorsorge-		max. Istwer	t	Vorsorge-		max. Istwe	rt
Element	wert	Anlage	nach 5 J	nach 10 J	wert	Anlage	nach 5 J	nach 10 J	wert	Anlage	nach 5 J	nach 10 J
Cadmium	1,5	0,66	0,63		1	0,75	1,65		0,4	0,20	0,20	0,16
Blei	100	42,0	41,4		70	77,8	65,1		40	27,0	24,0	24,8
Kupfer	60	30,4	28,0		40	21,4	24,5		20	10,2	11,0	11,3
Chrom	100	51,0	50,0		60	106,0	181,0		30	20,8	28,0	23,6
Quecksilber	1	0,12	0,09		0,5	0,18	0,16		0,1	0,12	0,12	0,09
Nickel	70	42,4	40,0		50	118,0	129,0		15	12,6	13,0	14,8
Zink	200	102,0	116,0		150	120,0	158,0		60	50,0	53,0	52,3
Arsen	20	13,10	9,36		15	30,90	22,20		10	8,60	8,55	7,56
Thallium		0,38	0,45			0,27	0,29			0,20	0,21	0,15
Antimon		0,76	0,74			3,54	4,18			2,31	1,34	1,05
Mangan		2090	2286			1200	1507			814	905	853
Molybdän		0,82	0,96			1,38	1,52			0,62	0,56	0,53
Bor		81,4	74,6			40,3	29,2			13,0	12,0	38,8

10 Jahre noch nicht möglich weil BDF 1,2,13,14 noch fehlen

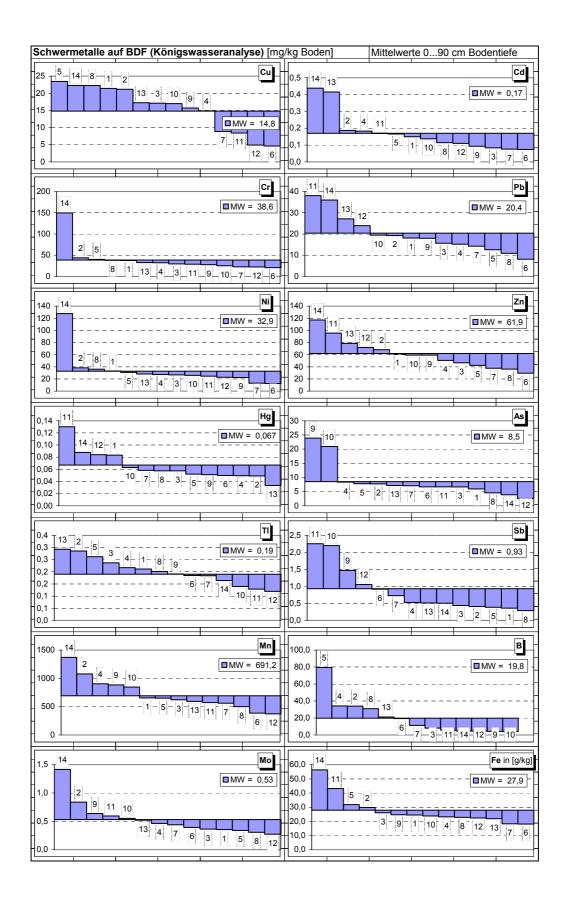


Abb.54: Schwermetallgehalte (Königswasseranalyse) der BDF, Mittelwerte in o-9 dm Bodentiefe (mg/kg Boden)

Tab.23: Schwermetallgehalt – mobiler Anteil nach Ammoniumnitrat-Methode in 0-25 cm Bodentiefe (Mikrogramm je kg Boden)

				in µg.	/kg lutro B	oden		
		Daten						
BDF-Nr	Jahr	- ACd		- ACu			- AZn	- AAs
1	1997	1,3	5,0	114,4		102,9	150,0	2,3
	2002		5,0	120,3		220,0	120,0	5,0
2	1997	,	,	,		350,0		
	2002	1,0	5,0	107,3	30,0	517,5	120,0	5,3
3	1993							
	1997	2,9	38,8	100,0		86,5	260,0	3,3
	2002	1,3	5,3	30,0	30,0	185,0	120,0	5,3
4	1993							
	1997	1,0	30,0	100,0		31,7	260,0	4,7
	2002	5,0	10,0	125,0	26,3	82,0	150,0	10,0
5								
				,			,	
		1,2	5,0	90,9	25,0	15,0	104,5	5,0
6								
				,		,	,	
			4,3	42,4	25,0	53,5	379,0	5,0
7				400.0	0= 0			
<u> </u>		4,3	4,6	51,3	25,0	33,7	289,0	5,0
⁸		4.0	00.0	400.0	05.0	400.0	000.0	0.4
		, -					, -	
<u> </u>		0,7	2,3	93,8	25,0	74,2	104,5	5,0
9		2.0	20.0	100.0	25.0	26.0	260.0	6.0
10			10,0	100,0	25,0	42,5	150,0	10,0
10			20.0	100.0	25.0	26.4	260.0	6.6
		,						
11		2,0	5,6	33,3	30,0	93,3	120,0	0,3
''		1.0	35.2	100.0	25.0	20.3	322.5	0.5
			,	,		,		
12			5,5	30,3	30,0	170,0	120,0	3,0
12			93.0	100.0	25.0	72 5	682 5	4.8
		,						
13								
'								
14		,	,					
'								
5 6 7 8 9 10 11 12 13	1993 1998 2003 1998 2003 1998 2003 1998 2003 1998 2003 1997 2002 1993 1997 2002 1993 1997 2002 1993 1997 2002	1,3 1,2 5,2 6,8 7,4 4,3 1,0 0,7 3,2 4,0 2,5 2,0 1,0	30,0 5,0 42,3 4,3 30,0 4,6 30,0 2,3 30,0 10,0 30,0 5,8 35,2 5,5 93,0 175,0 1,0 18,0 3,8	100,0 90,9 100,0 42,4 100,0 51,3 100,0 93,8 100,0 33,3 100,0 36,5 100,0 30,0 72,7 78,0 81,3 26,7 55,0 30,0	25,0 25,0 25,0 25,0 25,0 25,0 25,0 25,0	136,8 15,0 34,8 53,5 33,7 123,8 74,2 36,0 42,5 26,1 93,3 145,0 72,5 217,5 59,0 212,5 71,6 1770,0 1152,5 1319,8	260,0 104,5 377,5 379,0 442,5 289,0 260,0 150,0 260,0 120,0 322,5 120,0 682,5 697,5 8,0 120,0 201,3	3,5 5,0 1,9 5,0 2,9 5,0 3,1 5,0 6,9 10,0 6,6 6,3 9,5 5,8 4,8 5,5 5,5 5,4 24,0 5,0

3.1.4.4 Organische Schadstoffe

Organische Rückstände von Pflanzenschutzmitteln können eine Gefahr für das Grundwasser, das Bodenleben und über eine mögliche Beeinträchtigung der Qualität pflanzlicher Produkte unmittelbar für den Menschen bedeuten. Diese Gefahr wird durch die Persistenz dieser Stoffe und deren Abbauprodukte verstärkt.

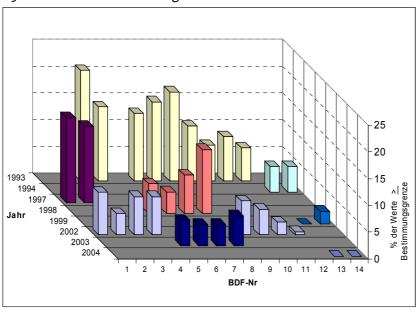
Mit der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) wurden Vorsorge-, Prüf- und Maßnahmewerte für organische Schadstoffe im Boden eingeführt. In Anhang 2, Punkt 2 und 4 ebenda sind die in Tabelle 24 zusammengefassten Werte relevant. Die Ergebnisse zeigen, dass keine Überschreitung von Werten der Bodenschutzverordnung auftritt.

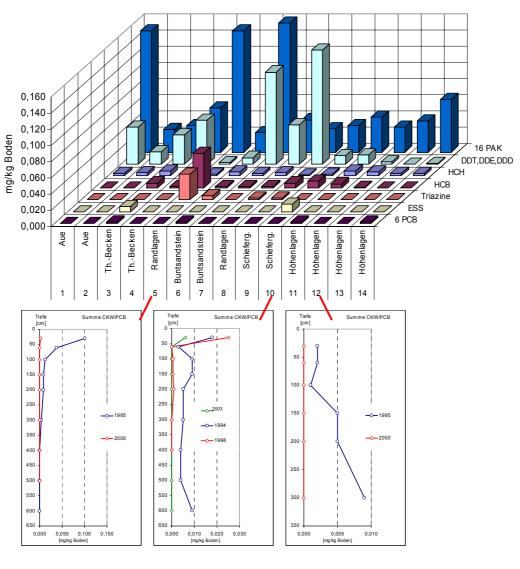
Tab. 24: Bewertung der Belastung mit organischen Schadstoffen anhand relevanter Werte der Bodenschutzverordnung

Schadstoff /	Gehalt der am	BBodSchV				
(-gruppe)	meisten belasteten BDF (mg/kg)	Kategorie der Festlegung	Wert (mg/kg)			
PCB ₆	0.001	Vorsorgewert	0,05			
PCD ₆	0,003	Maßnahmewert	0,2			
PAK ₁₆	0,731	Vorsorgewert	3,0			
		Vorsorgewert	0,3			
Benzo(a) pyren	0,059	Prüf- und Maßnahmewert	1,0			

Rückstände von Pflanzenschutzmitteln werden über den Berichtszeitraum hinweg mit abnehmender Häufigkeit festgestellt, erwartungsgemäß auf den Ackerflächen (BDF 1-10) häufiger als auf dem Grünland (BDF 11-14). In den einzelnen Jahren liegen 75-98% aller Feststellungen unterhalb der Bestimmungsgrenze (Abb. 55).

Die Tiefbohrungen zeigen in der Summe aller CKW und PCB gegenüber dem ersten Messtermin einen Rückgang der Feststellungen. Exemplarisch enthält der untere Teil von Tabelle 25 eine Auswahl dieser Ergebnisse.




Abb. 55: Rückstände von Pflanzenschutzmitteln (alle untersuchten Stoffe, vgl. Tab. 25) im Boden

Tab. 25: Maximalgehalte an organischen Schadstoffen (Einzelsubstanzen in mg/kg Boden)

Maximalwerte PSM Boden 0...90 cm Tiefe

mg/kg Boden

		HCH	HCB	DDT,DDE,DDD	6 PCB	Triazine	ESS	16 PAK
1	Aue	0,003	0,000	0,046	0,000	0,000	0,000	0,150
2	Aue	0,004	0,000	0,015	0,000	0,000	0,000	0,028
3	ThBecken	0,006	0,006	0,036	0,002	0,000	0,006	0,033
4	ThBecken	0,003	0,002	0,054	0,000	0,000	0,000	0,055
5	Randlagen	0,002	0,043	0,002	0,000	0,032	0,000	0,150
6	Buntsandstein	0,005	0,002	0,008	0,002	0,005	0,000	0,024
7	Buntsandstein	0,003	0,002	0,114	0,000	0,000	0,000	0,160
8	Randlagen	0,004	0,002	0,049	0,000	0,002	0,000	0,040
9	Schieferg.	0,001	0,006	0,141	0,000	0,002	0,000	0,029
10	Schieferg.	0,002	0,008	0,010	0,000	0,000	0,009	0,033
11	Höhenlagen	0,006	0,005	0,011	0,002	0,000	0,000	0,043
12	Höhenlagen	0,005	0,001	0,003	0,000	0,000	0,000	0,031
13	Höhenlagen	0,003	0,000	0,000	0,000	0,000	0,000	0,039
14	Höhenlagen	0,003	0,000	0,001	0,002	0,000	0,000	0,065

3.2 Pflanzen

3.2.1 Erträge

In den Pflanzenerträgen auf den Acker-BDF wirken sich neben Fruchtartenauswahl, Managementeffekten und Jahreswitterung auch die Bodenverhältnisse (Bodenwassernutzbarkeit, Durchwurzelbarkeit, Nährstoffnachlieferungsvermögen u.a.m.) aus. Nimmt man den Energieertrag (gewachsener Ertrag Haupt- und Koppelprodukt) als Erfolgskriterium der Stickstoffdüngung, was natürlich für betriebswirtschaftliche Bewertungen nicht unbedingt relevant ist, lassen sich wegen des ausreichend großen Stichprobenumfanges signifikante Regressionsfunktionen anpassen (Abb. 56).

Diese Funktionen zeigen Standortunterschiede:

Auf den BDF mit speicherfähigen und gut durchlüfteten Böden wurde bis zu einer Stickstoffzufuhr von etwa 185 kg/ha *a ein Anstieg des Energieertrages erreicht. Auf den gering speicherfähigen und schlecht durchlüfteten Böden hingegen bis zu einer Düngemenge von 170 kg.

Betrachtet man die Mittelwerte im Berichtszeitraum, findet man einen um 20 GJ / ha niedrigeren Energieertrag (rund 10 %) in der Gruppe "gering speicherfähig, schlecht durchlüftet" bei einem um rund 20 kg höheren Stickstoffaufwand. Das bedeutet entsprechend abnehmende Wirksamkeit der N-Düngung innerhalb des betrachteten Systems (Tab. 26). Diese Feststellung, sollte sie sich in exakten Versuchen bestätigen, wäre von Bedeutung als Baustein für die Formulierung eines standortspezifischen Intensitätsniveaus nachhaltiger Landnutzung.

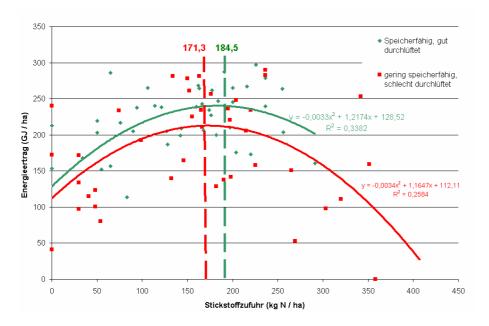


Abb.56: Stickstoffdüngung und Energieertrag (Haupt- und Koppelprodukt) auf den Acker-BDF, alle Kulturen, alle Jahre

Tab.26: Bodenmerkmale und Effizienz der Stickstoffdüngung auf den Acker-BDF

BDF-Gruppe	Jahre mit positivem N- Saldo	Mittlerer N- Saldo im Messzeitraum	Mittlere jährliche N- Düngung (kg N / ha)	Mittlerer Energieertrag GJ / ha*a	kg Dünger-N je GJ
speicherfähig und gut durchlüftet	4	-16,4	148,7	233,1	0,64
gering speicherfähig, durchlässig	6	15,1	194,5	234,7	0,83
gering speicherfähig, schlecht durchlüftet	10	32,2	170,5	211,3	0,81

Die auf den BDF ermittelten Erträge können der Tabelle 27 entnommen werden.

Pflanzenerträge der BDF, Mittelwerte der jeweils 4 Teilflächen Mittelwerte TM dt/ha Tab.27:

keine Ertragsermittlungen

HP=Hauptprodukt KP=Koppelprodukt (Zahlen in Klammern) = auf dem Feld verblieben Jahr BDF-Nr 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 Ackerland HP 80,1 31,8 67,7 58,0 27,7 70,6 WW AB SW SG WR ww ΚP (68.0)(59.2)(89.6)(73,7)(73.9)(115.6)HP 107,4 67,4 129,5 78,5 62,3 24,7 М ww ΚM ww ww WR ΚP 85,3 81,6 (78,6)(94,5)(41,9)(88,4)3 HP 115,9 42,3 58.6 57,8 36,3 76,1 59,4 75,3 64,0 AB SG WW SG WR WW Μ BR WW SW ΚP 83,3 (27,0)(52,5)88,6 43,0 (76,3)(96,5)59,9 (102,3)(83,4)4 HP 43,0 35,5 79,8 18,1 44,0 90,7 73.0 39,7 106,2 51,6 SG WG WR WW ww WW Μ WW SG ΚP 89,5 (33.6)89.2 0,0 (54,9)0,08 89,1 96,1 (34.5)58,3 5 HP 12,0 72,2 30,8 73,1 75,5 31,0 61,5 40,1 34,4 ww SG М WR WW SG WR ww SG ΚP 52,0 (35,0)(105,4)(29,4)(109,1)27,8 68.9 (66,6)HP 64,0 6 42,2 28,8 64,3 45,8 87,6 AG WR TR WG GG WR WR WG 4Schn. ΚP (63,8)66,5 (61,8)50.9 27,3 (69,8)70.8 131,4 7 HP 71,0 33,2 67,2 89.7 AG 45,0 0,0 46,0 TR WR WR WG GG WR WG 4Schn. ΚP 123,8 (73,0)76,8 (66,4)73,6 63,9 (76,3)76,6 8 HP 57,2 131,1 39,2 45,5 45,9 60,3 AG AG 0,0 М М ww WW SG WW BR 3Schn. 3Schn. ΚP 78,1 131,1 99,5 38,4 39,3 66.2 (24,7)64.5 91.7 46,0 9 HP 60,9 71,8 52,4 65,8 71,8 59,1 75,2 36.3 63,9 WG WR WR WW WW WG WR WW Μ WW ΚP (87.0)74,2 73,2 (82.8)93,4 86.8 84,5 44,7 (83.8)94.9 HP 78,2 43,3 10 64,9 38,7 48,6 61,7 59,7 80,8 150,5 79,9 WW WG WG TR SG TR ww WG М WW KΡ 47,2 (66,0)(66,9)(74,6)48,1 68,5 (63,3)62,6 60,9 92,7 Grünland 11 1.Schnitt 16,8 47,9 40,8 43.0 47,3 52,1 34,6 45,3 43,6 2.Schnitt 29,5 25,9 25,4 30,0 32,4 18,5 13,0 27,6 26.0 Summe 42.2 78.0 73.3 61.5 60.2 79.6 64.1 71,2 69.5 12 23,3 36,4 14,5 47,1 27,5 22,5 20,1 15,9 1.Schnitt 33,5 2.Schnitt 29,4 23,9 33,7 39,3 20,8 18,8 17,4 12,6 16,5 Summe 52.7 60.3 48.2 86.4 54.2 46.3 39.9 32.7 32.4 13 keine Ertragsermittlungen 14

(noch Tab. 27)

BDF-Nr		200	3	20	004	200	5	2006	
Ackerland			1		1				
1	HP	64,8	WW	65,5	SG	29,6	WR		
	KP	75,8		(56,5)		(54,9)			
2	HP	65,7	ww	55,6	ww	43,8	KöE		
	KP	75,2		(98,2)		58,1			
3	HP	42,4	WR	80,8	ww	143,2	KM		
	KP	(52,2)		86,5		(62,0)			
4	HP	29,0	WR	75,3	ww	38,6	SG		
	KP	(47,8)		94,5		41,6			
5	HP	0,0	Total-	90,7	ww	46,8	SG		
	KP	0,0	ausfall	83,4		56,3			
6	HP	52,4	ST	53,6	WR	60,5	ww		
	KP	38,7	<u> </u>	(71,4)		(75,2)			
7	HP	59,4	SG	45,8	WR	76,2	ww		
	KP	38,3		(67,2)		(88,1)			
8	HP		AG		AG	27,1	WR		
	KP	57,0	3Schn.	74,8	2Schn.	(45,7)			
9	HP	39,3	SG	51,3	KöE	74,8	ww		
	KP	29,0		(74,6)	TOL	85,4			
10	HP	56,7	SG	97,1	М	60,5	ww		
	KP	(37,6)		61,6		65,6			
Grünland				-					
11	1.Schnitt	44,6		29,0		44,6			
	2.Schnitt	14,1		28,3		17,6			
	Summe	58,7		57,3		62,2			
12	1.Schnitt	17,0		23,4		39,2			
	2.Schnitt	17,0		14,9		13,0			
	Summe	34,0		38,2		52,2]		
13		keine Ertragsermittlungen							
14		keine Ertra	gsermittl	ungen					

Verwendete Zeichen:

- AG Ackergras
- AB Ackerbohnen
- BR Brache
- GG Gerstgras
- KöE Körnererbsen
- KM Körnermais
- M Mais
- SG Sommergerste
- SW Sommerweizen
- TR Triticale
- WR Winterraps
- WW Winterweizen

3.2.2 Nährstoffgehalte

Makronährstoffe

Die Gehalte an Stickstoff, Phosphor und Kalium zeigen sich in fruchtartentypisch differenzierter Höhe. Gegenüber den Feststellungen bei PAUL ET AL. (1998) zeigen sich besonders bei den Kulturen Winterraps, Wintergerste, Ackerbohne und Silomais abnehmende Phosphorgehalte in der Pflanzenmasse. Dieser Befund erklärt sich durch die abnehmenden Bodengehalte an pflanzenaufnehmbarem Phosphor (vgl. Kapitel 3.1.3.1.2; Abnahme bei 11 von 14 BDF, 9 BDF zeigen Gehaltsklasse A oder B). Dieses Niveau der P-Versorgung muss dringend auf ein der sonstigen Faktorintensität entsprechendes Niveau angehoben werden. Die weniger dramatische Entwicklung der Boden-Kalium-Gehalte führte erwartungsgemäß zu gegenüber 1998 annähernd gleich gebliebenen Kaliumgehalten im Erntegut. Die mittleren Gehalte in der Pflanzenmasse sind für den gesamten Untersuchungszeitraum in Tab. 28 zusammengestellt.

Tab. 28: Konzentrationen von Makronährstoffen in den Ernteprodukten (kg/dt TS, Mittelwerte aller Jahre und Standorte)

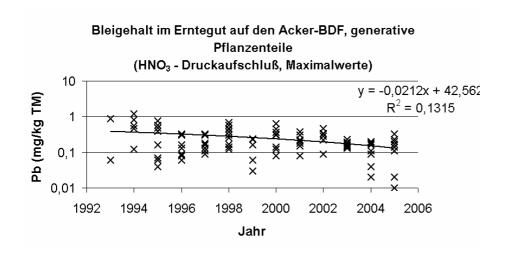
	Stickstoff	· · · · ·	Phospho		Kalium		Manna		Calzium		Natrium		Schwefe	
							Magnes							
Anbau ,	Korn	Stroh	Korn	Stroh	Korn	Stroh	Korn	Stroh	Korn	Stroh	Korn	Stroh	Korn	Stroh
Wi-Weizen	2,38	0,59	0,35	0,07	0,43	1,38	0,11	0,11	0,06	0,31	0,01	0,02	0,18	0,15
Wi-Gerste	1,87	0,57	0,36	0,07	0,50	2,26	0,11	0,09	0,07	0,35	0,01	0,04	0,17	0,15
Wi-Raps	3,44	0,84	0,65	0,09	0,73	1,65	0,29	0,15	0,44	1,35	0,01	0,12	0,76	0,41
Triticale	2,01	0,70	0,38	0,10	0,54	1,66	0,16	0,08	0,07	0,30	0,01	0,01	0,17	0,17
So-Weizen	2,45	0,63	0,37	0,06	0,51	1,62	0,11	0,09	0,08	0,43	0,01	0,02	0,18	0,16
So-Gerste	1,74	0,51	0,36	0,08	0,48	1,40	0,12	0,11	0,07	0,42	0,01	0,09	0,14	0,13
Ackerbohne	4,85	0,65	0,76	0,07	1,34	1,53	0,16	0,10	0,15	0,63	0,05	0,13	0,28	0,18
Kö-Erbsen	3,91	0,98	0,54	0,08	1,16	1,38	0,18	0,20	0,11	1,35	0,01	0,02	0,22	0,22
Körnermais	1,56	0,73	0,32	0,06	0,43	1,62	0,16	0,21	0,02	0,53	0,01	0,01	0,12	0,10
Silomais	1,27	0,97	0,27	0,13	0,71	1,68	0,13	0,20	0,11	0,45	0,01	0,01	0,12	0,11
Ackergras		1,97		0,30		2,93		0,14		0,54	0,00	0,01		0,21
Gras	1.Schnitt	2,55		0,33		1,80		0,30		0,54		0,08		0,25
Gras	2.Schnitt	2,52		0,36		1,57		0,37		0,71		0,09		0,27
Gras extensiv	Mu-kalk	1.88		0,19		1.85		0,20		1,34		0,01		0,20
Gras extensiv	Basalt	2,15		0,22		1,48		0,31		0,50		0,01		0,22

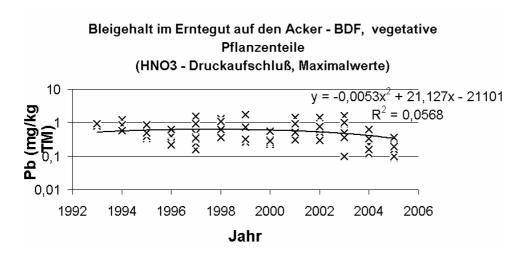
Mikronährstoffe

Es wurden allgemein ausreichende und nichttoxische Konzentrationen an Mikronährstoffen festgestellt. Tabelle 29 zeigt die mittleren Gehalte in der Pflanzenmasse für den gesamten Untersuchungszeitraum.

Tab. 29: Konzentrationen von Mikronährstoffen in den Ernteprodukten (mg/kg TS, Mittelwerte aller Jahre und Standorte)

	Molybda	än	Bor		Manga	an	Zink		Kupfe	Г	E
Anbau ,	Korn	Stroh	Korn	Stroh	Korn	Stroh	Korn	Stroh	Korn	Stroh	ŀ
Wi-Weizen	0,38	0,48	1,00	3,07	33,0	22,0	27,7	6,6	4,2	2,5	Γ
Wi-Gerste	0,31	0,32	1,02	2,69	16,0	18,3	20,7	5,3	3,1	2,1	
Wi-Raps	0,34	0,26	11,78	19,93	38,9	17,4	42,2	9,6	3,3	2,4	
Triticale	0,23	0,30	0,87	2,11	36,0	28,9	33,2	14,1	3,8	2,7	
So-Weizen	0,16	0,32	0,82	3,13	29,5	23,3	31,6	6,8	4,9	3,0	
So-Gerste	0,38	0,29	1,03	3,08	16,2	18,8	25,1	11,0	4,2	2,8	
Ackerbohne	1,06	0,40	10,93	15,23	16,4	19,1	51,0	11,9	19,6	3,9	
Kö-Erbsen	2,85	0,31	8,09	20,55	12,8	19,6	37,9	10,9	9,6	4,8	
Körnermais	0,12	0,15	2,57	8,55	6,5	26,5	22,5	10,9	3,1	4,8	
Silomais	0,17	0,26	3,20	5,20	10,2	44,0	23,1	18,4	2,9	4,7	Г
Ackergras		0,58		5,75		50,5		25,1		5,8	
Gras	1.Schni	1,44		7,49		85,6		27,2		7,12	
Gras	2.Schni	1,84		8,54		100,8		28,8		8,31	Ĺ
Gras extensiv	Mu-kalk	0,75		14,13		60,5		33,6		6,15	I
Gras extensiv		0,16		11,11		380,1		48,5		6,99	-


3.2.3 Schwermetalle


Die Schwermetallgehalte in der Pflanzenmasse liegen allgemein auf einem unbedenklichen Niveau. Tabelle 30 enthält die entsprechenden Richt- und Grenzwerte.

Tab. 30: Richt- und Grenzwerte zur Beurteilung von Schwermetallgehalten

Parameter	Verordnung (EG) Nr. 466/2001 der Kommission vom 8. März 2001 zur Festsetzung der Höchstgehalte für bestimmte Kontaminanten in Lebensmitteln	Richtlinie 2002/32/EG des Europäischen Parlaments und des Rats vom 7. Mai 2002 über unerwünschte Stoffe in der Tierernährung Richtlinie 2005/87/EG der Kommission vom 5. Dezember 2005 zur Änderung von Anhang I der Richtlinie 2002/32/EG des Europäischen Parlaments und des Rates über unerwünschte Stoffe in der Tierernährung in Bezug auf Blei, Fluor und Cadmium 28. Verordnung zur Änderung zur Futtermittelverordnung vom 6. Juli 2006
	mg/kg Frischmasse	mg/kg bei 88 % Trockenmasse
Cadmium	0,1 Getreide 0,2 Weizen 0,05 Gemüse allgemein 0,2 Blattgemüse, Kräuter, Knollensellerie 0,1 Wurzel- u. Stängelgemüse	Einzelfuttermittel pflanzlichen Ursprungs
Blei	0,2 Getreide 0,1 Gemüse allgemein 0,3 Kohl- u. Blattgemüse	10 Einzel-Futtermittel- 5 Alleinfuttermittel 30 Grünfutter
Quecksilber	-	0,1 Futtermittel- Ausgangserzeugnisse u. Alleinfuttermittel
Chrom	-	
Nickel	-	-
Kupfer	-	-
Zink	-	-
Arsen	-	2 Futtermittel- Ausgangserzeugnisse 4 Grünmehl, Zuckerrübenschnitzel

Besonders bei Blei, Quecksilber und Nickel nehmen die Gehalte in/auf den generativen Pflanzenteilen im 12-jährigen Messzeitraum ab. Die vegetativen Pflanzenteile zeigen höhere Gehalte, die aber ebenfalls in unbedenklicher Höhe liegen. Eine ansteigende Tendenz wird bei keinem Element festgestellt. Bei Nickel heben sich gesteinsbedingt hohe Gehalte von den übrigen BDF ab. Da es für Nickel keine Grenzwerte gibt (vgl. Tab. 28), dürften diese Werte von geringerer Bedeutung sein. Es muss darauf hingewiesen werden, dass es sich jeweils um die Summe des Gehaltes in der Pflanzenmasse und aufliegenden Stäuben handelt. Um mit der Auswertung das größte Risiko zu erfassen, beziehen sich die Angaben in den Abbildungen 57 - 60 auf die in einem Jahr auf der jeweiligen BDF maximal gemessenen Gehalte.

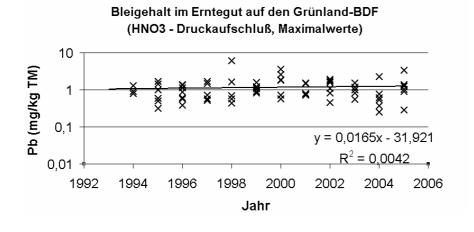
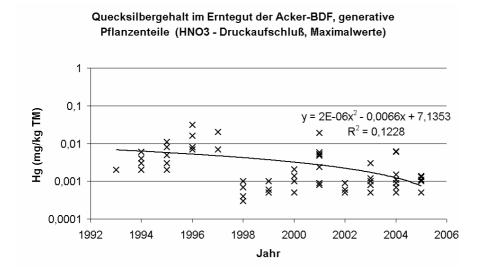
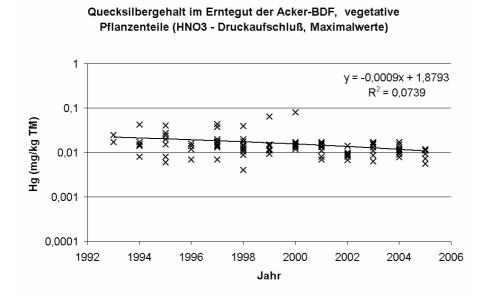
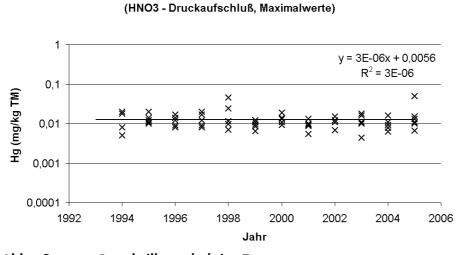
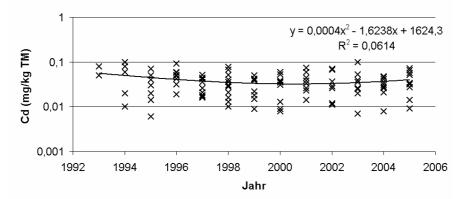





Abb. 57: Bleigehalt im Erntegut



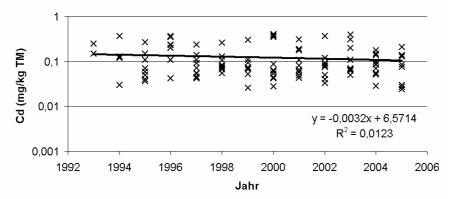

Quecksilbergehalt im Erntegut der Grünland-BDF

Abb. 58: Quecksilbergehalt im Erntegut

Cadmiumgehalt im Erntegut der Acker-BDF, generative Pflanzenteile (HNO3 - Druckaufschluß, Maximalwerte)

Cadmiumgehalt im Erntegut der Acker-BDF, vegetative Pflanzenteile (HNO3 - Druckaufschluß, Maximalwerte)

Cadmiumgehalt im Erntegut der Grünland-BDF (HNO3 - Druckaufschluß, Maximalwerte)

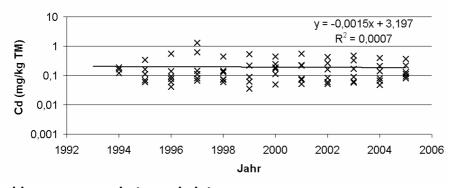
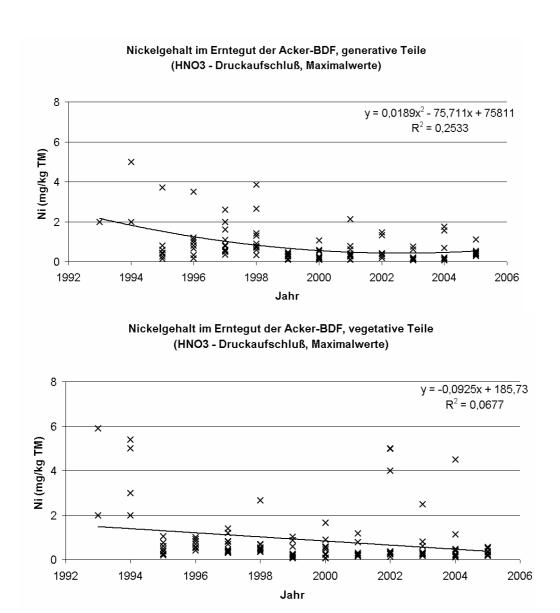



Abb. 59: Cadmiumgehalt im Erntegut

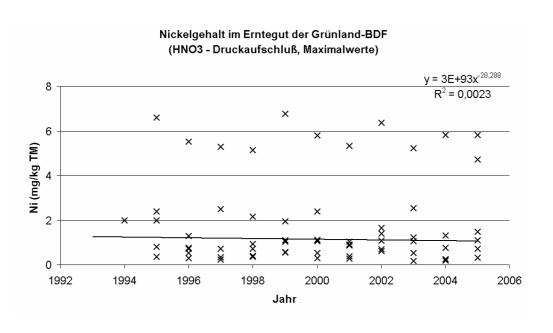


Abb. 60: Nickelgehalt im Erntegut

3.2.4 Organische Schadstoffe

Organische Schadstoffe gelangen als Pflanzenschutzmittel auf die Pflanzen oder werden aus der Luft deponiert.

Lindan fand sich in den generativen Pflanzenteilen in den letzten Messjahren nicht mehr und in den vegetativen Teilen selten und in marginaler Menge. Der Orientierungswert für Lebensmittel von 0,1 mg/kg wurde nicht überschritten (Abb. 61 und 62).

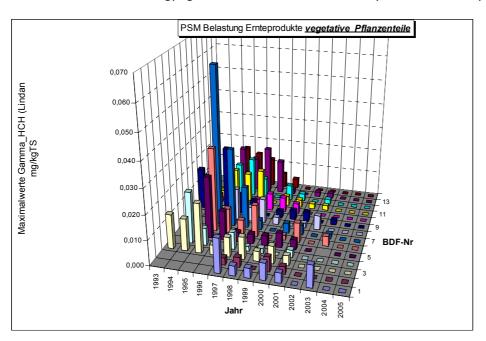


Abb. 61: Gamma-HCH in den generativen Pflanzenteilen

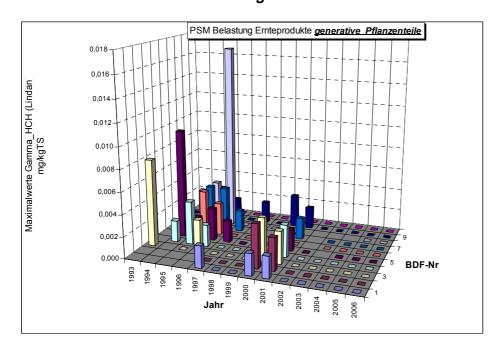


Abb. 62: Gamma-HCH in den vegetativen Pflanzenteilen

DDT und dessen Abbauprodukte kam in einzelnen Jahren abnehmend und in unbedenklichen Konzentrationen vor. Der Orientierungswert von 0,05 wurde nicht überschritten (Abb. 63).

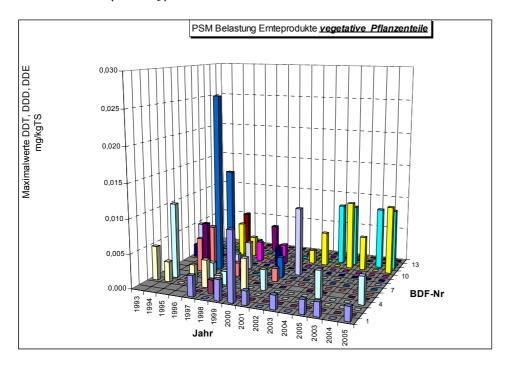


Abb. 63: DDT, DDD und DDE in den vegetativen Pflanzenteilen

HCB kam nur vereinzelt vor. Bemerkenswert ist das Auftreten auf den nicht mit Pflanzenschutzmitteln behandelten Grünland-BDF in der Rhön im Jahr 1996 (Abb. 64). Es ist anzunehmen, dass der Stoff auf dem Luftpfad auf die Pflanzen gelangte.

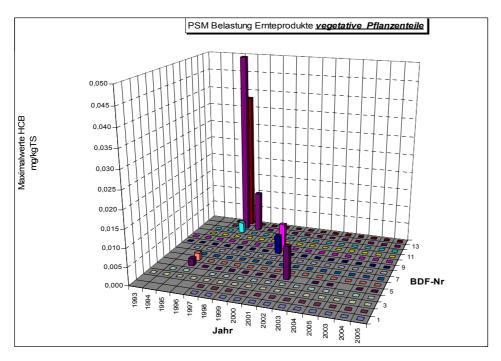


Abb. 64: HCB in den vegetativen Pflanzenteilen

Insgesamt kann festgestellt werden, dass die Ernteprodukte nicht mit organischen Schadstoffen belastet waren. Es wurden nur geringe Gehalte, oft nahe der Nachweisgrenze, gefunden. Die festgestellten Gehalte sind sicher auf die Nachwirkungen früheren Ackerbaus, wie bei DDT, zurückzuführen, bzw. auf Einträge aus der Luft, wie bei HCB.

4. Datenhaltung

Alle im Rahmen der Bodendauerbeobachtung auf landwirtschaftlich genutzten Flächen erhobenen und gemessenen Daten liegen zunächst in Form von analogen Messprotokollen in der Ablage bei den Bearbeitern vor. Eine Aufnahme von Daten in das gemäß ThürBodSchG, §6, Abs.1 von der TLUG zu führende Bodeninformationssystem ist bislang nicht erfolgt. Es erfolgte allerdings gemäß §6, Abs.2 ebenda eine Übermittlung der Daten zur Erstaufnahme der Flächen, die auch schon für bundesweite Auswertungen von dort bereitgestellt wurden. Bei entsprechend fortgeschrittenem Entwicklungsstand des genannten Bodeninformationssystems kann auf die in der TLL praktizierte Organisation der digitalen Datenbestände zugegriffen werden. Diese Datenorganisation stellt sich wie folgt dar:

Alle BDF Daten sind im ACCESS - Datenbankformat gespeichert und befinden sich auf dem Arbeitsplatzrechner MARRE auf Laufwerk D:\AccessDat\BDFneu und sind kennwortgeschützt.

Eine Sicherheitskopie befindet sich im Datennetz der TLL. Zusätzlich wird der Datenbestand auf CD gesichert. Über die genannte Datei erfolgt auch der Zugriff für die Auswertungen. Aufgrund der Verschiedenartigkeit der Messwerte wurden sie in 7 unterschiedlichen Datenbanken abgelegt (Tab. 31).

Tab. 31: System der digitalen Datenhaltung für BDF unter landwirtschaftlicher Nutzung - Übersichtsinformation

Datenbank :	Tabelle :	Inhalt:	Datensätze :	Datenfelder :
STRUKTUR.mdb	beinhaltet allger	neine und sonstige Daten		
	Ereignis	Probenahmetermine	2092	8
	Geodat	Geokoordinaten	70	21
	BDF	Angaben zur BDF	14	11
	Betrieb	Angaben zum Betrieb	14	23
	Schlag	Angaben zum Schlag	14	33
	Schlagkarte	Bewirtschaftungsdaten	1522	23
	TLLMETHODE	\ Untersuchungsmethoden	364	28
N.mdb	beinhaltet Dater	ı zu Probenahmen zu Stickstoff und Schw	vefel im Boden	
	N	3xjährl. Nmin/Smin 090 cm tief	6684	14
	N_Tief	Nmin/Smin Tiefenbohrung	951	14
PH.mdb	beinhaltet Dater	n zu bodenphysikalischen Probenahmen		
	PH_B	Bodenphysik Stechzylinder	7742	17
	PH_S	Bodenphysik Beutelproben	799	32
CH.mdb	beinhaltet Dater	n zu bodenchemischen Probenahmen (au	หer Stickstoff เ	und Schwefel)
	Boden jährlich	jährliche Makronährstoffe	2168	18
	Boden 5Jahre	Fünfjährige Schwermetalle + Organik	504	164
	Boden Tief	Tiefenbohrung Bodenchemie + Organik	706	86
PFLANZE.mdb	beinhaltet Dater	n zu Probenahmen zu Ernteprodukten		
	Ernteprodukte	Ernteergebnisse	3021	13
	Chemie	Pflanzen Chemie + Organik	1318	72
	Anbau	Anbauplanung	191	5
BIOL.mdb	beinhaltet Dater	n zu bodenbiologischen Probenahmen		
	Biol	Regenwürmer	1840	17
	Köder	Zelluloseabbau	664	13

	Mikro	Mikrobiologie	92	10
TDR.mdb	beinhaltet I	Daten zu Werten des Bodenwasserhaushalt	es	
	Nstägl	Niederschlagsmessungen	4383	5
	TDR	Bodenfeuchtemessungen	2504	17

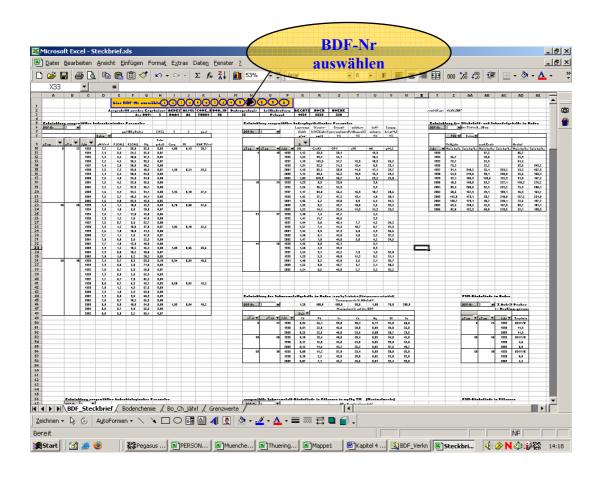
Zugriff auf die Daten und Auswertung

Neben den in der ACCESS – Datenbank vorhandenen Auswertemöglichkeiten gibt es auch Zugriffsmöglichkeiten über EXCEL. Diese sind mit der Datenbank verknüpft, so dass immer Zugriff zu aktuellen Daten besteht.

Es bestehen z.Z. folgende EXCEL-Dateien zur Datenauswertung:

Steckbrief.xls	die wichtigsten Daten für alle BDF in Übersicht
Anz_Min_Max_MW_BDF.xls	Anzahl/Minimum/Maximum/Mittelwert in Übersicht
BoCh_jährl.xls	zur jährlichen Makronährstoffbeprobung
BoCh_NuS.xls	zur Nmin/Smin Beprobung
BoCh_5Jahre_Ch.xls	zu Bodenchemie, 5-jähriger Turnus
BoCh_5Jahre_PSM.xls	zu PSM-Rückständen im Boden, 5-jähriger Turnus
Bo_TDR.xls	zu Bodenfeuchte
Bo_Tief_Ch.xls	zu Bodenchemie, Tiefenbohrung
Bo_Tief_PSM.xls	zu PSM-Rückständen, Tiefenbohrung
BoPh_S.xls	zu bodenphysikalischen Beprobungen
Pfl_Ertrag.xls	zu Ertragsermittlungen
Pfl_Ch.xls	zu Pflanzenuntersuchungen, Chemie
Pfl_SM_PSM.xls	zu Pflanzenuntersuchungen, Schwermetalle/PSM-
	Rückstände

Makros müssen beim Öffnen der Dateien aktiviert werden,

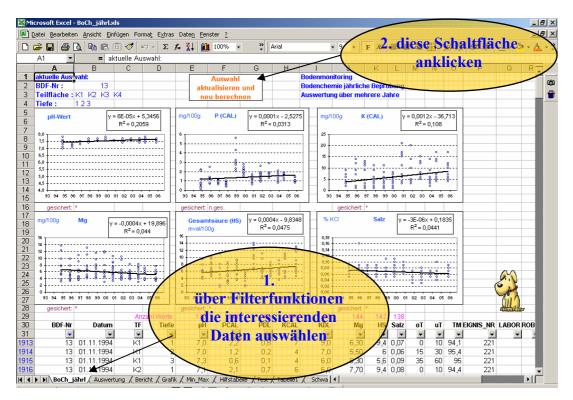


eine eventuell auftretende Infomeldung ist mit ok zu bestätigen.

Einige Auswertungsbeispiele:

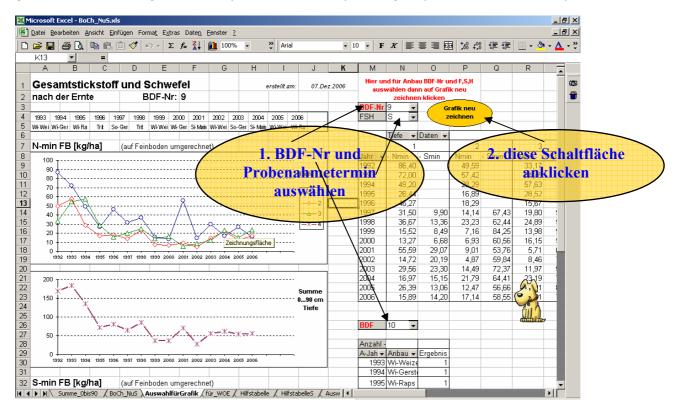
"Steckbrief"-ähnliche Darstellung

für jede BDF mit einigen ausgewählten Parametern, verwendet wird dazu die Datei **Steckbrief.xls**



Einzelwerte, Mittelwerte und Grafische Darstellungen.

Dazu zwei Beispiele:


Einzelwerte (Daten, Regressionen):

am Beispiel der Makronähstoffbeprobungen (Datei: BoCh_jährl.xls)

Mittelwerte, Zeitreihen, Tiefensummen

grafische Darstellungen am Beispiel der Nmin-Beprobungen (Datei: BoCh_NuS.xls)

Die gegenwärtige Datenhaltung wird in Verbindung mit den entwickelten Standardauswertungen als geeignetes Instrument für den internen Umgang mit den Ergebnissen gehalten. Mit diesem System war die Berichtserstellung auf rationellem Wege möglich. Für die breitere Nutzung der Ergebnisse ist es erforderlich, die Einhaltung der datenschutzrechtlichen Bestimmungen zu beachten.

Tab. 32: System der digitalen Datenhaltung für BDF unter landwirtschaftlicher Nutzung

	Nutzung									
Datenbank :	STRUKTUR.mdb		beinhaltet allgemei	ngültige	und sonstige Daten					
	1	1	1		I -	,	C.		_	1
Tabelle :			Betrieb		Schlag		Schlagkarte		TLLMETHODEN	
	Angaben zur BDF	1	Angaben zum Betriel)	Angaben zum Schlag 14	1	Bewirtschaftungsdate 1522	en	Untersuchungsmethoden 364	1
Datensätze : Datenfelder :	BDF NR	Zahl	14 BDF_NR	Zahl	BDF_NR	Zahl	BDF-Nr	Zahl	lfd_Nr	Zahl
Daterneider .	BEZEICHN	Text	NAME	Text	ANLAGEJAHR	Zahl	Erntejahr	Zahl	Gruppe	Text
	TK25_ORT	Text	PLZ	Text	NUTZUNG	Text	Datum	Datum	- ' '	Text
	TK25	Zahl	ORT	Text	SCHLAGNR	Text	Arbgang	Zahl	PAR_1	Text
	BO LANDSCHAFT	Text	STRASSE	Text	GEMEINDE	Text	Maßn	Text	PAR 2	Text
	KLIMA_NS	Zahl	KREIS	Text	FLUR	Text	Beschr	Text	PAR_3	Text
	KLIMA_TEMP	Zahl	LEITER	Text	FLURNR	Text	Gerät	Text	EINHEIT	Text
	GEOLOGIE	Text	TEL	Text	SCHLAGBEZ	Text	AB	Zahl	BEZ_1	Text
	LBF	Text	FAX	Text	AZ	Zahl	AT	Text	BEZ_2	Text
	NSTE	Text	HANDY	Text	LFREPR	Zahl	Maschine	Text	ENTRYTYP	Text
	BO_WASSER	Text	ANSPR	Text	SCHLAGFL	Zahl	EC	Zahl	TOPIC_1	Text
			LF	Zahl	NREINHEIT	Text	Mittel	Text	TOPIC_2	Text
	Ereignis		AL	Zahl	TEMP	Zahl	Wirkung	Text	TOPIC_3	Text
	Probenahmetermine		GL	Zahl	NN	Zahl	Menge/ha	Zahl	alte_Norm	Text
Datensätze :	2092	Zahl	GETR HACKFR	Zahl Zahl	HANGN	Text	ME	Text Zahl	Labor_TLL	Text
Datenfelder :	DATUM	Datum	ÖLFR	Zani	HANGR NS	Text Zahl	N P	Zahl	Zuordnung Feldlänge	Text Text
	EREIGNIS NR	Zahl	MAIS	Zahl	NS4 9	Zahl	K	Zahl	Dezimalstellen	Text
	AUFTRAG NR	Text	LEGUM	Zahl	STAUNÄSSE	Text	Mg	Zahl	Anzahl Werte	Text
	ANAL DAT	Datum	SONDER	Zahl	DRAINAGE	Text	S	Zahl	Minimum	Text
	ART	Text	STILL	Zahl	BODENEIGEN	Text	CaO	Zahl	Maximum	Text
	ANBAU	Text	BEWIRT	Zahl	EROWASSER	Text	ANGABE	Text	im ad hoc Dokument	Text
	BEMERKUNG	Text	VIEH	Zahl	EROWIND	Text	BEMERKUNGEN	Text	obligatorisch_empfohlen	Text
					ABAG	Text			Bemerkung	Text
Tabelle :	Geodat				SCHUTZSTATUS	Text			Aufschluss	Text
Inhalt :	Geokoordinaten				PROBLEM	Text			Verfahren	Text
Datensätze :					FELDSTÜCK	Text			bestimmt_an	Text
Datenfelder :		Zahl			REICHSBODEN	Text			Bestimmungsgrenze	Text
	TF	Text			BODENGESELL	Text				
	ORT	Text			GRUNDW	Zahl				
	RECHTS	Zahl			WASSERVERH	Text				
	HOCH	Zahl			ÜBERSCHW	Text				
	HOEHE	Zahl			Bodengruppe	Zahl				
	KO_FIND	Text		-						
Datenbank :	N mdh		hoinhaltet Daten zu	Brobos	∣ nahmen zu Stickstoff u	nd Schu	vofol im Rodon			1
Datelibalik .	N.IIIUD		Delililaitet Dateli Zu	FIODEI	iaililleii zu Stickstoii u	iiu Sciiv	veiei iiii bodeii			
Tabelle :	N	1	N_Tief	ı		1				1
	3xjährl. Nmin/Smin 0.	90cm	Nmin/Smin Tiefenbol	hrung						
Datensätze :			951	Ι						
Datenfelder :	EREIGNIS_NR	Zahl	EREIGNIS_NR	Zahl						
	LABOR_NR	Text	LABOR_NR	Text						
	PROBE_NR	Text	PROBE_NR	Text						
	BDF-Nr	Zahl	BDF-Nr	Zahl						
	Datum	Datum	Datum	Datum						
	TF	Text	TF	Text						
	Tiefe	Zahl	Tiefe	Zahl						
	oT uT	Zahl Zahl	oT uT	Zahl Zahl						
	Dichte	Zahl	Dichte	Zahl						
	TM	Zahl	TM	Zahl						
	NO3-N	Zahl	NO3-N	Zahl						
	NH4-N	Zahl	NH4-N	Zahl						1
	S	Zahl	S	Zahl						
Datenbank:	PH.mdb		beinhaltet Daten zu	boden	physikalischen Proben	ahmen				
	1	1	I= =		ı					
Tabelle :	PH_B	<u> </u>	PH_S	L						1
			Bodenphysik Beutelp	roben						
	Bodenphysik Stechzy	linder	700			1				1
Datensätze :	7742		799	7.5.		+				
Datensätze :	7742 EREIGNIS_NR	Zahl	EREIGNIS_NR	Zahl						
Datensätze :	7742 EREIGNIS_NR BDF-Nr	Zahl Zahl	EREIGNIS_NR BDF-Nr	Zahl						
Datensätze :	7742 EREIGNIS_NR BDF-Nr DATUM	Zahl Zahl Datum	EREIGNIS_NR BDF-Nr DATUM	Zahl Datum						
Datensätze :	7742 EREIGNIS_NR BDF-Nr DATUM BEGINN	Zahl Zahl Datum Zahl	EREIGNIS_NR BDF-Nr DATUM BEGINN	Zahl Datum Zahl						
Datensätze :	7742 EREIGNIS_NR BDF-Nr DATUM BEGINN TF	Zahl Zahl Datum	EREIGNIS_NR BDF-Nr DATUM BEGINN TF	Zahl Datum						
Datensätze :	7742 EREIGNIS_NR BDF-Nr DATUM BEGINN	Zahl Zahl Datum Zahl Text	EREIGNIS_NR BDF-Nr DATUM BEGINN	Zahl Datum Zahl Text						
Datensätze :	7742 EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE	Zahl Zahl Datum Zahl Text Zahl	EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE	Zahl Datum Zahl Text Zahl						
Datensätze :	7742 EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT	Zahl Zahl Datum Zahl Text Zahl Zahl	EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT PROBE_NR	Zahl Datum Zahl Text Zahl Zahl						
Datensätze :	7742 EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT	Zahl Zahl Datum Zahl Text Zahl Zahl Zahl Zahl	EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT	Zahl Datum Zahl Text Zahl Zahl Zahl Zahl						
Datensätze :	7742 EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT SZ_NR KFV PL	Zahl Zahl Datum Zahl Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT PROBE_NR AeWP AeWPM%	Zahl Datum Zahl Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl						
Datensätze :	7742 EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT SZ_NR KFV PL DB	Zahl Zahl Datum Zahl Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT PROBE_NR AeWP AeWPM% rtk	Zahl Datum Zahl Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl						
Datensätze :	7742 EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT SZ_NR KFV PL DB GPV	Zahl Zahl Datum Zahl Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT PROBE_NR AeWP AeWPM% rlk rlg	Zahl Datum Zahl Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl						
Datensätze :	7742 EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT SZ_NR KFV PL DB GPV FAE1	Zahl Zahl Datum Zahl Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT PROBE_NR AeWP AeWPM% rtk rtg APVtk	Zahl Datum Zahl Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl						
Datensätze :	7742 EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT SZ_NR KFV PL DB GPV FAE1 FAE2	Zahl Zahl Datum Zahl Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT PROBE_NR AeWP AeWPM% rtk rtg APVtk APVtg	Zahl Datum Zahl Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl						
Datensätze :	7742 EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT SZ_NR KFV PL DB GPV FAE1 FAE2 FAE3	Zahl Zahl Datum Zahl Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT PROBE_NR AeWP AeWPM% rtk rtg APVtk APVtg rfk	Zahl Datum Zahl Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl						
Datensätze :	7742 EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT SZ_NR KFV PL DB GPV FAE1 FAE2	Zahl Zahl Datum Zahl Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT PROBE_NR AeWP AeWPM% rtk rtg APVtk APVtg rfk rfg	Zahl Datum Zahl Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl						
Datensätze :	7742 EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT SZ_NR KFV PL DB GPV FAE1 FAE2 FAE3	Zahl Zahl Datum Zahl Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	EREIGNIS_NR BDF-Nr DATUM BEGINN TF TIEFE OT UT PROBE_NR AeWP AeWPM% rtk rtg APVtk APVtg rfk	Zahl Datum Zahl Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl						

Datenbank	CH.mdb		beinhaltet Daten zu	bodeno	chemischen Probenahn	nen (au	ßer Stickstoff und Sc	chwefel)				
24.024			201111011011201120	2000			.sor ononoron una o		,				
Tabelle :	Boden jährlich		Boden 5Jahre						Boden Tief				
Inhalt :		offe	Fünfjährig Schwerme	talle + C	Organik				Tiefenbohrung Bodenchemie + Organik				
Datensätze :	2168		504						706				
			Teil Bodenchemie		Teil Organik		Teil Schwermetalle		Teil Bodenchemie		Teil Organik		
Datenfelder :	EREIGNIS_NR	Zahl	EREIGNIS_NR	Zahl	EREIGNIS_NR_PSM	Text	KCr	Zahl	EREIGNIS_NR	Zahl	A HCH	Zahl	
	LABOR NR	Text	LABOR_NR		A_HCH	Zahl	KCu	Zahl	LABOR_NR	Text	ATR	Zahl	
	PROBE NR	Text	PROBE_NR		ATR	Zahl	KNi	Zahl	PROBE_NR	Text	B_HCH	Zahl	
	BDF-Nr	Zahl	BDF-Nr		B_HCH	Zahl	KPb	Zahl	BDF-Nr	Zahl	D_HCH	Zahl	
	Datum	Datum	Datum		D_HCH	Zahl	KZn	Zahl	Datum	Datum	EDN	Zahl	
	TF	Text	TF	Text	EDN	Zahl	KCd	Zahl	BEGINN	Zahl	HCB	Zahl	
	Tiefe	Zahl	Tiefe	Zahl	HCB	Zahl	KAs	Zahl	TF	Text	HEP	Zahl	
	oT	Zahl	оТ	Zahl	HEP	_		Zahl	Tiefe	Zahl	G HCH	Zahl	
	uT	_	uT	_	G_HCH	Zahl	KHg KAI		oT		OP_DDT	Zahl	
		Zahl		Zahl		Zahl		Zahl		Zahl	PP DDE		
	TM	Zahl	BEGINN	Zahl	OP_DDT	Zahl	KCa	Zahl	uT	Zahl	PP_DDE	Zahl	
	pH	Zahl	TM	Zahl	PP_DDD	Zahl	KFe	Zahl	TM	Zahl		Zahl	
	PDL	Zahl	PH2O	Zahl	PP_DDE	Zahl	KK	Zahl	pH	Zahl	PP_DDT	Zahl	
	PCAL	Zahl	Psl	Zahl	PP_DDT	Zahl	KMg	Zahl	PDL	Zahl	PCB101	Zahl	
	KDL	Zahl	Pfr	Zahl	PCB101	Zahl	KMn	Zahl	PCAL	Zahl	PCB138	Zahl	
	KCAL	Zahl	KH2O	Zahl	PCB138	Zahl	KNa	Zahl	KDL	Zahl	PCB153	Zahl	
	Mg	Zahl	Ksa	Zahl	PCB153	Zahl	KP	Zahl	KCAL	Zahl	PCB180	Zahl	
	HS	Zahl	Kfixnaß		PCB180	Zahl	KS	Zahl	Mg	Zahl	PCB28	Zahl	
	Salz	Zahl	Kfixtro	Zahl	PCB28	Zahl	KB	Zahl	CaCO3	Zahl	PCB52	Zahl	
			NaDL	Zahl	PCB52	Zahl	KMo	Zahl	Corg	Zahl	SIM	Zahl	
			NaCAL	Zahl	SIM	Zahl	KSb	Zahl	Nt	Zahl	TBZ	Zahl	
			Smin	Zahl	TBZ	Zahl	KTI	Zahl	CI	Zahl	E1	Zahl	
			SO4	Zahl	E1	Zahl	HFHg	Zahl	Smin	Zahl	DCP	Zahl	
			CI	Zahl	FLT	Zahl	HFAI	Zahl	SO4	Zahl	MCPA	Zahl	
	1		CaCO3	Zahl	IPY	Zahl	HFCa	Zahl	SH2O	Zahl	MCP	Zahl	
		†	Corg	Zahl	BBF	Zahl	HFFe	Zahl		1	ISO	Zahl	
			Nt	Zahl	BKF	Zahl	HFK	Zahl		+	BEN	Zahl	
		-	St	Zahl	BAP	Zahl	HFMg	Zahl			NAP	Zahl	
					BPE	_							
		-	KINa	Zahl		Zahl	HFMn	Zahl			ANY	Zahl	
			KIMg	Zahl	DCP	Zahl	HFNa	Zahl			ANA	Zahl	
			KIK	Zahl	MCPA	Zahl	HFP	Zahl			FLU	Zahl	
			KICa	Zahl	MCP	Zahl	HFAs	Zahl			PHE	Zahl	
			KITWert	Zahl	ISO	Zahl	HFB	Zahl			ANT	Zahl	
			KIHWert	Zahl	BEN	Zahl	HFCd	Zahl			FLT	Zahl	
			KISWert	Zahl	IOX	Zahl	HFCr	Zahl			PYR	Zahl	
			KAK	Zahl	BRO	Zahl	HFCu	Zahl			BAA	Zahl	
			KleffNa	Zahl	NAP	Zahl	HFMo	Zahl			CHR	Zahl	
			KleffMg	Zahl	ANA	Zahl	HFNi	Zahl			BBF	Zahl	
			KleffK	Zahl	FLU	Zahl	HFPb	Zahl			BKF	Zahl	
			KleffCa	Zahl	PHE	Zahl	HFSb	Zahl			BAP	Zahl	
			KleffAl	Zahl	ANT	Zahl	HFTI	Zahl			DBA	Zahl	
			KleffMn	Zahl	PYR	Zahl	HFV	Zahl			BPE	Zahl	
			KleffFe	Zahl	CHR	Zahl	HFZn	Zahl			IPY	Zahl	
			KleffH	Zahl	BAA	Zahl	AAs	Zahl		1	alte Liste :	Zahl	
			PB	Zahl	DBA	Zahl	ACd	Zahl			DI_ATR	Zahl	
		 	PMn	Zahl	ANY	Zahl	ACr	Zahl		1	DE_ATR	Zahl	
		!	PMo		alte Liste :	Zahl	ACu	Zahl		-	DE_TBZ	Zahl	
			PZn	Zahl	E_HCH	Zahl	ANI	Zahl		-	E_HCH	Zahl	
			PCu	Zahl	C_HEPEP	Zahl	APb	Zahl		1	C_HEPEP	Zahl	
		1	PFe	Zahl	T_HEPEP	Zahl	ASb	Zahl		1	T_HEPEP	Zahl	
			EDTA_Fe	Zahl	ADN	Zahl	ATI	Zahl			ADN	Zahl	
					IDN	Zahl	AZn	Zahl			IDN	Zahl	
					DDN	Zahl	AHg	Zahl			DDN	Zahl	
					K_EDN	Zahl	AMo	Zahl			K_EDN	Zahl	
					CCL	Zahl	AMn	Zahl			CCL	Zahl	
					TCL	Zahl	AB	Zahl			TCL	Zahl	
					OCL	Zahl	AFe	Zahl			OCL	Zahl	
					MRX	Zahl	ACo	Zahl			MRX	Zahl	
					E2	Zahl	AV	Zahl			E2	Zahl	
					ESS	Zahl	ABe	Zahl		1	ESS	Zahl	
				-	OP DDE	Zahl	+ ·-	1			OP_DDE	Zahl	
					OP_DDD	Zahl	1	<u> </u>		1	OP_DDD	Zahl	
	1	 	1	 	DI_ATR	Zahl	+	1		1	PROP	Zahl	
				-			+			1			
		-		-	DE_ATR	Zahl	1	 		 	SBZ	Zahl	
					PROP	Zahl		ļ		-	CYZ	Zahl	
					CYZ	Zahl	1				MBZ	Zahl	
					SBZ	Zahl	1			1	DMY	Zahl	
					DMY	Zahl					AMY	Zahl	
					MBZ	Zahl					PRY	Zahl	
					AMY	Zahl					TBY	Zahl	
					PRY	Zahl							
					TBY	Zahl	1			1	1	1	
					DE_TBZ	Zahl						1	
					_					1			
	l		l		l .		I.		I.		1		

Datenbank :	PFLANZE.mdb		beinhaltet Daten zu	Proben	ahmen zu Ernteproduk	ten		
	I=		I		ı		1.	ı
	Ernteprodukte		Chemie Pflanzen Chemie + C	raanik			Anbau	
Datensätze :	Ernteergebnisse		1318	rganik I			Anbauplanung 191	1
Dutonout20 .	3021		Teil Pflanzenchemie		Teil Organik			
Datenfelder:	EREIGNIS_NR	Zahl	EREIGNIS_NR	Zahl	EREIGNIS_NR_ORG	Zahl		
	BDF-Nr	Zahl	PROBE_NR	Text	ADN	Zahl	BDF-Nr	Zahl
	Datum	Datum	BDF-Nr	Zahl	A_HCH	Zahl	Jahr (Erntedatum)	Datum
	Frucht TF	Text Text	Datum Erntejahr	Datum Zahl	B_HCH CCL	Zahl Zahl	Anbau	Text Zahl
	PROBE NR	Zahl	Frucht	Text	D HCH	Zahl	Erntejahr Koppelprodukt	Text
	Flächenbreite	Zahl	KS	Text	DDN	Zahl	Коррегріодин	TOX
	Flächenlänge	Zahl	LABOR_NR	Text	E1	Zahl		
	Brutto	Zahl	TF	Text	E2	Zahl		
	Tara	Zahl	Entzug	Zahl	ESS	Zahl		
	Korn TM%Korn	Zahl Zahl	FM TMErnte	Zahl Zahl	EDN HCB	Zahl Zahl		
	TM%Stroh	Zahl	TM	Zahl	HEP	Zahl		
	11070001011	Zum	NO3	Zahl	C HEPEP	Zahl		
			N	Zahl	G_HCH	Zahl		
			Ca	Zahl	MRX	Zahl		
			P	Zahl	OP_DDD	Zahl		
			Na	Zahl	OP_DDE	Zahl		
			Mg K	Zahl Zahl	OP_DDT OCL	Zahl Zahl		1
			Cu	Zahl	PP DDD	Zahl		
			Mn	Zahl	PP_DDE	Zahl		
			Zn	Zahl	PP_DDT	Zahl		
			Fe	Zahl	PCB101	Zahl		
		-	S	Zahl	PCB138	Zahl		1
			CI Br	Zahl Zahl	PCB153 PCB180	Zahl Zahl		1
			Sr	Zahl	PCB28	Zahl		
			Cr	Zahl	PCB52	Zahl		
			Ni	Zahl	TCL	Zahl		
			Hg	Zahl	E_HCH	Zahl		
			As	Zahl	K_EDN	Zahl		
			B Cd	Zahl	IDN T HEPEP	Zahl Zahl		
			Mo	Zahl Zahl	I_HEPEP	Zani		
			Pb	Zahl				
			Sb	Zahl				
			TI	Zahl				
Datenbank :	BIOL.mdb				piologischen Probenah	men		
			beinhaltet Daten zu			men		
Tabelle :					biologischen Probenah Mikro Mikrobiologie	men		
Tabelle : Inhalt : Datensätze :	Biol Regenwürmer 1840		beinhaltet Daten zu Köder Zelluloseabbau 92	bodent	Mikro Mikrobiologie 664			
Tabelle : Inhalt : Datensätze :	Biol Regenwürmer 1840 EREIGNIS_NR	Zahl	köder Zelluloseabbau 92 EREIGNIS_NR	bodent Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR	Zahl		
Tabelle : Inhalt : Datensätze :	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr	Zahl	beinhaltet Daten zu Köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr	bodent Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR	Zahl Text		
Tabelle : Inhalt : Datensätze :	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum	Zahl Datum	beinhaltet Daten zu Köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr	bodent Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr	Zahl Text Zahl		
Tabelle : Inhalt : Datensätze :	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr	Zahl	beinhaltet Daten zu Köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr	bodent Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR	Zahl Text		
Tabelle : Inhalt : Datensätze :	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme	Zahl Datum Text	köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum	Zahl Zahl Zahl Zahl Datum	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum	Zahl Text Zahl Datum		
Tabelle : Inhalt : Datensätze :	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv	Zahl Datum Text Text Zahl Zahl	beinhaltet Daten zu Köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6	Zahl Zahl Zahl Datum Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM	Zahl Text Zahl Datum Text Zahl Zahl		
Tabelle : Inhalt : Datensätze :	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad	Zahl Datum Text Text Zahl Zahl Zahl	köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum 72 74 76 78	Zahl Zahl Zahl Datum Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm	Zahl Text Zahl Datum Text Zahl Zahl Zahl		
Tabelle : Inhalt : Datensätze :	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv	Zahl Datum Text Text Zahl Zahl Zahl Zahl	köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10	Zahl Zahl Zahl Zahl Datum Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl		
Tabelle : Inhalt : Datensätze :	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl	köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10 T12	Zahl Zahl Zahl Datum Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle : Inhalt : Datensätze :	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv	Zahl Datum Text Text Zahl Zahl Zahl Zahl	köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10	Zahl Zahl Zahl Zahl Datum Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl		
Tabelle : Inhalt : Datensätze :	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1 2 3 4	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10 T12 T14	Zahl Zahl Zahl Datum Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle : Inhalt : Datensätze :	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1 2 3 4 5	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum 72 T4 T6 T8 T10 T12 T14 T16 T14 T16	Zahl Zahl Zahl Datum Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle : Inhalt : Datensätze :	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1 2 3 4 4 5 6	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	beinhaltet Daten zu Köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10 T112 T14 T16 T18	Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle : Inhalt : Datensätze :	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 11 2 3 4 5 6 7	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	beinhaltet Daten zu Köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10 T112 T14 T16 T18	Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle : Inhalt : Datensätze :	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1 2 3 4 4 5 6	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	beinhaltet Daten zu Köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10 T112 T14 T16 T18	Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle : Inhalt : Datensätze :	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1 2 3 4 5 6 7 8	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum 72 T4 T6 T8 T10 T112 T14 T16 T18 T10 T118 T10 T18 T20	Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle :	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1 2 3 4 5 6 7 8 TDR.mdb Nstägl	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	beinhaltet Daten zu Köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10 T12 T14 T16 T18 T20 beinhaltet Daten zu	Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg Glucosid	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle: Inhalt: Datensätze: Datenfelder: Datenfelder: Datenbank: Tabelle: Inhalt:	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 12 3 4 5 6 7 8 TDR.mdb Nstägl Niederschlagsmessun	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	beinhaltet Daten zu Köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10 T12 T14 T16 T18 T20 beinhaltet Daten zu TDR Bodenfeuchtemessu	Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg Glucosid	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle :	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1 2 3 4 5 6 7 8 TDR.mdb Nstägl Niederschlagsmessur 4383	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum 72 T4 T6 T8 T10 T12 T14 T16 T18 T20 beinhaltet Daten zu TDR Bodenfeuchtemessui 2504	Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg Glucosid	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle: Inhalt: Datensätze: Datenfelder: Datenfelder: Datenbank: Tabelle: Inhalt:	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1 2 3 4 5 6 7 8 TDR.mdb Nstägl Niederschlagsmessur 4383 NR	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10 T12 T14 T16 T18 T20 beinhaltet Daten zu TDR Bodenfeuchtemessui 2504 BDF-Nr	Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg Glucosid	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle: Inhalt: Datensätze: Datenfelder: Datenfelder: Datenbank: Tabelle: Inhalt:	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1 2 3 4 5 6 7 8 TDR.mdb Nstägl Niederschlagsmessur 4383	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum 72 T4 T6 T8 T10 T12 T14 T16 T18 T20 beinhaltet Daten zu TDR Bodenfeuchtemessui 2504	Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg Glucosid	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle: Inhalt: Datensätze: Datenfelder: Datenfelder: Datenbank: Tabelle: Inhalt:	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1 2 3 3 4 5 6 7 8 TDR.mdb Nstägl Niederschlagsmessur 4383 NR HYDR	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10 T12 T14 T16 T18 T20 beinhaltet Daten zu TDR Bodenfeuchtemessui 2504 BDF-Nr Datum	Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg Glucosid	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle: Inhalt: Datensätze: Datenfelder: Datenfelder: Datenbank: Tabelle: Inhalt:	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1 2 3 4 5 6 7 8 TDR.mdb Nstägl Niederschlagsmessur 4383 NR HYDR DATUM NSWOE NSBUR	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10 T12 T14 T16 T18 T20 beinhaltet Daten zu TDR Bodenfeuchtemessu 2504 BDF-Nr Datum ERNTEJAHR BT5W BT2W BT2W BT2W	Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg Glucosid	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle: Inhalt: Datensätze: Datenfelder: Datenfelder: Datenbank: Tabelle: Inhalt:	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1 2 3 4 5 6 7 8 TDR.mdb Nstägl Niederschlagsmessur 4383 NR HYDR DATUM NSWOE	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10 T12 T14 T16 T18 T20 beinhaltet Daten zu TDR Bodenfeuchtemessu 2504 BDF-Nr Datum ERNTEJAHR BT5W BT2OW T1aV%	bodeni Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zah	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg Glucosid	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle: Inhalt: Datensätze: Datenfelder: Datenfelder: Datenbank: Tabelle: Inhalt:	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1 2 3 4 5 6 7 8 TDR.mdb Nstägl Niederschlagsmessur 4383 NR HYDR DATUM NSWOE NSBUR	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10 T12 T14 T16 T18 T20 beinhaltet Daten zu TDR Bodenfeuchtemessui 2504 BDF-Nr Datum ERNTEJAHR BT5W BT20W T1aV% T1bV%	bodeni Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zah	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg Glucosid	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle: Inhalt: Datensätze: Datenfelder: Datenfelder: Datenbank: Tabelle: Inhalt:	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1 2 3 4 5 6 7 8 TDR.mdb Nstägl Niederschlagsmessur 4383 NR HYDR DATUM NSWOE NSBUR	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	beinhaltet Daten zu Köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10 T12 T14 T16 T18 T20 beinhaltet Daten zu TDR Bodenfeuchtemessu 2504 BDF-Nr Datum ERNTEJAHR BT5W BT20W T1aV% T1bV% T1cV%	Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg Glucosid	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle: Inhalt: Datensätze: Datenfelder: Datenfelder: Datenbank: Tabelle: Inhalt:	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1 2 3 4 5 6 7 8 TDR.mdb Nstägl Niederschlagsmessur 4383 NR HYDR DATUM NSWOE NSBUR	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	beinhaltet Daten zu Köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10 T12 T14 T16 T18 T20 beinhaltet Daten zu TDR Bodenfeuchtemessui 2504 BDF-Nr Datum ERNTEJAHR BT5W BT20W T1aV% T1bV% T1cV% BT20	Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg Glucosid	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle: Inhalt: Datensätze: Datenfelder: Datenfelder: Datenbank: Tabelle: Inhalt:	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1 2 3 4 5 6 7 8 TDR.mdb Nstägl Niederschlagsmessur 4383 NR HYDR DATUM NSWOE NSBUR	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	beinhaltet Daten zu Köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10 T12 T14 T16 T18 T20 beinhaltet Daten zu TDR Bodenfeuchtemessu 2504 BDF-Nr Datum ERNTEJAHR BT5W BT20W T1aV% T1bV% T1cV%	Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg Glucosid	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		
Tabelle: Inhalt: Datensätze: Datenfelder: Datenfelder: Datenbank: Tabelle: Inhalt:	Biol Regenwürmer 1840 EREIGNIS_NR BDF-Nr Datum Entnahme TF Aad Ajuv Mad Mjuv 1 2 3 4 5 6 7 8 TDR.mdb Nstägl Niederschlagsmessur 4383 NR HYDR DATUM NSWOE NSBUR	Zahl Datum Text Text Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	köder Zelluloseabbau 92 EREIGNIS_NR BDF-Nr Erntejahr Datum T2 T4 T6 T8 T10 T12 T14 T16 T18 T20 beinhaltet Daten zu TDR Bodenfeuchtemessu 2504 BDF-Nr Datum ERNTEJAHR BT20W T1aV% T1bV% T1cV% BT20 T2aV%	Zahl Zahl Zahl Zahl Zahl Zahl Zahl Zahl	Mikro Mikrobiologie 664 EREIGNIS_NR LABOR_NR BDF-Nr Datum TF TM BioM BoAtm Katz Arg Glucosid	Zahl Text Zahl Datum Text Zahl Zahl Zahl Zahl Zahl Zahl		

5. Zusammenfassung mit Schlussfolgerungen

Von der Thüringer Landesanstalt für Landwirtschaft werden beginnend 1992 14 BDF unter Ackernutzung und 4 unter Grünland betrieben. Dieses Monitoring erfasst die wichtigsten Standorteinheiten Thüringens, soweit sie einen bedeutenden Anteil an der LF des Landes einnehmen. In diesem Sinne ist das Messnetz hinlänglich repräsentativ. Das Messnetz ist nicht darauf gerichtet, Umwelteinflüsse der Landnutzung in Thüringen repräsentativ zu erfassen. Dafür gibt es spezifische Monitoringprogramme.

• Eine Erweiterung des Netzes landwirtschaftlicher BDF mit Intensivmessbetrieb zur Erhöhung der Repräsentanz im dargestellten Sinne ist nicht erforderlich.

Die bodenphysikalischen Messungen ergaben, dass Krumenbasis und Unterboden bei praxisüblicher Bewirtschaftung im Inneren des Feldschlages keine Gefügeschädigung erfahren. Eine Dynamik der Gefügeeigenschaften beschränkt sich hier auf den Krumenraum. So wurden in der Unterkrume von Buntsandstein- und Tonböden Gefügeschäden bei Pflugverzicht gefunden, die jedoch durch periodisch tiefere Lockerung behoben werden konnten.

Anhand der Messdaten erfolgte eine weitere Validierung des Vorsorgekonzeptes "Druckbelastungsquotient". Die gefundenen Porositäts- und Leitfähigkeitswerte stehen im direkten Zusammenhang mit den durch den Druckbelastungsquotienten beschriebenen Belastungen. So zeigen die bei hoher Druckbelastung durch Kompressionsvorgänge gefährdeten Buntsandsteinböden und die vorwiegend bei Scherbeanspruchung gefährdeten tonreichen Böden einen Handlungsbedarf für weitergehende Belastungsminderung, wenn die weithin praxisüblichen Produktionsverfahren betrachtet werden. Auf den belastbareren Böden zeigt das Vorsorgekonzept, dass die übliche Verfahrensgestaltung bereits den Vorsorgeanforderungen entspricht.

② Der Beratungsansatz "Druckbelastungsquotient hat sich langjährig bestätigt und ist ausreichend validiert. Auf dieser Grundlage ist ein Management der Vorsorge gegen Bodenschadverdichtung im Landwirtschaftsbetrieb zu organisieren.

Mikrobielle Biomasse, Bodenatmung und Katalasezahl weisen im Mittel der Jahre auf einen Zusammenhang von Gefügeeigenschaften und Leistungsfähigkeit der Bodenmikrobiologie hin. Betrachtet man jedoch die Zeitreihen, werden zum Ende des Auswertezeitraumes generell unbedenkliche Wertebereiche des Metabolischen Quotienten nach TISCHER und des Verhältnisses von Cmik und Corg erreicht.

② Zum Ende des Auswertezeitraumes sind bodenphysikalische Eigenschaften offenbar nicht mehr bestimmend für mikrobiologische Leistungsparameter. Damit ist letzteres zwar wichtig für eine umfassende Kennzeichnung der Bodenfunktionen, aber kein geeigneter Indikator für den Gefügezustand.

Die Bodengehalte an pflanzenaufnehmbarem Phosphor waren im Untersuchungszeitraum auf 11 BDF rückläufig und haben in 5 Fällen bereits die Gehaltsklasse A erreicht, besonders prekär ist die Mangelsituation auf den langjährig extensiv genutzten Grünlandflächen. 9 Flächen liegen derzeit in Gehaltsklasse B, nur auf 2 Flächen ist die erwünschte Klasse C gewährleistet. Aufgrund des meist hohen Nachlieferungsvermögens an Kalium ist die K-Versorgung kein größeres Problem.

Magnesium ist ausreichender Menge vorhanden. Der in den ersten Jahren auf 4 BDF festgestellte Trend eines starken pH-Rückganges hat sich nicht weiter fortgesetzt.

Der Unterversorgung mit P muss durch verstärkte Zufuhr begegnet werden. Alternativ sollte die Versorgung mit Grundnährstoffen im Stickstoffmanagement ab sofort (auch in den Düngeempfehlungen!) durch Korrektur der Zielerträge berücksichtigt werden. P-Mangel bedingt, besonders bei abnehmender Bodenwasserbereitstellung, geringere N-Ausnutzung. Der N-Überschuß erhöht die Austragsgefahr!

Der Besatz mit Regenwürmern wechselt von Jahr zu Jahr stark, korreliert aber im Mittel der Jahre mit den bodenphysikalischen Befunden. So nahmen unter der Ackernutzung die Anteile tiefgrabender Arten und die Individuengröße mit zunehmender Verdichtungsgefährdung ab. Eine Verschiebung in der Artenzusammensetzung wurde nicht festgestellt. Der Besatz ist nach Literaturaussagen generell als ausreichend einzuschätzen. Die biologische Gesamtaktivität (Köderstreifen-Freßtest) erwies sich unter Ackernutzung um 50% höher als unter Grünland. Tonreiche Standorte zeigten die höchste Aktivität.

Makrobiologische Untersuchungsprogramme ergaben keine Hinweise auf eine intolerable Beeinträchtigung des Lebensraumes Boden durch die gegenwärtige Nutzung.

Eine der BDF-Gruppierung nach den Speicher- und Durchlässigkeitseigenschaften (gut / schlecht) folgende Auswertung der Stickstoff-Flächenbilanzen ergab im Mittel des bis zu 13jährigen Untersuchungszeitraumes um 50 kg N/ha unterschiedliche Salden. Die Häufigkeit von Jahren mit positiven Salden folgte der Differenzierung der Gefügeeigenschaften. Weiterhin ergab eine Analyse der Wirkung des zugeführten Stickstoffs auf den Energieertrag, dass auf den BDF mit schlechteren Gefügeeigenschaften ein um 10% niedrigerer Energieertrag mit 20 kg/ha größerem Düngeraufwand erzielt wurde.

1 Im Düngungsmanagement sollte die Speicher- und Regulationsfunktion des Bodens im Interesse höherer Faktorproduktivität sowie eines weiter verminderten Gefährdungspotentials für Umwelt-Schutzguter stärker berücksichtigt werden.

Es wurde festgestellt, dass der Gehalt des Bodens an mineralischem Stickstoff im Frühjahr mit dem N-Saldo des Vorjahres korreliert, 10 kg Saldenabsenkung waren mit 3 kg weniger Nmin in 0-9 dm Bodentiefe verbunden. Gleichzeitig bestand ein enger Zusammenhang mit der Klimatischen Wasserbilanz des Vorjahres. So zeigte sich in den letzten 10 Jahren eine Abnahme um 40 kg/ha Nmin in 0-9 dm Bodentiefe bei einem um ca. 150 mm gestiegenen Verdunstungsüberschuss.

Die daraus folgende Düngungskonsequenz "zur 1. N-Gabe immer mehr düngen bei immer weniger nutzbarem Wasser in der Vegetationszeit" muss angesichts der Besorgnisse um den Klimawandel hinterfragt werden.

Schwermetalle wurden nur auf den Böden mit hohen Hintergrundwerten in einer die Vorsorgewerte der Bodenschutzverordnung überschreitenden Menge gefunden. Die mobilen Anteile waren sehr gering. Im Erntegut nahmen die Gehalte an Quecksilber, Blei und Nickel in den generativen Pflanzenteilen über den gesamten Messzeitraum ab. Vegetative Teile hatten höhere Gehalte, jedoch in unbedenklicher Höhe.

Organische Schadstoffe wurden weder im Boden noch in der Pflanzenmasse in unzulässiger Menge festgestellt; meist lagen die Werte nahe der Nachweisgrenze. Meist waren Einträge aus der Luft oder frühere Mittelanwendungen die Ursache.

® Böden und Erntegut waren nicht in unzulässiger Höhe mit Schwermetallen und organischen Schadstoffen belastet. Es besteht kein besonderer Bedarf an speziellen Vorsorgemaßnahmen.

Der Datenbestand aus der landwirtschaftlichen Bodendauerbeobachtung umfasst gegenwärtig rund 36.700 Datensätze. Diese werden in einem Access-Datenbank-System gehalten. Um die Nutzung der Daten zu ermöglichen, wurden von den Bearbeitern sich standardmäßig aktualisierende Excel-Auswertungen entwickelt und bereit gestellt. Somit sind Datenarchivierung und Nutzbarkeit gewährleistet.

O Die Einbeziehung der Datenhaltung in das von / bei der TLUG zu betreibende Bodeninformationssystem sollte unter Beibehaltung des für die landwirtschaftlichen BDF aufgebauten Datenmanagements geschehen. Die Einbindung ist nicht Voraussetzung für Bereitstellung und Auswertbarkeit der Daten.

Der Betrieb der landwirtschaftlichen Bodendauerbeobachtung bindet in der bisherigen Form jährlich Laborleistungen von ca. 225.000 € sowie Lohn- und Sachkosten von rund 100.000 €. Die Ergebnisse sind für die TLL nur zum Teil zur Erfüllung von Aufgaben, die per Rechtsverordnung bzw. Erlass des TMLNU zugewiesen sind, notwendig. Es überwiegt das darüber hinaus bestehende Erfordernis eines Bodenmonitorings entsprechend der Bund-Länder-Vereinbarung zur Bodendauerbeobachtung.

© Es sollte eine f\u00f6rmliche Entscheidung \u00fcber die Organisation des fortgesetzten Messbetriebes durch das TMLNU erfolgen. Die Anweisung, den Betrieb vollst\u00e4ndig unter Inanspruchnahme von Haushaltsmitteln der TLL fortzusetzen, ist eine der m\u00f6glichen Alternativen.

6. Verzeichnis der Abbildungen und Tabellen

Abbildungen

		Seite
Abb. 1	Räumliche Anordnung der Probenahmen auf den BDF	8
Abb. 2	Wassergehalts-Saugspannungsbeziehungen in der Unterkrume der Ackerstandorte	25
Abb. 3	Entwicklung von Feldkapazität und Trockenrohdichte (schluffiger Lehm)	26
Abb. 4	Entwicklung von Feldkapazität und Trockenrohdichte (schwach schluffiger Ton)	26
Abb. 5	Entwicklung von Feldkapazität und Trockenrohdichte (schluffig lehmiger Sand)	26
Abb. 6	Entwicklung der Luftkapazität auf den gering verdichtungsgefährdeten BDF	27
Abb. 7	Entwicklung der Luftkapazität auf den durch Kompression verdichtungsgefährdeten BDF	28
Abb. 8	Entwicklung der Luftkapazität auf den durch Knetung verdichtungsgefährdeten BDF	28
Abb. 9	Gesättigte Wasserleitfähigkeit der Standorte mit geringer Verdichtungsgefährdung	29
Abb. 10	Gesättigte Wasserleitfähigkeit der Standorte mit Verdichtungsgefährdung durch Kompression	30
Abb. 11	Gesättigte Wasserleitfähigkeit der Standorte mit	30
Abb. 12	Verdichtungsgefährdung durch Knetung Entwicklung der Aggregatdichte in der Unterkrume der BDF 10	32
Abb. 13	Entwicklung der Aggregatalente in der Onterkrume der BBT 10 Entwicklung der Trockenrohdichte auf den Grünlandstandorten	32
Abb. 13	Entwicklung der Luftkapazität auf den Grünlandstandorten	_
Abb. 15	Entwicklung der Durchlässigkeit auf den Grünlandstandorten	33
Abb. 16		33
	Entwicklung der Luftkapazität auf dem Braunerde-Tschernosem	34
Abb. 17	Entwicklung der Wasserleitfähigkeit auf dem Braunerde- Tschernosem	34
Abb. 18	Entwicklung der Trockenrohdichte, pfluglos auf Buntsandstein	35
Abb. 19	Entwicklung der Luftkapazität, pfluglos auf Buntsandstein	35
Abb. 20	Entwicklung der gesättigten Wasserleitfähigkeit, pfluglos auf	36
	Buntsandstein	
Abb. 21	Entwicklung der Trockenrohdichte auf den gepflügten gefügestabilen Standorten	37
Abb. 22	Entwicklung der Luftkapazität auf den periodisch gepflügten gefügestabilen Standorten	37
Abb. 23	Entwicklung der Wasserdurchlässigkeit auf den periodisch gepflügten gefügestabilen Standorten	38
Abb. 24	Entwicklung der Luftkapazität auf den periodisch gepflügten durch Knetung gefährdeten Standorten	39
Abb. 25	Entwicklung der Wasserleitfähigkeit auf den periodisch gepflügten durch Knetung gefährdeten Standorten	39
Abb. 26	Mikrobielle Biomasse, Bodenatmung und Katalasezahl der BDF im Berichtszeitraum	44
Abb. 27	Metabolischer Quotient und Cmik/Corg - Verhältnis	48
Abb. 28	Mikrobielle Biomasse auf den Acker-BDF	45

Abb. 29	Bodenatmung auf den Acker-BDF	45
Abb. 30	Katalasezahl auf den Acker-BDF	46
Abb. 31	Luftkapazität und gesättigte Wasserleitfähigkeit – Mittelwerte der 3 Gefährdungsgruppen	45
Abb. 32	Druckbelastungsquotient bei Produktion von Silomais	42
Abb. 33	Druckbelastungsquotient bei Produktion von Winterweizen	43
Abb. 34	Metabolischer Quotient der BDF-Gruppe "Gefährdung durch	47
7 1	Scherprozesse"	17
Abb. 35	Metabolischer Quotient der BDF-Gruppen "Gefährdung durch Kompression" und "geringes Risiko"	47
Abb. 36	Metabolischer Quotient und Verhältnis Cmik/Corg auf den Acker- BDF, Mittel aller Meßjahre	46
Abb. 37	Anzahl und Masse der Regenwürmer auf den Bodendauerbeobachtungsflächen	49
Abb.38	Artenspektrum der Lumbriciden auf den BDF	51
Abb. 39	Biologische Gesamtaktivität / Köderschwund im Mittel aller	-
ADD. 39	Beobachtungsjahre	52
Abb. 40	Biologische Gesamtaktivität / Köderschwund	52
Abb. 41	Stickstoff-Salden der Acker-BDF	_
Abb. 41	N-Saldo und Nmin-Gehalt aller Acker-BDF	54
Abb. 43	N-Salden und Nmin-Gehalte der Acker-BDF, gruppiert nach	55 56
AUU. 43	Aspekten des Bodengefüges und des Bodenwasserhaushaltes	20
Abb. 44	Nmin-Gehalt der Acker-BDF in 0-9 dm Bodentiefe	57
Abb. 45	Beziehung zwischen winterlicher Nmin-Minderung	59
Abb. 46	Nmin-Gehalt und Klimatische Wasserbilanz	58
Abb. 47	Jahressummen der verdunstung und des Niederschlages	59
Abb. 48	Mineralischer Stickstoff auf den Acker-BDF mit gut speicher- und	60
ADD. 40	regulationsfähigen Böden (Tiefbohrungen)	00
Abb. 49	Mineralischer Stickstoff auf den Acker-BDF mit gering speicher- und	61
,,,	gut regulationsfähigen Böden (Tiefbohrungen)	
Abb. 50	Mineralischer Stickstoff auf den Acker-BDF mit gering speicher- und	62
,	schwach regulationsfähigen Böden (Tiefbohrungen)	
Abb. 51	pH-Wert der BDF in 0-20 cm Bodentiefe	65
Abb. 52	Phosphorgehalt (CAL) in 0-20 cm Bodentiefe	66
Abb. 53	Kaliumgehalt (CAL) in 0-20 cm Bodentiefe	69
Abb. 54	Schwermetallgehalte (Königswasseranalyse), Mittelwerte in 0-90 cm	74
<i>J</i> 1	Bodentiefe	, ,
Abb. 55	Rückstände von Pflanzenschutzmitteln im Boden	76
Abb. 56	Stickstoffdüngung und Energieertrag auf den Acker-BDF	, 78
Abb. 57	Bleigehalt im Erntegut	, 85
Abb. 58	Quecksilbergehalt im Erntegut	86
Abb. 59	Cadmiumgehalt im Erntegut	87
Abb. 60	Nickelgehalt im Erntegut	88
Abb. 61	Gamma-HCH in den generativen Pflanzenteilen	89
Abb. 62	Gamma-HCH in den vegetativen Pflanzenteilen	89
Abb. 63	DDT, DDD und DDE in den vegetativen Pflanzenteilen	90
Abb. 64	HCB in den vegetativen Pflanzenteilen	90

Tabellen

		Seite
Tab. 1	Übersicht über die Standorte der landwirtschaftlichen Bodendauerbeobachtungsflächen	6
Tab. 2	Repräsentanz der landwirtschaftlichen Bodendauerbeobachtung	7
Tab. 3	Zeitliche Einordnung der Messprogramme	9
Tab. 4	Probenahme auf den Bodendauerbeobachtungsflächen	10
Tab. 5	Übersicht über die angewandten Bestimmungsmethoden und	12
,	Bezeichnung der Parameter in der Datenhaltung	
Tab. 6	Technik für belastungsintensive Arbeitsgänge auf den BDF	20
Tab. 7	Verdichtungsrisiko auf den BDF	21
Tab. 8	Entwicklung der Trockenrohdichte der gering	22
	verdichtungsgefährdeten BDF	
Tab. 9	Entwicklung der Trockenrohdichte auf den	23
	kompressionsgefährdeten Böden	_,
Tab. 10	Entwicklung der Trockenrohdichte auf den	24
	scherempfindlichen Böden	
Tab. 11	Verteilung der Wasserdurchlässigkeit im Profil pfluglos	36
	bearbeiteter Standorte) -
Tab. 12	Bodenphysikalische Parameter und Mikrobiologie im unteren	42
145.12	Bereich des Ap-Horizontes	4-
Tab. 13	Bodenzoologische Parameter auf den Acker-BDF im Mittel	50
	des gesamten Untersuchungszeitraumes	,,
Tab. 14	Vorkommen der Regenwurmarten auf den landwirtschaftlich	51
. 451 . 14	genutzten BDF	٦.
Tab. 15	Bewertung der BDF nach Merkmalen des	53
	Bodenwasserhaushaltes))
Tab. 16	Stickstoff-Saldo der Acker-BDF	53
Tab. 17	pH-Werte der BDF in 0-20 cm Bodentiefe	64
Tab. 18	Gehalt an pflanzenaufnehmbarem Phosphor (CAL) in 0-20	67
	cm Bodentiefe	-,
Tab. 19	Gehalt an pflanzenaufnehmbarem Kalium (CAL) in 0-20 cm	68
	Bodentiefe	
Tab. 20	Gehalt an Magnesium in 0-20 cm Bodentiefe (mg/100g	70
	Boden, bzw. Gehaltsklassen)	,
Tab. 21	Gehalte an pflanzenverfügbaren Mikronährstoffen in 0-20 cm	72
	Bodentiefe	,
Tab. 22	Maximal gemessene Schwermetallgehalte (Einzelwerte) in o-	73
	25 cm Bodentiefe	, ,
Tab. 23	Schwermetallgehalt – mobiler Anteil nach Ammoniumnitrat-	75
	Methode in 0-25 cm Bodentiefe	, ,
Tab. 24	Bewertung der Belastung mit organischen Schadstoffen	76
	anhand relevanter Werte der Bodenschutzverordnung	,
Tab. 25	Maximalgehalte an organischen Schadstoffen	77
Tab. 26	Bodenmerkmale und Effizienz der Stickstoffdüngung auf den	77 79
	Acker-BDF	, ,
Tab. 27	Pflanzenerträge der BDF	80-81

Tab. 28	Konzentration von Makronährstoffen in den Ernteprodukten	82
Tab. 29	Konzentration von Mikronährstoffen in den Ernteprodukten	83
Tab. 30	Richt- und Grenzwerte zur Beurteilung von	84
	Schwermetallgehalten	
Tab. 31	System der Datenhaltung für BDF unter landwirtschaftlicher	92
	Nutzung - Übersichtsinformation	
Tab. 32	System der digitalen Datenhaltung für BDF unter	96-98
	landwirtschaftlicher Nutzung	

7. Literaturverzeichnis

AD-Hoc-AG Boden: Methodendokumentation Bodenkunde -

Auswertungsmethoden zur

Beurteilung der Empfindlichkeit und Belastbarkeit von

Böden. - 2. Aufl., Loseblattsammlung; Stuttgart [Schweizerbart]. (2000)

AD-HOC-AG BODEN: Bodenkundliche Kartieranleitung. 5. Auflage, Hannover 2005,

438 S.

ANONYM (1991) Sonderarbeitsgruppe Informationsgrundlagen Umweltschutz der UMK

(1991): Konzeption zur

Einrichtung von Boden-Dauerbeobachtungsflächen im Auftrag der UAG

"Bodendauerbeobachtungsflächen im Auftrag der SAG

"Informationsgrundlagen Bodenschutz".-

Bayer. Staatsministerium f. Landentwicklung und Umweltfragen (Hrsg.):

Arbeitshefte

Bodenschutz1, 56 S.; München.

ANONYM (1998): Gesetz zum Schutz des Bodens – Bundes-

Bodenschutzgesetz. BGBl I, G5702, Nr. 16 v. 28.3.1998, S.

502-510

ANONYM (1999): Bundes-Bodenschutz- und Altlastenverordnung v. 16.7.1999,

BGBl. I(1999) Nr. 36

ANONYM (2003) Thüringer Gesetz zur Ausführung des Bundes-Bodenschutzgesetzes v.

16.12.2003, Ges. - u. Verordnungsblatt Thüringen, Nr. 15, 30.12.2003, S.

511-515

BACH, M.: Ausmaß und Bilanz der Nitratbelastung durch die

Landwirtschaft. Handbuch Bodenschutz, 05. Lieferung, Berlin

(1990)

BACHMANN, G. ET AL.: Fachliche Eckpunkte zur Ableitung von Bodenwerten im

Rahmen des Bundes-Bodenschutzgesetzes. Handbuch

Bodenschutz, 24. Lieferung (1997)

BARTH, N.; BRANDTNER, Boden-Dauerbeobachtung, Einrichtung und Betrieb von

W.; CORDSEN, E. ET AL.: Boden-Dauerbeobachtungsflächen. (ad hoc AG

Bodendauerbeobachtung der LABO) (2000) In:

ROSENKRANZ, D. et al. (Hrsg.): Bodenschutz: Ergänzbares Handbuch der Maßnahmen und Empfehlungen für den Schutz, Pflege und Sanierung von Böden, Landschaft und

Grundwasser Berlin.

BAUCHHENSS, J.: Bodenzoologie. In: Bodendauerbeobachtungsflächen. Bericht

nach 10jähriger Laufzeit 1985-1995. Schriftenreihe der bayr. Landesanstalt für Bodenkult. Und Pflanzenbau Freising, Heft

6 (1997), 219-231

BEISECKER, R.; GÄTH, S. Auswirkungen langjährig unterschiedlicher

FREDE, H.G.: Bodenbearbeitungssysteme auf die Porenstruktur und die

Wasserinfiltration eines Löß- und eines Sandbodens. Z. f.

Kulturtechn. und Landentw. 32, (1991) 87-95

Bernhofer, Ch.; Abschlussbericht zum

GOLDBERG, V.; Forschungsvorhaben der TLUG; REKLI Aufbau einer

FRANKE, J.: Klimadatenbank und Regionale

Klimadiagnose für Thüringen - unveröffentlichter

Abschlussbericht; Jena. (2003)

DELSCHEN, TH.; KÖNIG, Untersuchung und Beurteilung der Schadstoffbelastung von

W.: Kulturböden im Hinblick auf den Wirkungspfad Boden-

Pflanze. Handbuch Bodenschutz, 26. Lief. 1998 (Nr. 3550) Domsch, H.:

Veränderung des Bodengefüges durch häufige Überrollung. Bodenverdichtung. KTBL - Fachtagung 1993 Braunschweig,

Schrift 362, S. 129-135 (1995)

Kritische Umweltbelastungen Landwirtschaft (KUL): Ein ECKERT, H.; BREITSCHUH,

EMANUEL, C.:

G.: Verfahren zur Erfassung und Bewertung landwirtschaftlicher

Umweltwirkungen. Umweltverträgliche Pflanzenproduktion. Indikatoren, Bilanzierungsansätze und ihre Einbindung in Ökobilanzen. Fachtagung 11./12.06.1996 Wittenberg: Initiativen zum Umweltschutz 5 (1997). - S. 185-196

EHLERS, W.: Wirkung von Bodenbearbeitungssystemen auf

> gefügeabhängige Eigenschaften verschiedener Böden. Bodennutzung und Bodenfruchtbarkeit, Bd. 2 Bodengefüge.

Parey Hamburg, Berlin (1991)

EIKMANN, TH.; KLOKE, A.: Nutzungs- und schutzgutbezogene Orientierungswerte für

(Schad-) Stoffe in Böden – Eikmann-Kloke-Werte. Handbuch

Bodenschutz, 14. Lief. Berlin 1993, (Nr. 3590) Untersuchungen zur biogenen Auflösung einer

Pflugsohlenverdichtung während einer zweijährigen

Bodenruhe. Diss. Göttingen (1977)

Mechanische und biologische Melioration eines FENNER, S.; WERNER, D.;

EHLERS, W.: schadverdichteten Löß-Ackerstandortes. VDLUFA Kongress

Göttingen, Tagungsbericht (1992) S.278

Flügel, W. Repräsentanz der Bodendauerbeobachtung in Thüringen.

Studie im Auftrag der TLUG. (2002)

GRAF, O.: Die Regenwürmer Deutschlands. Ein Bildatlas für Bauern,

Gärtner, Forstwirte und Bodenkundler. Schaper, Hannover

(1953)

Rechnergestützte Felddiagnoseverfahren zur GULLICH, P. ET AL.:

Unterbodengefügemelioration. Fo.Ber. Müncheberg (1990)

Bodendauerbeobachtung in Thüringen. Bericht. Thüringer HANNUßEK-BIERMANN,

Landesanstalt für Umwelt und Geologie (2006) M. ET AL.: Druckfortpflanzung in Böden unter langsam fahrenden HORN, R.; BURGER, M.;

LEBERT, M.; BADEWITZ, G.: Traktoren. Z. Kulturtechnik u. Flurberein., 28 (1987) 94-102

Schwellenwerte für N-Salden in Abhängigkeit von der KNOBLAUCH, S.; SWATON, TH. Auswaschungsdisposition von Böden. Modellvorhaben

VERSTOLA. Bericht, TLL (2006)

Anleitung und Richtwerte für Nährstoffvergleiche nach KERSCHBERGER, M.; Düngeverordnung. Schriftenreihe TLL, Jena (1997) Franke, G.; Hess, H.: KNOBLAUCH, S.; PFLEGER, Nitratgehalte im Sickerwasser und N-Austrag aus

I.; HEROLD, L.; ROTH, D.: unterschiedlichen Agrarstandorten Thüringens. Bericht TLL

Ein Verfahren zur flächendeckenden Erfassung der LEBERT, M.; HORN, R.:

Bodenstabilität im Hinblick auf die Beurteilung der mechanischen Belastbarkeit der Ackerböden. Z. f. Kulturtechn. Und Landentw. 33 (1992) 85-99

Limiting distances between root and gas phase for adequate LETEY, J.; STOLZY, L.H.:

oxygen supply. Soil Science, Baltimore 103 (1967) S. 404-409

PAUL, R. ET AL.: Bodendauerbeobachtungsflächen zum Monitoring der Verän-

derungen wesentlicher Bodeneigenschaften in unterschiedlichen Agroökosystemen. Zw.bericht nach 5 jähriger Laufzeit 1992-1997. Thür. Landesanstalt f. Landw. Jena (1998) 84S.

PAUL, R.: Korrelative Beziehungen zwischen Makrogasdiffusion und

anderen Bodenparametern. Arch. Acker-Pflanzenbau

Bodenkd., Berlin 34 (1990) S. 5-12

PAUL, R.; WERNER, D.: Abhängigkeit der Makrogasdiffusion von der Bodenstruktur.

Arch. Acker-Pflanzenbau Bodenkd., Berlin 30 (1986) 11, S.

681-687

SEMMEL, H.; HORN, R.: Möglichkeiten zur Bestimmung der mechanischen

Belastbarkeit und der Druckfortpflanzung im Boden im

Hinblick auf die Ableitung von bodentyp- und

maschinenspezifischen Grenzwerten. Schriftenreihe KTBL-Schr. 362 "Bodenverdichtung", Fachtagung Nov.1993,

Braunschweig, Münster-Hiltrup (1995) S. 61-92

SOMMER, C.; DÜRR, H.-J.;

ZACH, M.:

Auswirkungen von Bodenverdichtungen auf den

Pflanzenertrag und Schlussfolgerungen aus der Sicht des

Bodenschutzes. Schriftenreihe KTBL-Schr. 362

"Bodenverdichtung", Fachtagung Nov.1993, Braunschweig,

Münster-Hiltrup (1995) S. 176-188

TEBRÜGGE, F.; GROSS, V.;

GRUBER, W.:

Wechselwirkung von Bodenbearbeitungssystemen auf das Ökosystem Boden. KTBL-Schr. 362 "Bodenverdichtung",

Fachtagung Nov.1993, Braunschweig, Münster-Hiltrup (1995)

S. 189-203

TISCHER, S.: Lumbricidenvorkommen in unterschiedlichen Ökosystemen.

Mitteilungen DBG 107 (2005) 209-210

TISCHER, S.: Mikrobielle Biomasse und Enzymaktivitäten von

Dauerbeobachtungsflächen in Sachsen-Anhalt (engl.),

Archives of Agronomy and Soil Science, 51 (2005) 6, S.673-685

WERNER, D. ET AL.: Bodendauerbeobachtungsflächen zum Monitoring der

Veränderungen wesentlicher Bodeneigenschaften in

unterschiedlichen Agroökosystemen. Zwischenbericht zu den Ergebnissen des Untersuchungszeitraumes 6/92-12/95. Thür.

Landesanstalt f. Landw. Jena (1996) 84S.

WERNER, D.: Möglichkeiten der Landwirtschaft zur Erhaltung des Bodens

und seiner Funktionen. Schriftenreihe LUFA Thüringen, 6

(1993) S. 88-112

WERNER, D.; Versuchsergebnisse zur belastungs- und

MAUERSBERGER, V.: bearbeitungsextensiven Bewirtschaftung eines Lößbodens.

KTBL-Schr. 362 "Bodenverdichtung", Fachtagung Nov.1993,

Braunschweig, Münster-Hiltrup (1995) S. 93-107